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Abstract—Quality assessment of light field images poses new
questions and challenges, due to the enriched nature of the
content and the possibilities it offers at the rendering step.
Image-based rendering is conventionally used to showcase the
increased capabilities of light field contents on traditional 2D
screens. However, the range of possibilities for rendering pa-
rameters is virtually endless, which poses the problem of what
rendered images should be used when performing visual quality
assessments, as well as how to properly present them to subjects
during quality evaluations. Single-image assessment has been
used in the past to conduct subjective quality evaluations. Since
this type of assessment generates a large number of stimuli to be
evaluated, which increases the complexity, length, and cost of the
test, it is fundamental to analyze whether the added strain on
the evaluation procedure is compensated by statistically relevant
results. In this paper, we analyze the results of a subjective
evaluation campaign that used single-image assessment by means
of statistical tools, to understand whether the advantages of
evaluating light field contents through separately rendered images
counterbalance the increase in complexity. In particular, we
test whether different types of rendering lead to statistically
different ratings, and if testing a variety of rendering parameters
through single-image assessment is advisable. Results provide
useful guidelines to designs more efficient subjective quality
assessment for light field contents.

Index Terms—Ilight field, subjective evaluation, quality assess-
ment, subjective methodologies

I. INTRODUCTION

For any type of multimedia content, reliable quality assess-
ment is of paramount importance in the design and validation
of new compression solutions that aim at reducing the size
of the original data without compromising its perceptual
quality. While objective metrics have been developed in the
last decades to effectively predict the perceptual quality of
the contents under assessment, subjective evaluations remain
the most reliable means to measure the quality of media
contents. In particular, subjective evaluation of visual quality is
of fundamental importance when deciding which compression
solution should be used. In that matter, light field contents pose
new questions and challenges, due to their enriched nature and
the possibilities available for the rendering step.

This work has been conducted in the framework of the Swiss National
Foundation for Scientific Research (FN 200021_159575) project Light field
Image and Video coding and Evaluation (LIVE).
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One of the most natural and intuitive ways to consume light
field contents would involve light field displays or simulators
to create a multi-view, 3D rendering of the contents [1], [2].
Using this approach, the full potential of light field imaging
is exploited to create a 3D representation of the scene in front
of the user. However, such displays are not widely available
to consumers, due to their cost and their requirements.

Another possible approach to render light field contents
relies on image-based rendering [3]. Indeed, image-based
rendering offers an impressive showcase of the rendering
abilities made possible by light field technology. Among other
possibilities, the point of view of the scene can be modified,
digital refocusing can be applied to highlight a specific plane
in the image, zooming can be performed to exclude some
planes in the scene, and so on. Due to the nearly endless
possibilities that are offered, the first challenge that is posed
for any type of image-based light field evaluation is to select
which rendering to take into account when evaluating the
contents. Such challenge becomes particularly dire when the
images obtained after the rendering procedure are evaluated
one by one, as the length and complexity of the test grows
exponentially. Equally challenging is obtaining a single score
for each content under assessment, since several rendered
images are presented and subsequently rated in a separate
fashion. It is thus not clear what is the best method to obtain
a unique rating for the entire light field content.

Single-image assessment was chosen as the subjective eval-
uation methodology for the ICME 2016 Grand Challenge
on Light-Field Image Compression [4]. Five algorithms were
received as response to the challenge [5]-[9], and were
evaluated against the anchor of choice, namely JPEG, using
both objective and subjective quality assessment methods.
The number of possible renderings was purposely constrained
to avoid an overly complex assessment scenario; even so, a
total number of 720 stimuli was generated for the subjective
evaluation. Hence, it is crucial to analyse the results of such
a massive campaign, to assess whether the added complexity
of the test was justified by a diversification in ratings among
different rendering procedures. To this aim, in this paper we
use statistical tools such as ANOVA to examine the similarities
among the ratings, and in particular to determine whether
there are statistically relevant differences among different
rendered images. Results are decisive in selecting the best
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Fig. 1: Examples of central all-in-focus perspective view (first row) and view refocused on frontal plane (second row) from

each content used in the experiments.

evaluation methodology for visual quality assessment of light
field contents.

Our previous paper provides a presentation of the grand
challenge results, including comparisons among the codecs
and guidelines on different approaches [4]. However, the short-
comings and advantages of using single-image assessment to
evaluate light field contents were not discussed. We aim at
bridging the gap by providing a comprehensive analysis of the
results obtained in the subjective evaluations. In the following
sections, we will give a brief summary of relevant work; then,
we will describe the subjective evaluation methodology, as
well as the statistical tools used to perform the analysis, and
we will present the results of our inquiry.

II. RELATED WORK

Several approaches have been adopted in literature to sub-
jectively and objectively evaluate the quality of light field
contents using image-based rendering. In [10], the visual
quality of compressed light field contents was objectively
evaluated using 9 perspective views and 3 refocused views, in
order to test different rendering modalities. Filipe et al. [11]
assessed the performance of several state-of-the-art focus
metrics in the evaluation of extended depth of field (all-in-
focus) images acquired by a focused plenoptic camera. In
particular, they performed a subjective assessment in which
they compared extended depth of field images obtained using
optimal patch sizes, against images obtained with slightly
larger patch sizes. In [12], the authors used the central, all-
in-focus perspective view to subjectively assess the visual
quality of light field contents affected by compression artifacts,
using Paired Comparison (PC) as protocol. Paudyal et al. [13]
analyzed the impact of different visualization techniques,
including image-based assessment of all-in-focus perspective
views and refocused views using Absolute Category Rating
(ACR), concluding that there is high correlation between the
scores obtained by image-based evaluation when compared to
the corresponding animation-based passive evaluation. Battisti
et al. [14] used an animation-based passive approach to study
the effect of different trajectories on the perceived visual

quality of light field contents. Perra [15] assessed the quality
of rendered light field contents using a uniform circular
animation, and proposed a new SSIM-based objective quality
metric to predict its visual quality. In our previous work, we
performed a comparison of different coding approaches using
both objective and subjective assessment [16]. For the latter,
both an interactive setup and an animation-based presentation
were used to collect the results.

III. DATA PREPARATION AND CODING CONDITIONS

The coding conditions were defined in the context of the
aforementioned ICME 2016 Grand Challenge [4]. Light field
images created with a Lytro Illum plenoptic camera were
selected as input. In particular, a lenslet image, which was cre-
ated from the raw 10-bit sensor data by applying devignetting,
demosaicing, clipping to 8-bit and color space conversion from
RGB444 to YUV420, was to be compressed by the participants
to the challenge. A total of six light field images were selected
from a publicly available dataset to be used in the subjective
quality assessment [17]. Thumbnails of rendered views for
each content are indicatively depicted in Figure 1. Four fixed
compression ratios were selected to evaluate the performance
of the proposed compression algorithms, namely R1 = 10 : 1
(1 bpp), R2 = 20 : 1 (0.5 bpp), R3 = 40 : 1 (0.25 bpp),
R4 = 100 : 1 (0.1 bpp). The ratios were computed with
respect to the size of the raw data obtained from the camera
(5368 x 7728 x 10 = 414’839'040 bit).

After compression and decompression, each lenslet image
was converted to a stack of all-in-focus perspective views
using the MATLAB Light Field Toolbox v0.4 [18], [19]. The
stack contained 15 x 15 perspective views, each of resolution
434 %625 pixels. Color and gamma corrections were applied to
each perspective view prior to visualization. Analogously, the
reference light field structure of perspective views was created
from the uncompressed YUV420 lenslet image.

For each content, three all-in-focus perspective views were
directly extracted from the light field data structure to be
subjectively assessed. Namely, from the 15 x 15 stack of
perspective views, those at indexes (8,4), where i = 5,8, 11,



TABLE I: Values of slope for refocused views.

Image ID Slope 1 Slope 2
Bikes -0.65 0.22
Flowers -0.3 0.3
Stone_Pillars_Outside -0.5 0.2
Desktop -0.5 0.5
Fountain_&_Vincent_2  -0.5 0.35
Friends_1 -0.15 0.2

were selected to represent different perspectives of each scene.
Additionally, the MATLAB Light Field toolbox was used to
create two refocused views for each light field content, using a
modified version of the function LFFiltShiftSum. In particular,
perspective views from index 5 to index 11 (7 x 7 views) were
used for the computation, leading to a rather large depth of
field that still showed the effects of refocusing. Two slopes
were selected in order to focus the image on two semantically
relevant planes in the scene, as listed in Table 1. Figure 1
shows one example of refocused view for each content, using
Slope 1. The three all-in-focus perspective views, along with
the two refocused views, form the five views that were used
to assess each compressed content.

In total, six algorithms (five proponents [5]-[9] and one
anchor) were evaluated in the subjective assessment tests.
From each of the six light field contents compressed at 4
different bitrates, five rendered views were created. Thus, a
total of 720 stimuli were assessed by human subjects in the
test.

IV. SUBJECTIVE QUALITY ASSESSMENT METHODOLOGY

The methodology selected to conduct the subjective tests
was based on Double Stimulus Continuous Quality Scale
(DSCQS). Two images in native resolution (625 x 434 pixels)
were presented simultaneously in a side-by-side fashion. One
of the two images was always the uncompressed reference,
and its position on the screen was randomized. The other
image was compressed by one of the evaluated algorithms,
at one of the selected bitrates. Both the reference and the test
images were visualized using the same rendering parameters.
Subjects were asked to rate the quality of reference and test
images separately, on a discrete scale from 5 (Excellent) to 1
(Bad). Although they were informed that one of the visualized
images would always be the reference, they did not receive any
indication on its relative position on the screen. Before the
experiments, a training session was organized to help subjects
to adjust to the peculiarities of light field rendering, and to help
them detect various distortions and compression artifacts. In
particular, great care was applied in instructing subjects not to
consider refocusing blur as a distortion, to avoid bias towards
certain rendered images. To do so, five training samples (one
for each rendered view) were generated using an additional
content from the light field database [17].

To perform the tests, the QualityCrowd 2 framework [20]
was modified to suit the DSCQS methodology. The experiment
was split into four sessions, each containing 180 pairs of
images. Each session lasted for approximately 45 minutes. At

the beginning of first session, one dummy example was shown
to ease the subject into the task, and its corresponding scores
were subsequently discarded. The display order of the stimuli
was randomized, and the same content was never displayed
twice in a row. Each subject took part in two sessions, and
a break of ten minutes was enforced between the sessions to
avoid fatigue. A MacBook Pro 15.4-inch display was used
for the test, with a resolution of 2880 x 1800 pixels. Only
one observer per viewing session was employed, and the
environment conditions were not fixed.

Overall, 35 naive subjects (24 males and 11 females)
participated in the subjective experiments, each rating 360
stimuli over the course of two sessions. Subjects were between
18 and 33 years old, with an average and median age of
22.4 and 22 years old, respectively. All subjects were screened
for correct visual acuity with Snellen charts, and color vision
using Ishihara charts.

V. DATA PROCESSING AND STATISTICAL ANALYSIS

Outlier detection and removal was performed according to
the ITU Recommendations [21]. One subject was found to
be an outlier, and the corresponding scores were discarded,
thus leading to 17 scores per stimulus. After outlier removal,
the Mean Opinion Score (MOS) was computed for each
coding condition j (i.e. for each content, view, proponent
and bitrate). The corresponding 95% Confidence Intervals
(CIs) were computed using Student’s t-distribution [22]. Anal-
ogously, the MOS score was computed for each reference
stimulus, separately for each rendering condition j (i.e., for
each refocused and perspective view).

In order to determine whether statistically significant dif-
ferences are present among the ratings given for differently
rendered images, we performed analysis of variance (ANOVA)
on the data. In particular, we first performed a one-way
ANOVA on the MOS scores associated with each coding
condition j, analyzing whether there was any statistical dif-
ference associated with each rendering parameters, using as
null hypothesis the equivalence of all group means. We then
performed the same analysis on the MOS scores associated
with each rendering condition 3, to further understand whether
any difference in performance could be due to coding artifacts.
Finally, we performed a multi-way ANOVA on the full set of
scores to gain insights on the statistical differences within the
coding conditions, using as null-hypothesis the equivalence of
each group means for the main effects, and the absence of
non-zero interaction terms for the interaction factors.

VI. RESULTS AND DISCUSSION

Figure 2 compares the MOS scores given to each perspec-
tive and refocused view, for each test content and respective
reference. As further showed by the linear fitting for test
contents, the scores are evenly distributed along the y = «
line, proving that strong correlation can be found between the
scores assigned to perspective and refocused views, within
their rendering group. To further demonstrate that different
perspective and refocused views were scored similarly within
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Fig. 2: Comparison between MOS values for different perspective views and different refocused views, for test contents (blue)
and respective references (orange), with relative linear fitting. The dashed black line represents the y = = function.

the same type of rendering, we perform a one-way ANOVA on
the test scores, using as factor the corresponding perspective
(central, left or right) or refocused (front or back) view.
Tables II and IIT show the results of the analysis. As made clear
by the large p-values (0.3071 and 0.341 for the perspective
and refocused views, respectively), the scores assigned to test
contents rendered through different perspective and refocused
views were deemed statistically equivalent, as they failed to
reject the null hypothesis of equal means at 1% significance
level. Thus, only one representative of each group could have
been used in the test, sensibly reducing the complexity and
length of the evaluation, without causing any disruption in the
collected scores. Results from one-way ANOVA applied on the
reference data show similar trends (p = 0.0166 and p = 0.772
for perspective and refocused views, respectively).

TABLE II: One-way ANOVA on the raw scores given to test
contents rendered through perspective views.

SumSq DF MeanSq F p-value
Perspective views 33 2 1.63249  1.18 0.3071
Error 10148.4 7341 1.38243

TABLE III: One-way ANOVA on the raw scores given to test
contents rendered through refocused views.

SumSq DF MeanSq F p-value
Refocused views 1.15 1 1.1489 091 0.341
Error 6199.85 4894 1.26683

Once the correlation within the groups of views has been
analyzed, we investigate whether there is any difference to be
found between the two groups. Figure 3 shows the comparison
between the MOS values assigned to all the perspective views,
with respect to the MOS values associated with the refocused
views. As showed in the plot, the vast majority of points fall
below the y = « line, signifying that the scores assigned to
the perspective views were steadily higher than their refocused
counterpart. The same trend can be observed not only for the
test contents, but for the references as well. Despite being
trained on considering only the differences between test and
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Fig. 3: MOS values for perspective views vs MOS values
for refocused views, for test contents (blue) and respective
references (orange), with relative linear fitting. The dashed
black line represents the y = z function.

TABLE IV: One-way ANOVA on the raw scores given to test
contents, divided by type of view.

SumSq DF MeanSq F p-value
Type of view 146 1 146.046  109.3  1.78763e—25
Error 16352.7 12238 1.336

TABLE V: One-way ANOVA on the raw scores given to
reference contents, divided by type of view.

SumSq DF MeanSq F p-value
Type of view 373.88 1 373.878 560.71  3.066e—121
Error 8160.21 12238 0.667

reference images, subjects consistently gave lower ratings to
both test and reference contents when presented with refocused
views, whereas for perspective views the ratings were usually
higher. Results from the one-way ANOVA, summarized in
Tables IV and V, confirm that the two groups reject the equal
mean hypothesis (p = 1.78763e—25 and p = 3.06596e—121
for test and reference contents, respectively).

In order to assess the relevance of each coding condition on



TABLE VI: Multi-way ANOVA (interaction model) on the raw
scores given to test contents (perspective views only).

TABLE VIII: Multi-way ANOVA (interaction model) on the
raw scores given to test contents (refocused views only).

SumSq DF MeanSq F p-value SumSq DF MeanSq F p-value
Contents 658.3 5 131.651 179.48 0 Contents 325.74 5 65.149 827 0
Codecs 1935.1 5 387.015 527.63 0 Codecs 981.81 5 196.361 24925 0
Bitrates 1370.7 3 456911 62292 0 Bitrates 602.85 3 20095 25507 O
Perspective views 33 2 1.632 223 0.1081 Refocused views 1.15 1 1.149 1.46  0.2273
Contents*Codecs 65.7 25 2.627 358 0 Contents*Codecs 42.09 25 1.684 2.14  0.0008
Contents*Bitrates 45.6 15 3.038 414 0 Contents*Bitrates 30.82 15 2.055 2.61  0.0006
Contents*Persp. views 9.5 10 0.953 1.3 0.224 Contents*Refoc. views 22.36 5 4471 568 0
Codecs*Bitrates 738.4 15 49.225 67.11 0 Codecs*Bitrates 393.11 15 26.207 3327 0
Codecs*Persp. views 73 10 0.729 0.99  0.4459 Codecs*Refoc. views 7.06 5 1.411 1.79  0.111
Bitrates*Persp. views 2.2 6 0.372 0.51  0.8031 Bitrates*Refoc. views 2.29 3 0.764 0.97  0.406
Error 5315.6 7247 0.733 Error 3791.72 4813 0.788

TABLE VII: Multi-way ANOVA (interaction model) on the
raw scores given to reference contents (perspective views
only).

SumSq DF MeanSq F p-value
Contents 50.6 5 10.1204 2223 0
Codecs 12.12 5 2.424 532 0.0001
Bitrates 0.98 3 0.3269 0.72  0.541
Perspective views 3.79 2 1.8956 4.16  0.0156
Contents*Codecs 14.21 25 0.5686 125 0.1822
Contents*Bitrates 2.02 15 0.1348 0.3 0.9959
Contents*Persp. views 5.95 10 0.5947 1.31  0.2203
Codecs*Bitrates 2.23 15 0.1486 033 0.9929
Codecs*Persp. views 4.65 10 0.4655 1.02 0421
Bitrates*Persp. views 1.73 6 0.2888 0.63  0.7028
Error 3298.92 7247 0.4552

the set of scores, we perform multi-way ANOVA on the test
and reference scores, considering two-factor interactions. We
first consider the scores assigned to perspective and refocused
views separately. Tables VI, VII, VIII and IX show the
results of the analysis. As seen before, the main effects fall
above the 1% significance threshold, thus failing to reject
the null hypothesis (p = 0.1081 and p = 0.0156 for scores
assigned to rendered perspective views in test and reference
contents, respectively, whereas for reference views the results
are p = 0.2273 and p = 0.7686 for test and reference
contents, respectively). Among the first order interactions,
it is worth mentioning that the interaction between contents
and refocused views is significant for both test and reference
contents, meaning that particular combinations of the two
influenced how the stimuli were scored.

Finally, we perform multi-way ANOVA on the entire set of
scores, considering both test and reference contents simultane-
ously. Table X summarizes our findings. As can be seen, the
scores assigned to different views are to be considered signifi-
cantly different in a statistical sense. Moreover, the interactions
between contents and views, and between codecs and views,
are statistically significant. The latter is especially important,
because it signals that the choice of rendering parameters can
influence how different codecs are assessed, independently of
the bitrate (at p = 0.3915, the interaction between bitrates
and views is not significant). As the same interaction between
codecs and views was not deemed statistically significant in
the previous analyses, where the views were neatly separated

TABLE IX: Multi-way ANOVA (interaction model) on the raw
scores given to reference contents (refocused views only).

SumSq DF MeanSq F p-value

Contents 43.8 5 8.7598 928 0
Codecs 101.15 5 20.2309 2143 0
Bitrates 2.11 3 0.7045 0.75 0.5244
Refocused views 0.08 1 0.0817 0.09 0.7686
Contents*Codecs 14.35 25 0.5739 0.61  0.9363
Contents*Bitrates 5.21 15 0.3472 0.37  0.9867
Contents*Refoc. views 38.01 5 7.6018 805 0
Codecs*Bitrates 6.38 15 0.4254 045 0.9639
Codecs*Refoc. views 7.1 5 1.4209 1.51  0.1846
Bitrates*Refoc. views 1.16 3 0.3878 041 0.7453
Error 4543.63 4813 0.944

TABLE X: Multi-way ANOVA (interaction model) on the raw
scores given to test and reference contents, for all rendered
views.

SumSq DF MeanSq F p-value

Contents 544.6 5 108.922 8947 0
Codecs 1151.1 5 23023 189.12 O
Bitrates 917.8 3 305.921 2513 0
Views 497.7 4 124435 10222 0
Contents*Codecs 71.9 25 2.876 2.36 0.0001
Contents*Bitrates 42.4 15 2.827 2.32 0.0026
Contents*Views 78.4 20 3.922 322 0
Codecs*Bitrates 591 15 39.398 3236 0
Codecs*Views 50.2 20 2.511 2.06 0.0035
Bitrates*Views 15.5 12 1.288 1.06  0.3915
Error 29648.9 24355 1.217

based on their rendering type (perspective or refocused), the
difference in the scores distribution most probably lays in how
the two groups were rated. Thus, choosing either one of the
two types of rendering could result in significantly different
ratings, leading to biased results.

Results show that, within the same rendering group, dif-
ferent parameters do not lead to significantly different scores,
both in test and reference contents. Thus, it is unnecessary to
test different rendering parameters within the same group, as it
increases the complexity of the test without bringing any added
value. On the other hand, different types of rendering, such as
perspective and refocused rendering, lead to statistically dif-
ferent results in both test and reference contents. In particular,
refocused contents were consistently rated lower than their



perspective counterpart. This could suggest that selecting only
one of the two types of rendering could lead to biases in the
way scores are distributed.

One straightforward conclusion from the analysis reported
in this section would be to select the rendering parameters as to
have only one view per type of rendering. However, using only
one rendering parameter per group could lead to unwanted
effects. For example, using only one perspective view to assess
the quality of the entire light field content could be a feasi-
ble solution if the compression artifacts are homogeneously
distributed among the views — that is, if the compression
algorithm affects different views in equal measure. If that is not
the case, selecting which view should be used in the test may
become a delicate task. Indeed, a wrong selection of rendering
parameters can favor or penalize certain algorithms or solu-
tions. Moreover, compression solutions might be engineered to
offer the best quality for the rendering parameters selected for
the test, disregarding the quality of others. As such, results
obtained by assessing only few rendering parameters might
be hard to generalize. Particular care should then be paid in
selecting the best rendering parameters as not to favor one
algorithm over another, and to ensure a fair comparison among
all the evaluated solutions.

VII. CONCLUSIONS

In this paper we performed an in-depth analysis of single-
image assessment for light field contents using widely-used
statistical tools. In particular, we tested whether different types
of rendering (in our case, change of perspective and change of
focal point) lead to statistically different scores, and if testing
a variety of rendering parameters is advisable. We show that,
within each type of rendering, no statistical difference can be
discerned. Thus, it is sufficient to evaluate only one rendered
view from each group, as the scores are statistically equivalent.
However, between different types of rendering statistically
significant differences can be found. We underline that such
differences are present in both test and reference contents, thus
they cannot be attributed to the effect of compression artifacts.

We conclude that, although it is theoretically possible to
use single-image methodologies to assess light field contents,
it is discouraged due to a number of issues associated with
it, which might lead to biased results. Increasing the number
of rendering parameters is not guaranteed to produce cor-
responding diversity in the scores; thus, its advantages are
definitely outweighed by the increased length and cost it
requires. However, caution is suggested in using only a few
rendering parameters, since it could be proven ill-advised for
certain compression algorithms, and could be susceptible to
ad-hoc engineering to achieve the best results at the expenses
of the general quality of the content. Further analysis can be
devoted to how best select the rendering parameters according
to the evaluation scenario, in order to remove any bias towards
a particular solution.
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