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Abstract—Point clouds are a new modality for representation
of plenoptic content and a popular alternative to create immersive
media. Despite recent progress in capture, display, storage,
delivery and processing, the problem of a reliable approach to
subjectively and objectively assess the quality of point clouds is
still largely open. In this study, we extend the state of the art
in projection-based objective quality assessment of point cloud
imaging by investigating the impact of the number of viewpoints
employed to assess the visual quality of a content, while dis-
carding information that does not belong to the object under
assessment, such as background color. Additionally, we propose
assigning weights to the projected views based on interactivity
information, obtained during subjective evaluation experiments.
In the experiment that was conducted, human observers assessed
a carefully selected collection of typical contents, subject to
geometry and color degradations due to compression. The point
cloud models were rendered using cubes as primitive elements
with adaptive sizes based on local neighborhoods. Our results
show that employing a larger number of projected views does
not necessarily lead to better predictions of visual quality, while
user interactivity information can improve the performance.

Index Terms—Point clouds, objective quality assessment, sub-
jective evaluation, user interactivity

I. INTRODUCTION

Point clouds denote a popular approach for volumetric
content representations, which are expected to dominate im-
mersive communications in the near future. Yet, a vast amount
of data is required in order to store and deliver such contents
and, thus, efficient compression algorithms and interoperable
formats are required. Compression methods come at the cost
of information loss that typically leads to degradation of the
visual quality of a model, which by extension can affect the
user experience. Thus, it is of critical importance to define
adequate frameworks to accurately assess impact of such
distortions. For this purpose, subjective or objective quality
assessment methodologies and metrics are used. With the
first considered as the ground truth data and the second as
algorithms that predict it.

In case of point clouds, several studies on subjective eval-
vation have been reported in the literature. In particular,
in [1], [2] and [3] raw point clouds without color information
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were assessed in typical 2D monitors and augmented reality
using a head-mounted display, respectively. The visual quality
of colorless models was also evaluated in [4], where the
screened Poisson surface reconstruction algorithm was used
as a rendering mechanism. In [5], the perceived quality of
dynamic, colored point clouds that represented the avatars of
human test subjects were encoded in real-time and assessed in
a 3D tele-immersive system. In [6], a subjective experiment
was conducted, where observers evaluated in a passive way
the visual quality of colored stimuli that were encoded using
an octree- and a graph-based scheme. The point clouds were
rendered using cubes of adaptive sizes based on local resolu-
tions. In [7], a subjective evaluation campaign was performed
to assess the quality of voxelized point clouds whose geometry
and color were encoded using various configurations of the
codec described in [5], in an interactive platform. In [8],
subjective experiments of volumetric videos encoded using the
MPEG Point Cloud Compression TMC 2 were issued. The
contents were rendered using splats of fixed size, determined
heuristically to result in visualization of watertight models,
while the participants assessed the stimuli in a passive way.
Subjective evaluations, although providing ground truth
information for the visual quality of stimuli, are expensive
and cumbersome. Thus, objective means to faithfully predict
human judgements are required. For point cloud representa-
tion, objective quality metrics can be categorized based on the
type of information they are able to assess, namely, geometry,
color, or geometry-plus-color. The first two categories depend
on individual errors that are assigned to pairs of associated
points. The error is based on deviations of the geometric
positions [9] or normal vectors [10] for geometry, and color
values for color metrics, respectively. These two categories are
limited due to the inability of mutually assessing structural
and textural degradations. Conversely, the framework that was
recently proposed in [7] is able to capture both geometry and
color distortions as well as rendering artifacts, by making use
of conventional 2D imaging algorithms on projected views of
the displayed models. In this approach, the point clouds are
voxelized at a fixed depth; that is, the coordinates are quantized
to regular 3D grids of fixed size, and each point is enclosed by
a cubic volumetric cell (voxel) of corresponding color, or blend
of colors in case several points fall in the same cell. To render
a model, the obtained voxels are orthographically projected
on 2D pixel grids. Benchmarking results on the resulting



views showed that this approach is superior to the state-of-
the-art quality metrics. However, the number of projections to
compute the objective scores was arbitrarily set to 6, while
each view was treated as of equal importance. Furthermore,
background pixels that do not belong to the displayed models
were considered in the computations. Finally, this approach
is not tested with different rendering algorithms other than
voxelization with fixed depth.

In this study, the aforementioned methodology is extended
and importance weights are applied for the computation of the
objective scores. In principle, different perspectives of a 3D
model might be of different importance, as they could be more
or less representative or informative regarding the presented
content. Analogously, a non-uniform weighting function might
be assigned on the views employed to predict the visual quality
of a 3D model. To the best of our knowledge, weighted views
have been considered only in [11] for objective evaluation
of 3D meshes. The importance weights were obtained based
on a surface visibility algorithm, typically used for viewpoint
preference selection [12]. In our analysis, provided an interac-
tive subjective evaluation scenario, we make the hypothesis
that the importance of a view is related to the duration
of inspection from participants during subjective assessment;
thus, the projected images are weighted accordingly.

The contributions of this study can be summarized as fol-
lows: (a) Investigation on the impact of employing a different
number of views in projection-based objective metrics. This
is accomplished through a rigorous analysis by sub-sampling
the view sphere in a regular way and exploring different
configurations. (b) Introduction of a weighting function based
on users’ interactions. The displayed viewports are clustered
to match the number of views under study, and larger weights
are assigned to more frequently visited views. (c) Exploration
of the generalization capabilities of projection-based metrics in
a different rendering scheme, and performance improvement
by removing background pixels from the computations.

II. OBJECTIVE QUALITY ASSESSMENT FRAMEWORK
A. Generation of projected views

Given a distance, a 3D model can be inspected from an infi-
nite number of points of the surrounding view sphere. Enabling
a vast amount of viewpoints, though, is both impractical and
unnecessary, as in a dense configuration two successive points
provide very similar information. In our analysis, to address
how many perspectives are sufficient and what is the impact of
enabling additional views, a model is captured by K regularly-
spaced viewpoints with the following camera layouts: (a) a
single point that captures the frontal view of the content (i.e.,
K = 1), to examine whether a single image corresponding
to the initial view of the model that was displayed to the
subjects provides a good approximation of its visual quality;
(b) the vertices of a surrounding octahedron (i.e., K = 6),
which is idential to the setup of [7]; and (c) points lying on
a surrounding geodesic sphere with coordinates determined
by iterative subdivisions of a regular icosahedron up to 2
levels (i.e., K = 12,42, 162). The latter is a commonly
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Fig. 1: Camera layouts to capture views of the models.

used arrangement in studies for view selection [11], [12],
that provides a consistent approach to approximate uniformly
distributed samples that are lying on the surface of a sphere.
By iteratively subdividing the regular icosahedron, gradual
granularity with progressive integration of new viewpoints on
the previous set is achieved; this is important in order to
identify whether additional views can improve the prediction
of subjective visual quality. In Figure 1, indicative examples
of the camera arrangements are illustrated.

Besides the number of viewpoints, additional influencing
factors, such as the distance between the content and the
cameras, the direction of the cameras, the lighting conditions,
and the type of projection (e.g., orthographic, perspective) are
fixed, in order to decrease the parameter space and simplify our
analysis. In particular, the distance between the cameras and
the model is fixed to match the one that was determined for the
initial view presented to the subjects; thus, the model can be
comfortably seen in its entirety from every point of the view
sphere. The direction of every camera points at the center of
the sphere (i.e., origin of the models), while the default lighting
in the VTK library (i.e., headlight located at the current camera
position) is used without any shading model. The stimuli are
orthographically projected onto the renderer.

From each camera position, projections of the rendered
models are acquired. The resolution of the captured images
is 1100x1440, matching the resolution of the bitmaps that
were displayed to the subjects during evaluation. The objective
scores are computed based on these images. When assessing
the state-of-the-art method [7], every pixel is involved in the
computations. In the proposed framework, though, only the
effective part of the rendered model is considered. For this
reason, the images are captured in RGBA color space and,
if needed, pixels that correspond to the background can be
removed based on transparency values. An overall objective
score is obtained by performing a (weighted) average of the
scores associated to the projected views in each K -set.

B. Exploiting user interaction

Importance weights are assigned to each view of a model
based on interactivity data that is recorded during a subjec-
tive evaluation experiment. In particular, the weights aim at
reflecting the importance of a model’s perspective in the final
judgement of a subject. One way to compute such weights is
based on the time of inspection of the corresponding views.
In order to do so, it was decided to pre-filter the interactivity



information to reduce the noise. Let us define a track as a
set of recorded interactions that corresponds to the inspection
of a model by a subject. Firstly, a time threshold is applied
on each track, in order to remove transitional views that were
not carefully examined. In our case, the time threshold is set
as one second. Secondly, interactivity data that corresponds to
translations of the objects and, thus, different camera directions
is excluded, as the translations are not considered in the camera
layouts for the generation of views for objective scores. On
the remaining data, each viewpoint of every track is mapped
to the nearest view, given a camera arrangement. The total
duration of inspection of a stimulus from one view can be
obtained by aggregating the individual times of inspection
from that particular view of the same stimulus across every
subject. Similarly, the total duration of inspection of a content
can be derived by combining the total duration of the stimuli
that correspond to the content’s variations (i.e., compressed
versions). The weights of a stimulus or a content are computed
as the ratio of the duration of inspection of the corresponding
views, divided by the total time. In our case, weights per
content are computed and applied on the projected views.

III. VALIDATING EXPERIMENT
A. Test content preparation

The content selection and preparation is identical to
the methodology in [7]. Briefly, the dataset consists of 6
static contents clustered in two categories, namely, human
bodies: longdress_vox10_1300, loot_vox10_1200, redand-
black_vox10_1550, and inanimate objects: amphoriskosl, bi-
plane, romanoillamp. The majority of these models have
been considered in recent activities of the JPEG and MPEG
standardization committees. The reference models are com-
pressed using a compression scheme that is described in [5]
and is based on an octree structure to encode the geometry
and the JPEG algorithm to encode the color values. Three
octree depths (i.e., 8-, 9- and 10-bit) and three JPEG quality
parameter values (i.e., QP = 10, 50, and 90) are applied to
account for different levels of geometry and color quality, and
all possible combinations are considered.

Before encoding, the reference models were pre-processed.
Specifically, sub-sampling was performed whenever needed
(i.e., biplane) in order to restrict the number of points of
the contents in a small range of values. Amphoriskos was
first converted to a polygon mesh to remove outliers and
missing parts of the original model, and then was sampled.
The resulting point clouds are voxelized using 3D grids of 10-
bit depth. Finally, the models are scaled to fit in a minimum
bounding box of size 1, and their center is placed in the
position (0, 0, 0). No rotations are applied.

B. Rendering scheme

To enable visualization of watertight models, the contents
are rendered using primitive cubes of adaptive sizes based on
local densities. In particular, the cube size for every point p
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Fig. 2: Contents using our rendering methodology (QP = 90).

is set analogously to the mean distance x of its 10 nearest
neighbors. To avoid the magnification of sparse regions, or
outlier points that deviate from surfaces (e.g., acquisition
errors), we assume that x is a random variable following a
Gaussian distribution N (u,, 0,), and every point p with mean
outside of a specified range, is classified as an outlier. In our
case, this range is defined by the global mean p = [i, and
standard deviation ¢ = &,. For every point p, if x > p©+3- 0,
or x < o — 3 -0, then p is considered as an outlier and x
is set analogously to the global mean p. Based on expert
viewing, this approach was found to be rather efficient, with
reduced complexity and visually pleasing results. Notice that
this rendering methods is different from [7], where each point
is represented as a projected voxel of fixed size onto a 2D
plane.

C. Test equipment and environment

The experiment was conducted in a test laboratory that fol-
lows the ITU-R Recommendation BT.500-13 [13]. The room
is equipped with neon lamps of 6500 K color temperature,
while the color of the walls and the curtains is mid gray. An
Apple Cinema monitor of 27-inches and 2560x1440 resolution
was used. The brightness was set to 120 cd/m? with a D65
white point profile. The conditions were adjusted and ambient
light of 15 lux was measured next to the screen according to
the ITU-R Recommendation BT.2022 [14]. The models were
displayed in a renderer developed in the VTK library, allowing
subjects to interact by rotation, translation and zooming, thus
simulating realistic consumption of 3D models. The subjects’
ratings were submitted by clicking through a graphical user
interface developed in QT library. Special care was given to
allow fast responsiveness in user’s interactions and low waiting
times in between content inspection.

D. Subjective evaluation methodology

The simultaneous Double-Stimulus Impairment Scale
(DSIS) with 5-level grades is selected in this study. The
reference and the degraded contents are displayed side-by-
side, and the subjects are able to simultaneously interact with
them before rating the visual quality of the latter, without any
time limitation. The order of the stimuli is randomized and
the side of the content under evaluation is randomly placed
in the screen, per subject. A training phase preceded the



actual test, to allow the subjects to familiarize themselves with
the renderer and obtain references for the types of artifacts.
Considering that the interactivity information was logged for
analysis purposes, it was considered that the occurrence of
tiredness of the subjects would have an additional impact on
the time they spend on every stimuli. Thus, the test was split
in two sessions to avoid fatigue, limiting the expected total
time to less than 10 minutes per session. The subjects, after
giving every electronic device to the trainer, were instructed to
avoid distractions and focus on their task to rate the distorted
contents. In every test, for each of the 6 contents, 9 degradation
levels are assessed, plus a hidden reference. Thus, each session
is constituted by 30 stimuli. In total, 20 subjects participated
in the experiment, with 10 males and 10 females (average age
of 26.7 years).

E. Subjective quality metrics

To identify diverging scoring behavours from the subjects,
the outlier detection scheme described in the ITU-R Recom-
mendation BT.500-13 [13] is followed. As a result, no outlier
was identified and, hence, the Mean Opinion Score (MOS)
per stimuli is computed on a total of 20 scores. Additionally,
the 95% confidence intervals (Cls) based on a Student’s t-
distribution are computed in order to identify the range in
which the true mean lies. Finally, one-way ANOVA is issued
to identify statistical differences among ratings of models that
belong to different categories (i.e., inanimate objects, human
bodies).

FE. Objective quality metrics

The state-of-the-art objective quality metrics that assess
geometry-only degradations can be grouped as: (i) point-to-
point, (ii) point-to-plane [9], and (iii) plane-to-plane [10]. Each
of these algorithms is based on the identification of pairs of
associated points, and an error value for every point of the
content under assessment is computed. This error is computed
either based on the Euclidean distance (point-to-point), or the
projected error along the normal vector of a reference point
(point-to-plane), or the angular similarity (plane-to-plane). An
objective score that reflects the quality level of the entire
content under assessment is obtained by using either the Root
Mean Square (RMS), or the Mean Squared Error (MSE), or
the Hausdorff distance. In this study, both the original and the
distorted contents are used as reference and both errors are
computed; then, the maximum value is kept, which is referred
as symmetric error. The point-to-point (po2point) and point-
to-plane (po2plane) metrics are computed using ver. 0.12 of
the software described in [15]. The plane-to-plane (pl2plane)
metric is computed using the software released in [10]. The
normal vectors of every content are estimated using 12 nearest
neighbors, based on a plane-fitting algorithm [16].

The metrics that assess color-only information are based on
standard formulas of 2D imaging between pairs of associated
points. In this study, the PSNR is used after converting the
default RGB color space to YCbCr, and the symmetric error
is computed. The software described in [15] is employed
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Fig. 3: Subjective scores against degradation levels.

to obtain the PSNRy, PSNRyj, and PSNRy,, and weights
of 6, 1 and 1 are assigned to the luma and chroma channels,
respectively [17].

For geometry-plus-color metrics, the 3D models are pro-
jected on image planes and the PSNR, SSIM, MS-SSIM [18],
and VIFP [19] algorithms are applied on the captured views.
To assess the state-of-the-art methodology, the same setup
described in [7] is employed with 6 views, essentially pro-
jecting the model onto the faces of a surrounding cube. For
the proposed framework, MATLAB scripts are modified for
background removal?.

G. Performance indexes

To benchmark the objective quality metrics against the
ground truth subjective ratings, a predicted MOS is commonly
obtained by applying a fitting function on the objective scores
based on a regression model. The latter values are correlated
with the subjective MOS. In our case, a monotonic cubic
function is used for regression. Following the Recommenda-
tion ITU-T P.1401 [20], the Pearson linear correlation coeffi-
cient (PCC), the Spearman rank order correlation coefficient
(SROCC), the root-mean-square error (RMSE), and the outlier
ratio based on standard error (OR) are computed between the
subjective and predicted MOS values, to assess the linearity,
monotonicity, accuracy and consistency of the results.

IV. RESULTS
A. Subjective scores

In Figure 3, the computed MOS along with the corre-
sponding Cls are presented against the geometry and color
degradation levels. As can be observed, geometry artifacts
limit the visual quality of the compressed models, while color
distortions are rated less severely. Moreover, different rating
behaviors can be remarked for the two types of content,
namely, human bodies and inanimate objects. In particular,
distortions on the human bodies dataset are rated more crit-
icially, leading to lower scores. A one-way ANOVA applied
on the ratings grouped per type of content, shows that the
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subjective scores are statistically significantly different (p-
value = 1.40e — 29), which is in alignment with [7].

B. Benchmarking of state-of-the-art

The subjective scores were found to be statistically different
per type of content, thus, benchmarking analysis is applied
on the contents that represent inanimate objects and human
bodies, individually. In Table I our findings are reported. The
best-performing metric for a particular index is indicated in
bold. As can be seen, the MS-SSIM and plane-to-plane metrics
found to be better in the inanimate objects and human bodies
datasets, respectively. Statistical differences using Fisher z-
scores according to the Recommendation ITU-T P.1401 [20]
suggest that the MS-SSIM is statistically better than point-to-
point and point-to-plane metrics based on the OR index, and
point-to-plane with MSE, plane-to-plane metrics and VIFP,
based on the RMSE index.

TABLE I: Performance indexes for state-of-the-art metrics.

Human bodies
SROCC RMSE  OR

0.789 0.621 0.778
0.781 0.621 0.778
0.762 0.636  0.741
0.788 0.620  0.778
0.813 0.568  0.741
0.813 0.568  0.741
0.618 0.678  0.741
0.771 0.613  0.815
0.600 0.716  0.889
0.757 0.626  0.852
0.566 0.683  0.778

Inanimate objects
PCC  SROCC RMSE OR PCC

0.740 0.769 0812 0.889 | 0.732
0.735 0.758 0.819  0.889 | 0.732
0.692 0.684 0872  0.889 | 0.717
0.732 0.701 0.824  0.889 | 0.734
0.668 0.723 0.900  0.778 | 0.782
0.664 0.723 0.903  0.815 | 0.782
0.791 0.751 0.739  0.778 | 0.668
0.739 0.672 0.814  0.704 | 0.740
0.823 0.817 0.686  0.741 | 0.619
0.884 0.855 0.566  0.630 | 0.727
0.693 0.645 0.871 0.778 | 0.662

po2pointyigg
PO2pointyaysdorff
po2planeyisg
po2planepyaysdorff
pl2planegis
pl2planey;sp
Color - PSNRyyy
PSNR

SSIM

MS-SSIM
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C. Benchmarking using the proposed framework

As described in Section II-A, different camera layouts are
examined leading to a different number of K views, while
the same analysis is repeated by incorporating importance
weights based on the logged interactivity information. The
performance indexes of the above test cases are reported in
Tables II and IIT for inanimate objects and human bodies, re-
spectively, with the first row indicating the results by excluding
(avg), or including (w. avg) user interactivity.

Regarding the results for inanimate objects without using
interactivity data, it is observed that as the number of views is
increasing, the PCC index of the PSNR and MS-SSIM metrics
remain approximately the same. The performance of the SSIM
drops while the prediction power of the VIFP increases, with
a minimum at X = 12 in both cases. For human bodies, the
PCC index of SSIM, MS-SSIM and VIFP is decreasing by
increasing number of viewpoints, while for PSNR it gradually
improves, after reaching the minimum at K = 6.

By incorporating importance weights, it is evident that
equal and consistently better results are obtained for inanimate
objects and human bodies, respectively. Moreover, in both
datasets, as the number of viewpoints is increasing, the PCC
of the MS-SSIM metric remains high and stable.

Overall, the MS-SSIM is the best-performing metric. By
slight margins, the optimal layout for inanimate objects is
observed when using K = 6 views including interactivity
information, while for human bodies, the best performance is

(d) loot (f) redandblack

(e) longdress

Fig. 4: Dot markers on the view sphere correspond to cam-
era positions for a 2-level subdivision of an icosahedron
(K = 162). The color code represents the ranking of weights,
ranging from dark blue (minimum) to dark red (maximum).
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Fig. 5: Views of models with different importance weights.

achieved by using only the frontal view. In the latter case, the
performance notably worsens by excluding interactivity data,
as the number of views is increasing.

In Figure 4, the importance weights associated with every
view on the camera layout with K = 162 are presented for
every model. For contents that represent inanimate objects,
subjects tend to allocate more time on views that are more
informative, as indicated in Figures 5a-5c. For instance, high
weights are observed at viewpoints that are located on top
of the biplane and the romanoillamp contents, while high
weights are assigned around the equator of amphoriskos which
is a rather symmetric model. For models that represent human
bodies, users consistently spend more time in frontal views, as
can be seen in Figures 5d-5f. This outcome is in accordance
with [21], where subjects were explicitly asked to select the
best view of a wide range of 3D models, in which a clear



TABLE II: Performance indexes for proposed framework on Inanimate objects data set.

Frontal view (K = 1) Octahedron (K = 6)

‘ pPCC OR ‘ pPCC OR ‘ PCC

Icosahedron (K = 12)

1-subdiv. icosahedron (K = 42) ‘ 2-subdiv. icosahedron (K = 162)

ox |

SROCC RMSE SROCC RMSE SROCC RMSE PCC SROCC RMSE OR PCC SROCC RMSE OR

PSNR 0.623 0.601 0.945 0.889 | 0.622 0.604 0.946 0.889 | 0.621 0.600 0.947 0.889 | 0.623 0.601 0.945 0.889 | 0.623 0.601 0.945 0.889

g0 SSIM 0.921 0.906 0.471 0.630 | 0.908 0.898 0.505 0.630 0.893 0.890 0.545 0.704 | 0.897 0.889 0.534 0.630 0.897 0.889 0.535 0.630

= MS-SSIM 0.955 0.944 0.360 0.481 0.957 0.944 0.350 0.481 0.953 0.944 0.366 0.444 | 0.953 0.945 0.365 0.481 0.953 0.945 0.365 0.481

VIFP 0914 0.903 0.491 0.556 | 0.931 0.924 0.442 0.593 0.927 0.925 0.452 0.481 0.930 0.922 0.444 0.481 0.930 0.925 0.444 0.481

. PSNR 0.623 0.601 0.945 0.889 | 0.625 0.600 0.943 0.889 | 0.635 0.607 0.933 0.852 | 0.620 0.597 0.948 0.889 | 0.627 0.606 0.942 0.889

z SSIM 0.921 0.906 0.471 0.630 | 0917 0.904 0.482 0.593 0.889 0.889 0.552 0.667 0.910 0.899 0.501 0.630 0.893 0.889 0.543 0.593

g MS-SSIM | 0.955 0.944 0.360 0.481 | 0.958 0.944 0.346 0.444 | 0.956 0.949 0.354 0.444 | 0.955 0.947 0.359 0.481 | 0.954 0.942 0.364 0.481

MS-SSIM 0914 0.903 0.491 0.556 | 0.925 0.927 0.460 0.519 0.931 0.923 0.442 0.519 0.926 0919 0.455 0.519 0.927 0.927 0.454 0.556

TABLE III: Performance indexes for proposed framework on Human bodies data set.

Frontal view (K = 1) Octahedron (K = 6) Icosahedron (K = 12) 1-subdiv. icosahedron (K = 42) 2-subdiv. icosahedron (K = 162)

PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

PSNR 0.788 0.809 0.561 0.741 0.715 0.723 0.638 0.778 0.730 0.748 0.623 0.815 0.735 0.772 0.618 0.778 0.736 0.780 0.618 0.778

g SSIM 0.889 0.859 0.418 0.741 0.834 0.788 0.503 0.704 0.828 0.759 0.511 0.704 | 0.828 0.769 0.512 0.704 0.827 0.769 0.513 0.704

= MS-SSIM 0.953 0.935 0.277 0.519 | 0.937 0.927 0.319 0.556 0.930 0.920 0.334 0.593 0.930 0915 0.336 0.556 0.929 0.915 0.337 0.556

VIFP 0.938 0.927 0.317 0.667 0.925 0.921 0.347 0.519 0.924 0.919 0.348 0.556 | 0.922 0.906 0.352 0.556 0.921 0.906 0.354 0.556

o0 PSNR 0.788 0.809 0.561 0.741 0.774 0.799 0.577 0.741 0.753 0.792 0.600 0.778 0.784 0.815 0.566 0.778 0.770 0.805 0.581 0.778

z SSIM 0.889 0.859 0.418 0.741 0.880 0.853 0.433 0.704 0.877 0.850 0.437 0.704 | 0.883 0.857 0.427 0.704 0.880 0.857 0.433 0.704

g MS-SSIM | 0.953 0.935 0.277 0.519 | 0.950 0.935 0.286 0.556 | 0.946 0.935 0.297 0.519 | 0.950 0.933 0.286 0.519 | 0.949 0.936 0.287 0.519

VIFP 0.938 0.927 0.317 0.667 0.936 0.925 0.322 0.593 0.923 0918 0.350 0.593 0.936 0.927 0.321 0.593 0.928 0.920 0.339 0.593
preference for frontal views in human bodies and faces is [8] E. Zerman, P. Gao, C. Ozcinar, and A. Smolic, “Subjective and Objec-

reported. This may explain why for human bodies dataset the
frontal view found to be the best configuration, while for the
inanimate objects a higher number of perspectives is needed.

V. CONCLUSIONS

In this paper, the state-of-the-art in projection-based ob-
jective quality assessment of point clouds is extended by
investigating the impact of applying different camera layouts
to capture views of the models, as well as exploiting user in-
teractivity data. Our results suggest that, independently of the
type of content, even one view could be enough to achieve high
performance. It is also shown that the interactivity information
from subjects assessing the contents can be beneficial, as the
prediction power of the objective quality metrics is improved,
especially in the case of models representing human bodies.
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