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Abstract—In this study, we explore the use of virtual reality to
subjectively evaluate the visual quality of point cloud contents.
To this aim, we develop the PointXR toolbox, a set of Unity appli-
cations that can host experiments under variants of interactive
and passive evaluation protocols. An auxiliary tool to facilitate the
configuration of the supported rendering schemes for point cloud
visualization is provided as part of it. Our toolbox is employed to
conduct two validating experiments in a virtual environment with
6 degrees of freedom. The purpose is to assess the performance
of color encoders that are incorporated in the upcoming MPEG
standard on point cloud compression. For this study, we convert
a set of mesh models to point cloud contents, and form a high-
quality cultural heritage repository, namely, PointXR dataset.
A comparison between the adopted protocols and the codecs’
performance is carried based on the ratings obtained from both
experiments. Finally, interactivity patterns based on behavioral
data that were recorded during the evaluations are extracted, and
results are discussed. The PointXR toolbox, the PointXR dataset,
and the experimental results are made publicly available.

Index Terms—point cloud, virtual reality, subjective evaluation
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I. INTRODUCTION

The remarkable advances of augmented reality (AR) and
virtual reality (VR) technologies in recent years have resulted
in a greater demand for richer imaging modalities to represent
more realistic and immersive environments. Relevant applica-
tions can benefit from high-quality 3D content representations
that can be easily captured, stored and rendered. In this
context, point clouds have emerged as an attractive option
by providing the possibility of adjusting the visual quality
of a model in a per-point basis, eliminating any depen-
dency imposed by connectivity information from acquisition
to rendering. A point cloud consists of location information,
expressed through coordinates in the 3D space, along with
optional attributes that describe underlying surface properties.
Typically, to faithfully represent a 3D model, a vast amount of
information is required. Therefore, there is a need for efficient
data structures and compression algorithms. The latter aim at
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reducing the data requirements for storage and transmission, at
the expense of visual degradations. Thus, in order to achieve
a fine balance between visual quality and data size, quality
assessment methodologies are essential.

Subjective evaluation methodologies require the participa-
tion of observers in experiments to collect individual ratings
of perceptual quality for contents. Although cumbersome and
time consuming, they provide accurate scores, since they
depend on opinions of targeted end-users. In the case of
point clouds, several methodologies have been proposed in the
literature providing a foundation for subjective quality assess-
ment for this visual data representation. Yet, the evaluation in
VR using 6 degrees-of-freedom (DoF) is largely unexplored,
albeit is considered one of the main use-cases. VR does not
only enable interactivity and immersive experiences, but it
also allows the establishment and reproducibility of identical
viewing conditions in fully-controlled environments.

In this work, we exploit the potential of VR in a subjective
evaluation experiment using point clouds that are encoded with
the MPEG Geometry-based Point Cloud Compression (G-
PCC) test model. We extend the capabilities of the most popu-
lar point cloud importer/renderer in Unity enabling additional
rendering configurations for the point’s appearance. Moreover,
we develop a set of scenes to allow model display adjustments,
and support of interactive and passive evaluation protocols.
Finally, a dataset of high-quality cultural heritage point cloud
models is generated and used. Our main contributions are:

• Development of the PointXR toolbox for point cloud
rendering and subjective quality assessment in Unity.

• Generation of the PointXR dataset, consisting of high-
quality cultural heritage point clouds.

• Subjective evaluation of the G-PCC color encoders in VR.
• Release of the PointXR-related material under the URL:

https://www.epfl.ch/labs/mmspg/pointxr/

II. RELATED WORK

Point cloud subjective evaluation methodologies can be
classified as: (a) passive, and (b) interactive. In the former case,
subjects provide their scores based on sequences of images
that contain views of the models. In the latter case, subjects
interact with the models before scoring their visual quality.
For passive methodologies, well-established recommendations
for 2D imaging can be employed while ensuring identical978-1-7281-5965-2/20/$31.00 ©2020 IEEE



experience for subjects. However, interactive protocols are
closer to natural consumption of 3D models, as interactivity
is inherently associated and targeted from related applications.
Passive evaluation studies are reported for both static [1]–[4]
and dynamic point clouds [5]. The stimuli are captured from a
fixed distance using a camera that rotates circularly [2], [4], or
from varying distances from a camera that follows spiral mo-
tion [1] or a navigation path, potentially, defined per model [3].
Interactive evaluation studies are mainly carried in desktop
installations allowing subjects to change their viewpoint using
the mouse cursor [6]–[10]. Subjective evaluation in AR is
proposed in [11], where point clouds are placed as virtual
assets in the real-world and observers are able to physically
navigate, whereas in [12], a subjective study is conducted in
VR. In the aforementioned studies, both colored [1], [3]–[6],
[8]–[10], [12] and colorless [2], [7], [11] models are evaluated.
In their majority, compressed point clouds are used, while in
some cases [2], [4], [7], [11] other types of degradations (e.g.
noise) are additionally employed. No rendering [2], [4], [7],
[11], rendering with fixed [5], [12] or adaptive point size [1],
[9], [10], real-time voxelization [8] and conversion to mesh [3]
have been proposed for display purposes.

For point cloud inspection, processing software such as
CloudCompare1, MeshLab2 and Point Cloud Library (PCL)3

denote the most popular alternatives that have been used in
subjective evaluation experiments. These frameworks are able
to handle and render a vast amount of data, providing robust
and high-performance solutions. However, they support only
fixed point size rendering, while the point sizes don’t adjust
with virtual camera distance changes, which is more evident
at closer views (zoom in). Potree [13] is a web-based renderer
that can handle large point clouds, offering a wide range of
features and fast interactivity. A simpler web viewer targeted
for subjective quality evaluations was released in [10].

In this study, we develop an alternative rendering solution
that enhances the default capabilities of the Unity point
cloud importer that is build upon. Enriched rendering features
are introduced that can be instrumented for visualization of
high-quality models (i.e., shader’s shape, point size, shader
interpolation). Moreover, we develop a set of scenes with
functionalities related to the tuning of a model’s appearance,
and the hosting of various subjective evaluation protocols.

III. POINTXR TOOLBOX

The Unity platform is used to develop our toolbox. The Pcx
Point Cloud Importer4 is a software dependency responsible
for loading the point clouds and converting them to objects
with mesh-like properties. By default, a point cloud is rendered
either by using raw points, or by associating disks of fixed
size across an entire model through a dedicated shader script.
The size of the disks can be manually configured at per user’s
preferences and is automatically adjusted to the virtual camera

1http://www.danielgm.net/cc/
2http://www.meshlab.net/
3http://pointclouds.org/
4https://github.com/keijiro/Pcx

Fig. 1: Color coded block diagram with scene dependencies
to enable corresponding evaluation protocols.

distance. In our application, we enhance the natively supported
rendering capabilities by integrating the following features: (a)
Square shader, which is less computationally expensive as it
requires a smaller number of vertices to represent a point.
At the same time, no added visual distortions are noticeable,
especially when is combined with the shader interpolation
rendering mode (see further). (b) Adaptive point size, which
can be beneficial with models of irregular structure and varying
point density, as it allows the regulation of the size of each
point individually. The algorithm that is deployed is inspired
by [1], [10], with the size of each point depending on the K
nearest neighbors’ distances. The number K can be manually
specified per model. (c) Shader interpolation [14], which is
integrated into the rendering pipeline (i.e., shader scripts) for
higher visual quality. In this mode, surface discontinuities are
reduced, and flickering artifacts perceived due to changes of
viewing position are decreased. In particular, a depth offset is
added on the view space to each pixel of the primitive element
that represents a point, and pixels with lower depth values (i.e.,
frontal parts of the primitives) are shown on the screen. Thus,
larger point sizes can be used to avoid hollows, while attaining
perception of smooth surfaces.

Our toolbox consists of four Unity scenes, namely, Render-
ing, Inspection, Rating, and Capturing. In Figure 1, a block
diagram is provided illustrating their main functionalities and
dependencies. The Rendering scene can be used to configure
the visual appearance of a model. Through a graphical user
interface (GUI), fixed or adaptive point size can be set and
related parameters (i.e., point size in the former and number
of nearest neighbors in the latter) can be specified, the shader
interpolation mode can be enabled or disabled, and a shader of
preference can be submitted. Moreover, a point scaling factor
that is globally applied on the entire model can be manually
adjusted for higher fidelity. Furthermore, the position, the
rotation, and the size of a model can be specified at will. The
user can apply the selected rendering features and visualize
the resulting model in real-time either in a typical monitor, or
through a headset in VR mode. Upon saving, a pre-fabricated
(prefab) object, corresponding assets, and a configuration file
with the selected rendering options are generated.

The Inspection scene, when used as a standalone applica-
tion, consists of the default Unity viewer where point clouds



(a) Guanyin (2286975) (b) Muse (2092701) (c) Roy (2272748) (d) Shield (2380435) (e) Tiki (1540246)

Fig. 2: Frontal view of the models.

and prefabs can be loaded. Yet, when used in combination
with the Rating scene, they establish the interactive quality
assessment testbed. In particular, in the Inspection scene the
experimenter can specify whether to use a single-stimulus
or a double-stimulus visualization protocol. The latter option
currently provides three variants: (a) simultaneous, where the
models are presented side-by-side, (b) sequential, where one
model is presented after the other, and (c) alternating, where
the subject is able to switch between the two models at will.
Moreover, the experimenter can choose to log interactivity
information of a subject during evaluation. On the other hand,
the Rating scene is responsible to capture the scores of a
subject. In particular, a grading panel with a question and
a list of scores in the form of buttons appears in front of
the observer, upon request. Note that the question and the
answers can be manually specified, thus covering a wide range
of subjective evaluation methodologies when combined with
the visualization protocols from the Inspection scene.

Finally, the Capturing scene is part of our toolbox to carry
passive evaluation experiments. The user can define a set of
camera parameters (i.e., position, rotation) and corresponding
time intervals that will be used to capture views of a model as
rendered in our virtual environment. Simple camera paths can
be enabled through a GUI, such as circular or spiral rotations
with adjustable angular speed. The manual selection of camera
settings (i.e., position, rotation, time interval) is another option.
For higher precision and control, though, a configuration file
can be loaded to explicitly specify the camera settings at every
time instance. To produce video sequences from the selected
viewpoints, our scene makes use of the Unity Recorder tool.

All the aforementioned scenes share the same virtual en-
vironment. For the scope of this study, a simple room was
designed in order to host the subjective evaluations. However,
the shape, appearance, material properties, lighting and envi-
ronmental conditions can be easily adjusted at per user’s needs,
through the default Unity interface.

IV. VALIDATING EXPERIMENTS

A. PointXR dataset and content preparation

A set of 20 high-quality meshes that represent cultural
heritage models were carefully selected from the online plat-
form Sketchfab5. The models were generated using typical

5https://sketchfab.com/

photogrammetry tools and represent objects and statues that
are exposed in galleries or external locations, making them
suitable for virtual museum scenarios. As the majority of
them were captured in non-controlled environments, special
care was placed into selecting contents without excessive
amount of acquisition-related artifacts, such as texture shading
or shadows. The mesh models were loaded in Meshlab, and
after texel sampling using a texture resolution of 4096 × 4096
(width × height), highly dense point clouds were generated
and assembled in the so-called PointXR dataset.

From the PointXR dataset, 5 point clouds were recruited in
our experiments. The models were initially voxelized at 10-bit
depth. In particular, their coordinates were quantized, with the
output geometry ranging in [0, 1023]3. The color value of each
output voxel was obtained after averaging the color values of
the input points that fall in the same voxel. A frontal view of
each voxelized model is illustrated in Figure 2, indicating the
naming that is adopted in the paper and the number of points
after voxelization in parenthesis.

The contents were encoded using G-PCC version 8.0 test
model. The Octree encoding module was selected to compress
the geometry, while both Lifting and RAHT [15] codecs
were used for color compression. To define the configuration
parameters for the Octree-plus-Lifting combination, the MPEG
Common Test Conditions (CTC) [16] were followed. The
degradation levels R02, R03, R04 and R06, annotated as
D01-D04 in this study, were selected after expert viewing to
represent a range of visual quality levels that spans from very
low to very high. For the Octree-plus-RAHT combination,
the encoding configurations for geometry remained unaltered.
However, the quantization parameter for RAHT (QP) was
appropriately adjusted in order to achieve the same bitrate as
Lifting, per model, to secure a fair comparison. This is because
although identical QP values are originally used in the CTC
for both color codecs, it is evident that Lifting requires more
bits than RAHT at the same degradation level. In Table I, the
QP values that were used for RAHT (R-QP) and Lifting (L-
QP), along with the posititionQuantizationScale (PQS) for the
Octree encoding module are reported, per degradation level.

B. Rendering configurations

The reference models were loaded in the Rendering scene in
order to adjust visualization-related parameters. After experi-
mentation, it was decided to render the models using adaptive



TABLE I: Encoding configurations per model.
Degradation

level
PQS
All

L-QP
All

R-QP
Guanyin Muse Roy Shield Tiki

D01 (R02) 0.25 46 41 41 41 41 41
D02 (R03) 0.5 40 36 35 35 36 36
D03 (R04) 0.75 34 31 30 30 31 30
D04 (R06) 0.9375 22 20 19 19 20 19

point size based on 3 nearest neighbors, and enable the
shader interpolation mode. Both square and disk shaders were
evaluated, with the former bringing no visual enhancements
under the aforementioned configuration. On the contrary, the
rendering performance was improved in terms of frame rate
(i.e., fps), when using the square shader. Thus, the latter
option was selected. A global point scaling value was adjusted
per model after expert viewing in order to eliminate hollow
regions while achieving the highest possible fidelity. Finally,
the models were scaled at a natural size. For smaller objects,
a stage of proportional dimensions was placed in the room,
and the models were arranged on top for comfort viewing.
In Table II, the rendering configurations are summarized per
model, while the same settings were used for corresponding
encoded versions.

TABLE II: Rendering configurations per model.

Rendering factors Guanyin Muse Roy Shield Tiki
shader Square Square Square Square Square
shaderInterpolation Yes Yes Yes Yes Yes
adaptivePoint Yes Yes Yes Yes Yes
pointScalingFactor 0.6 0.65 0.7 0.65 0.6
modelScalingFactor 0.002 0.0018 0.002 0.0014 0.002

C. Virtual environment

The visual quality of the encoded models was evaluated
in an immersive VR environment with 6 DoF. The test was
conducted in a controlled physical room of size 3×3 meters.
The HTC VIVE Pro headset was used to consume the models
in VR with a resolution of 2880×1600 pixels, a field of view
of 110°, and a frame rate of 90 Hz. The VIVE base stations
were installed in the room to track the position of the user and
reflect the corresponding position in the virtual environment.
The users were able to navigate both physically in the real
world and by teleporting to the position of their preference in
the virtual room (i.e., locomotion) using the VIVE controller.
To avoid additional test parameters, no manipulation of the
models (e.g., drag, re-size) was allowed in the experiments.

The virtual environment designed for the test consists of a
non-distracting room with parallelepiped shape of dimensions
9×9×5 (virtual unit meters) and mid-grey walls of low reflec-
tivity. Each model was positioned in the center of the room,
and a point light source was placed right above at a height of 3.
The pre-computed real-time global illumination option was
selected, and shadows of the model were visible on the floor
of the room to enhance the realism and the sense of presence.
A sign, clearly indicating whether a reference or a distorted
model was inspected at every time instance, was placed on
the floor in front of the model. At the beginning of each

(a) Subject inspecting a model (b) Virtual environment

Fig. 3: Experimental setup.

evaluation, the position of the subject was randomly selected in
the room to motivate interactivity and inspection from various
viewpoints. Note that by using prefab objects generated from
the Rendering scene, the loading and rendering of the models
in the virtual room is immediate. Thus, the experience of
the users was not deteriorated by potential loading delays
during the evaluation procedure. An example of the virtual
environment and a snapshot of a subject inspecting a model
are illustrated in Figure 3.

D. Subjective evaluation protocol

In this study, two evaluation protocols were employed, both
based on Double-Stimulus Impairment Scale (DSIS) with a
9-grading scale (9: Imperceptible, 7: Perceptible, 5: Slightly
annoying, 3: Annoying, 1: Very annoying). The first protocol
is the sequential DSIS, where the reference model is initially
presented to the subjects, followed by the distorted model. The
second protocol is the alternating DSIS, where the subjects
are allowed to toggle between the reference and the distorted
model at will. In the first variant, the reference visual quality
of a model is presented to the users, which are subsequently
asked to provide a score for the distorted version. Hence,
temporal masking naturally takes place. In the second variant,
the users can visit the reference model at any point they decide.
Thus, the scores might capture more accurately relative dif-
ferences between the models. The sequential DSIS experiment
chronologically preceded the alternating. Moreover, the stimuli
were displayed in a random order per subject and protocol,
avoiding consecutive evaluations of the same content.

In our platform, the alternation between the models can
be performed instantaneously, since both prefab objects are
loaded into the scene at the beginning of each evaluation step.
However, in order to avoid flickering that can be sensed even
in cases of negligible differences, a delay in the presentation
of the next model is intentionally imposed. In particular, a
delay of 1 sec was used for the sequential DSIS, and a delay
of 0.25 sec was used for the alternating DSIS. For the second
case, we allow a faster response to avoid making the delay a
factor that prevents subjects from switching between models.

E. Participants

A total of 24 subjects participated in the experiments,
with 20 subjects evaluating the models in each protocol. For
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Fig. 4: Subjective scores versus bitrates.

individuals who participated in both sessions, a 2-days period
was imposed in between to avoid temporal bias. The subjects
population consisted of 15 males and 9 females, with an
average age of 26.4 (min 19, max 33).

V. RESULTS

Subjective quality scores for the point cloud models were
obtained from both experiments. Outlier detection based on the
ITU-R Recommendation BT.500-13 [17] was applied on each
test, separately. No subject with deviating scoring behaviour
was identified and, thus, each individual rating was accounted
to compute the Mean Opinion Scores (MOS) and the 95%
confidence intervals (CI) assuming a Student’s t-distribution.
Moreover, the position and viewing angle of the users were
recorded in real-time at the rendering frequency of 90 Hz, in
order to analyse their behavior in VR.

In Figure 4, we present graphs for two of the models used
in the experiments, indicating the MOS as a function of the
color bitrates, for both codecs and evaluation protocols. The
bitrate is presented in bits-per-point (bpp), which denotes the
ratio of the total number of bits divided by the number of
input points. It can be seen that the MOS is improving as the
bitrate is increasing, while the levels of visual quality for each
model spans the entire scoring space. As expected, the range
of color bpp varies per model; that is, models with narrow
color distribution, such as Muse, require bitrates as low as 0.4
bpp to achieve transparency, whereas models with high color
variability, such as Guanyin, need higher bitrates. Very similar
scoring trends are obtained for the rest of the models.

Our results indicate that subjects rate almost identically in
both experiments. As the data was not normally distributed
according to the Shapiro-Wilk normality test (W = 0.88,
p < .001), we test statistical significance between the evalu-
ation protocols through a non-parametric Wilcoxon rank-sum
test, and no significance was found (Z = −0.40, p = 0.689,
r = 0.01). The confidence intervals in the alternating protocol
were found to be by 27% smaller with respect to the sequen-
tial, showing that the former approach leads to smaller rating
variability and higher consistency. However, the learning effect
on the stimuli should be accounted in this result, considering
that several subjects participated in both sessions.

The performance of the color encoders is very similar,
according to the subjective quality scores indicated in Figure 4.
A non-parametric one-way ANOVA is applied on the scores

obtained from both evaluation protocols separately, per color
encoder. The p-values of 0.6927 and 0.809 for the alternating
and the sequential DSIS, respectively, indicate that the color
codecs are statistically equivalent in both cases.

A post-questionnaire that was filled by the subjects par-
ticipating in both sessions, shows that the alternating DSIS
variant is universally preferred. The most common key-words
that were provided to justify their choice were: “precise”,
“no memorization”, and “faster”. The observers, in principle,
agreed that the alternating protocol is more effective with high-
quality models, while a participant noted that potential biases
might be introduced in the sequential protocol, as the subjects
might grade non-existing distortions. This can especially be
problematic in the case of point clouds, where the quality of
the non-compressed content might not excel. Although such
trends are not present in our results, future studies might
benefit from such remarks.

Regarding the characteristics of the population of the test,
the majority of the users were naive. Specifically, 6 out of 24
subjects were using a headset for the first time, and 15 had tried
some times. The participants were evidently satisfied with the
level of immersion, the visual quality of the contents and the
total quality of experience, with an average score of 4.4, 4.3
and 4.3 out of 5, respectively (5: Excellent, 4: Good, 3: Fair,
2: Poor, 1: Bad). A total of 5 subjects felt mild discomfort,
whereas the rest reported that they didn’t face any symptom.
Finally, 3 subjects suggested that a headset without cables
would have enhanced their experience.
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The characterization “faster” given by the subjects for
the alternating DSIS, is confirmed by the average time the
users spent per stimulus. In particular, an analysis of the
logged interactivity information reveals that, for the alternating
case, a subject needed on average 13.7 ± 7.3 sec (6.2 on
Distorted and 7.5 on Reference), whereas 23 ± 15.2 sec
(12.4 on Reference and 10.6 on Distorted) were spent in
the sequential counterpart. No particular trends are identified
when the average interaction time is clustered per model or
per codec. However, clear trends are observed for different
degradation levels, as can be shown in Figure 5. In particular,



it is obvious that as the quality level is increasing, more time
is allocated from the subjects on the distorted models for both
scenarios. Moreover, for the alternating variant, the total time
of interaction decreases as the degradation increases. This is
due to the fact that during the sequential protocol, the user is
unaware of the quality level of the distorted model. Thus, the
amount of time that will be spent in the reference model is
independent from the distorted version. However, in the case
of the alternating protocol, the user can switch between the
two models at will. In such a case, if the distorted model
is of low quality, a low score will be given without further
inspection. On the contrary, in case of a high-quality distorted
model, more time will be needed before providing a score.

This explanation can be confirmed by the number of times
the subjects inspected the reference model before providing
a score during the DSIS alternating experiment. In particular,
by grouping the number of re-visiting the reference model per
quality level, an average of 1.4, 2.5, 3.9 and 4.5 is observed
for D01, D02, D03 and D04, respectively. Note that the results
show no particular tendencies when we compute the average
per content (ranges between 2.9 and 3.2), or per codec (average
of 3.1 for both Lifting and RAHT).
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Fig. 6: Interactivity patterns per evaluation protocol.

In Figure 6, illustrations of interactivity patterns are pro-
vided for each experiment. The virtual test room is represented
by a grid, with each square corresponding to a surface of
0.5×0.5 virtual unit meters. The time spent at each position
of the room, averaged across stimuli and subjects, is color
encoded, with brighter values indicating larger time intervals.
The colorbar, on the right of each figure, indicates the range
and is measured in sec. From these interactivity patterns, it
can be seen that the users were more static in the alternating
variant. In both cases, the participants spent most of their time
in close frontal views, despite the fact that the starting position
was randomized. However, in the case of the sequential
protocol, more perspectives and distances were tested.

VI. CONCLUSIONS

In this study, we investigated the use of VR for subjective
quality evaluation of point cloud models using 6 DoF. For
this purpose, we developed the Unity-based PointXR toolbox,
which can be configured to carry several variants of interactive
and passive evaluation protocols, with enriched rendering op-
tions for the appearance of a model. Moreover, we assembled a
high-quality point cloud repository of cultural heritage models,

namely PointXR dataset. Using the developed applications and
a selection of our generated point clouds, we conducted two
experiments following the sequential and the alternating DSIS
protocols, in order to evaluate the performance of the color
encoders of the G-PCC test model. Results highlighted the
statistical equivalence of the two color modules used in the
compression. Although strong correlation was found among
the two evaluation protocols, the alternating variant was found
to be preferred. Analysis of the interaction patterns extracted
from participants during evaluation showed a preference for
close-range, frontal view examination.
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[14] M. Schütz and M. Wimmer, “High-quality point-based rendering using
fast single-pass interpolation,” in 2015 Digital Heritage, vol. 1, Sep
2015, pp. 369–372.

[15] R. L. de Queiroz and P. A. Chou, “Compression of 3D point clouds
using a Region-Adaptive Hierarchical Transform,” IEEE Transactions
on Image Processing, vol. 25, no. 8, pp. 3947–3956, Aug 2016.

[16] MPEG 3DG, “Common test conditions for point cloud compression,”
ISO/IEC JTC1/SC29/WG11 Doc. N18474, Geneva, Switzerland, Mar
2017.

[17] ITU-R BT.500-13, “Methodology for the subjective assessment of the
quality of television pictures,” International Telecommunications Union,
Jan 2012.


