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Abstract—The ground truth used for training image, video, or
speech quality prediction models is based on the Mean Opinion
Scores (MOS) obtained from subjective experiments. Usually,
it is necessary to conduct multiple experiments, mostly with
different test participants, to obtain enough data to train quality
models based on machine learning. Each of these experiments is
subject to an experiment-specific bias, where the rating of the
same file may be substantially different in two experiments (e.g.
depending on the overall quality distribution). These different
ratings for the same distortion levels confuse neural networks
during training and lead to lower performance. To overcome this
problem, we propose a bias-aware loss function that estimates
each dataset’s biases during training with a linear function and
considers it while optimising the network weights. We prove the
efficiency of the proposed method by training and validating
quality prediction models on synthetic and subjective image and
speech quality datasets.

Index Terms—Speech Quality, Image Quality, DNN

I. INTRODUCTION

In order to optimise the Quality of Experience (QoE) of
multimedia services, developers rely on measures to validate
new codecs or communication channels. Traditionally, the
quality of image, video, or speech services is measured in
subjective experiments, in which test participants are asked
to rate the quality of a sample. The average across all test
participants’ ratings gives the so-called Mean Opinion Score
(MOS). However, because this procedure is time-consuming
and costly, instrumental models have been developed to auto-
matically estimate the quality. In the case of speech quality,
full-reference models, such as PESQ and POLQA have been
established. In the image quality domain, many different
visual quality metrics have been proposed [I]. The most
popular metrics are NIQE [2] and BRISQUE [3] for no-
reference assessment or PSNR and SSIM [4] for full-reference
assessment. More recently also deep learning approaches have
been introduced for speech quality or synthesised speech
naturalness [S]—[9] and for image quality [10]-[12] prediction.

While objective quality models always compute the same
score for a given sample, the MOS determined through sub-
jective quality experiments, which is used as ground truth for
training such objective models, is a sensitive measure. Minor
change in a vote given from one test participant leads to
a change of the overall value [13]]. Consequently, test-retest
studies even with the same group of participants, who rate
the same dataset, often do not lead to the exact same MOS

values [13], [[14]. Given that, it is recommended to consider
each subjective experiment as a closed set [14].

Datasets with subjective MOS are usually limited in size
due to the maximum time in which one participant is able to
rate the corpus before fatigue occurs. Therefore, it is common
practice to use multiple datasets for training deep-learning-
based quality prediction models. Furthermore, subjective data
is usually sparse due to the costs that experiments involve
and thus also older datasets are included for model training
to increase the training size. Consequently, as these datasets
often come from different labs with different test participants,
and often, many years lie in between them, they are exposed
to dataset-specific, subjective biases that make a comparison
of the MOS values from different experiments difficult. The
main bias-inducing factors according to ITU-T Rec. P.1401
[14] areﬂ

« Rating noise The score assigned by a listener is not
always the same, even if an experiment is repeated with
the same samples and the same presentation order.

e Order-effect Subjects are influenced by the short-term
history of the samples they previously rated. For example,
after one or two poor samples, participants tend to rate a
mediocre sample higher. In contrast, if a mediocre sample
follows high-quality samples, there is a tendency to score
the mediocre sample lower. Because of this effect, the
presentation order for each subject is usually randomised
in quality experiments.

o Corpus-effect The largest influence is given by effects
associated with the average quality, the distribution of
quality, and the occurrence of individual distortions. Test
participants tend to use the entire set of scores offered in
an experiment. Because of this, in an experiment that
contains mainly low-quality samples, the subjects will
overall rate them higher, introducing a constant bias.
Despite verbal category labels, subjects adapt the scale to
the qualities presented in each experiment. Furthermore,
individual distortions that are presented less often are
rated lower, as compared to experiments in which sam-
ples are presented more often, and people become more
familiar with them. For example, it was shown in [16]
that a clean narrowband speech signal obtains a higher
MOS in a corpus with only narrowband conditions than in

I Besides these factors, [[15] lists further biases that occur in listening tests.



a mixed-band corpus that includes wideband conditions
as well.

o Long-term dependencies These effects reflect the gen-
eral cultural behaviour of the subjects as to the exact
interpretation of the category labels, the cultural attitude
to quality, and language dependencies. Also, the daily
experiences with telecommunication or media are impor-
tant. Quality experience, and therefore expectation, may
change over time as the subjects become more familiar
with high-definition codecs and VoIP distortions.

In this paper, bias refers to offsets and gradients between
datasets that are caused by these factors. While offsets are
mostly introduced by the overall quality that is presented to the
participants during an experiment, gradients are, for example,
introduced when the experiment does not cover the entire
quality range (i.e. the ratings tend to become more pessimistic
faster).

These induced biases result in different MOS values for
stimuli of the same distortion levels if they are contained in a
different dataset. As a consequence, when multiple datasets
are combined for training a quality prediction model, the
correct rank order of MOS values is no longer given. The
error-prone rank order of the combined training set leads to
lower prediction performance of the trained quality prediction
model. To overcome this problem, usually a set of common
anchor conditions are included in all datasets (typically 20%
of test conditions). These anchor conditions cover the whole
range of quality distortions and make a comparison of different
datasets possible. By calculating a mapping function between
the anchor conditions of the different datasets, biases can be
partly removed before training. However, if the datasets that
are used for training originate from different sources, they
often do not contain the same anchor conditions. It should
further be noted that biases that are introduced by the corpus-
effect cannot be removed by normalising the datasets, which is
a common preprocessing step. In case two datasets contain a
different range of distortion levels, normalisation of the MOS
values may even increase the bias between datasets.

So far in literature, all deep learning based image or speech
quality prediction models (e.g. the aforementioned models in
[5]-112]]) do not consider these biases between datasets and
apply either a vanilla MSE (mean squared error) or MAE
(mean absolute error) loss function.

In this paper, we present a method that deals with subjective
biases between datasets in the training phase of deep neural
network models without the need for anchor conditions. The
novelty of the proposed loss function is that it learns the biases
automatically by using the model predictions as objective,
unbiased measure. The proposed bias-aware loss is repeatedly
updated during the model training, which avoids an overfitting
to the biases themselves. The presented algorithm in this paper
together with the synthetic bias experiments are made publicly
available. [

Zhttps://github.com/gabrielmittag/Bias- Aware-Loss

The rest of the paper is structured as follows: At first
we present the proposed loss function and the corresponding
algorithm. The method is then evaluated on a synthetic dataset
for which the biases are known. After that the bias-aware loss
is applied to speech and image quality datasets with subjective
MOS ratings.

II. METHOD

The basic idea is that the dataset-specific biases are learned
and accounted for during the training of the neural network.
After each epoch, the predicted MOS values of the training
data are used to estimate the bias in each dataset by mapping
their values to the ground truth subjective MOS values. The
hypothesis is that the predicted MOS values of the model are
objective in the sense that they will average out the biases of
the different datasets while training.

The biases are approximated with a first-order polynomial
function. After the biases are estimated for each dataset, they
can be used in the next epoch to calculate the proposed bias-
aware loss. To this end, the predicted MOS values are mapped
with the calculated bias coefficients. The MSE between the
bias-mapped predicted MOS and the subjective MOS values
then gives the loss as follows{|

N
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where 7 is the index of the sample belonging to dataset j, y;
is the subjective MOS and ¥; is the predicted value for that
sample, b)) and b} are the estimated bias coefficients for dataset
j, and N is the overall number of training samples.

Because the predicted values are mapped according to
the bias of each dataset, errors between the predicted and
subjective values that only occur due to the dataset-specific
bias are neglected. The model thus learns to predict quality,
rather than non-relevant biases.

A. Learning with bias-aware loss

The complete algorithm of the bias-aware loss is depicted in
Algorithm [T} The inputs to the algorithm are the input features
x; and the subjective MOS values that are the desired output
values y; for all samples ¢ € N. Further, a list that contains
the dataset index j of each sample db; is needed to assign
the individual samples to their datasets. Before the training
starts, the bias coefficients ¥’ of all datasets are initialised
with an identity function, with which Eq. (I) corresponds to
a vanilla MSE loss. Because the model will typically not give
a meaningful prediction output after the first few epochs, the
update_bias flag is set to False until a predefined model ac-
curacy ryy, in terms of Pearson’s correlation coefficient (PCC)
is achieved (see analysis in Sect [[II-A). Until this threshold
is not reached the bias coefficients will not be updated, and
therefore, a vanilla MSE loss is used for calculating the loss.
As a metric PCC is used instead of RMSE (root-mean-square

31n this paper, we use MSE as the base loss function, however, the bias-
aware loss algorithm can be applied to any distance measurement function.



error) as the RMSE is strongly affected by biases and therefore
unsuitable in this case.

Algorithm 1 Training with bias-aware loss function

Input: z;: input features, y;: subjective MOS values, db;: list
of dataset indices j for each sample ¢

Parameter: r;,: minimum prediction accuracy to update the
bias coefficients

Output: model weights

1: Number of dataset: D = max(db)

2: Initialise bias for each dataset: v/ = [0,1],5 € D

3: update_bias = False

4: while not converged do

5. Shuffle mini-batch indices idxy

6: k=0

7. for all mini-batches do

8: Get mini-batch:
Xp = X[idxk}, Yb = y[idxk]

9: Feed forward: ¥, = model(xy,)

10: Calculate bias-aware loss with Eq. (I):
)

11: Backpropagate & optimise weights

12: k=k+1

13:  end for

14 Predict MOS: ¥ = model(x)

15:  Calculate Pearson’s correlation »r = PCC(y,y).
16:  if r > ry, or update_bias then

17: update_bias = True
18: for j in D do
19: Find dataset indices:
idx = find(db ==)
20 Get dataset: y* = y[idx], y¥ = y[idx],
M = len(idx)
21: Estimate bias: . ‘
mings 7 S0 (v — (v + b))
22: end for
23:  end if

24: end while
25: return model weights

At the start of each epoch, the mini-batch indices idx; are
randomly shuffled. It is necessary to preserve these indices
in order to assign the samples to their corresponding datasets.
After each epoch, the model is used to predict the MOS values
y of all samples. Once the model accuracy ryy, is reached,
the update_bias flag is set to True and the biases will be
estimated after every epoch.

To update the bias coefficients, the algorithm loops through
all datasets individually, where idx represents the indices of
all samples that belong to the dataset j. At line of the
algorithm, the subjective and predicted MOS values of the
samples belonging to dataset j are loaded. Then they are
used to estimate the bias coefficients b’. In the next training
epoch, the biases are then applied to calculate the loss (line
of each mini-batch that may contain a random number

of different datasets, and therefore each sample may also be
subject to a different bias. By using the bias-aware loss, these
biases are considered when calculating the error between the
predicted and subjective MOS values. After each epoch, the
bias coefficients are then updated to be in line with the updated
model predictions. For more details on the algorithm see also
the open-sourced PyTorch code.

B. Anchoring Predictions

When the bias-aware loss is applied, the MOS predictions
are not anchored to the absolute subjective MOS values and,
therefore, can wander off. While the predictions will still
rank the samples in the best possible way, there may be a
large offset between predictions and subjective values on the
validation set. This effect will lead to a higher RMSE while
the PCC is usually not affected. To overcome this problem,
the predicted MOS values of all samples can be mapped to
the subjective MOS after the training. This mapping can then
be applied when making new predictions on validation data.

Alternatively, instead of estimating the bias for all datasets,
the predictions can be anchored to one specific training dataset.
This approach can be particularly useful if there is one dataset
of which it is known that the conditions are similar to the
conditions that the model should be applied to later. A new
dataset is usually created with new conditions and then split
into a training and validation set. To increase the training data
size and to improve the model accuracy, older datasets may
also be included in the training set. It is likely that there will
be a bias between the new dataset and the older dataset, for
example, because the highest quality in the new dataset will be
higher than the one in the older datasets. The predictions can
be anchored to the new dataset by omitting the bias update for
the new dataset only (skipping line in Algorithm [I). The
biases of all other datasets are then computed in relation to
the anchor dataset and, as a result, the final model predictions
will be in line with the anchor dataset.

III. EXPERIMENTS AND RESULTS

In the first experiment, we generate a synthetic speech
quality dataset for which the biases are known. After that,
we conduct two more experiments with real speech quality
and image quality data. Because the results of each neural
network training run depend on random initialisation, random
shuffling and other factors, such as random dropout, we run
each experiment 15 times and use the average results to rule
out any random effects.

A. Synthetic data

Firstly, a synthetic speech quality dataset is generated to
which artificial biases are applied. As source files, the 2-3 s
reference speech files from the TSP dataset [17] are used. For
the four training datasets overall 320 speech files and for the
validation set 80 speech files are used. The speech signals were
processed with white Gaussian noise to create conditions of
different distortion levels. It was found that when the SNR
range of the added noise is too wide, it is too easy for the



model to predict the quality, and when it is too narrow, the
prediction becomes too challenging. Therefore, the speech files
were processed with noise at SNR values between 20 dB and
25 dB, which showed to be a good compromise. To simulate
MOS predictions, an S-shaped mapping between the technical
impairment factor (i.e., SNR) and MOS, taken from ITU-T
Rec. G.107 [18] is used. The relationship is shown in Figure
and maps the SNR values to a MOS between 1 and 4.5.

The training data is divided into four different subsets, and
a different bias is applied to each of them. These four artificial
biases are shown in Figure 2] To better analyse the influence of
the bias-aware loss, extreme biases are used in this experiment.
There is no bias applied to the first simulated database (blue
line). The second and the third simulated databases have linear
biases applied, while the fourth database is exposed to a
bias modelled with a third-order polynomial function. Each
of the training datasets contains 80 files; the validation set
also contains 80 files. The synthetic experiments are run by
using the speech quality model NISQA [19].
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Fig. 1: Mapping between
noise in SNR and speech
quality MOS.

Fig. 2: Four artificial biases
introduced to the four simu-
lated training datasets.
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Fig. 3: Validation results in
terms of Pearson’s correlation
over 15 training runs with
anchoring for different 7y
thresholds.

Fig. 4: Validation results in
terms of Pearson’s correlation
over 15 training runs with-
out anchoring for different ry},
thresholds.

Minimum Accuracy 7,2 In the first experiment, the in-
fluence of the minimum PCC that must be achieved on the
training set before activating the bias update in the bias-aware
loss algorithm (line[16]in Algorithm [I)) is analysed. To this end,

the experiment is run with 11 different threshold 7}, between
0 to 0.95. An early stop on the validation PCC of 20 epochs
is used, and the best epoch of each run is saved as result. The
training run of each of these 11 configurations is repeated 15
times. The results, together with the mean results and their
95% confidence interval, can be seen in Figure [] for training
without anchoring and in Figure |3| with anchoring. In the case
of anchoring, the bias-aware loss is not used on the first dataset
train_I but only on the other three datasets.

The correlation of the results is highly varying when an
anchor dataset is used. The highest correlation can be achieved
for thresholds between 0.5 and 0.7. When no anchoring is
applied, the exact threshold does not seem to be as crucial,
as long as it is somewhere between 0.1 and 0.8. However, the
PCC remains overall lower than the higher PCCs that can be
achieved with an anchor dataset. For a threshold higher than
0.9, the accuracy notably drops. It can be assumed that at this
point, the model weights are already optimised too far towards
the vanilla MSE loss and cannot always profit from the late
activated bias-aware loss.

Synthetic training example: Figure [5] shows an example
of four different training runs and different anchoring config-
uration. The figures show the epoch with the best results on
the validation data set in terms of PCC. Each row presents
one training run, and each column presents the results on the
four different training datasets and on the validation dataset.
The artificial bias that was applied to the datasets can be seen
as green line (see also Figure [2). The estimated bias used
by the bias-aware loss is depicted as orange line. The top
row presents the results without anchoring and shows how
the prediction results can drift away from the original values.
While the predictions are extremely biased in this case, the
achieved PCC remains high.

The second row shows the results for anchoring with
anchoring dataset. During the training, the bias of the first
training dataset train_I was not estimated but fixed to an
identity function. It can be seen that the prediction results on
the validation set are less biased in this case. Furthermore, it
can be seen that the model successfully learns the different
biases when the estimated orange line is compared to the
original green lineE]

Results on synthetic data The results on the validation
dataset of 15 different runs are presented as boxplots in Figure
[l When the second boxplot is compared to the first one
where the original, unbiased data was used for training, it
can be seen that the model accuracy decreases significantly
from an average PCC of » = 0.95 to »r = 0.77 when
the training datasets are exposed to biases. This performance
decrease caused by the biased training data can successfully
be compensated for by the bias-aware loss, which is displayed
in the third boxplot on the right-hand side. The average PCC
obtained is r = 0.93, which is close to the results trained on

4We also experimented with third-order polynomial estimation functions
with which biases such as in dataset train_4 can be estimated more precisely.
However, because the they did not further improve the results they are left
out of this work.
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Fig. 5: Two example training runs with bias-aware loss on the validation dataset. GREEN LINE: Introduced bias. ORANGE
LINE: Estimated bias. 1st Row: Without anchoring. 2nd Row: Anchored with dataset train_1.

unbiased data. Overall, the experiments show the efficiency
of the proposed bias-aware loss when applied to the synthetic
datasets, where the PCC can be increase from 0.77 to 0.93.

——e—
~ 08
0.7
06 .
Original data Biased data  Biased data
MSE-Loss MSE-Loss BA-Loss

Fig. 6: Validation results of 15 training runs on the synthesised
data.

B. Speech Quality

To analyse the efficiency on real datasets, the publicly
available ITU-T Rec. P.Sup23 [20] speech quality datasets
with subjective quality ratings are used. The datasets originate
from different sources and are therefore likely to be exposed
to subjective biases. Six of the datasets that were rated on an
ACR scale are used: EXPla, EXP1d, EXPlo, EXP3a, EXP3c,
and EXP3d. The proposed algorithm is analysed with a leave-
one-dataset-out cross-validation, where the model is trained
on the five remaining datasets. For each training run, the
model of the epoch on which the best results in terms of PCC
was achieved on the held-out validation dataset is saved. As
prediction model again, the speech quality model NISQA is
applied.

The training was run 15 times with an early stop of 20
epochs on the validation PCC, a learning rate of 0.001, and
a mini-batch size of 60. The bias estimation was anchored
to a randomly chosen dataset. The hyper-parameter ry, was
optimised for each individual dataset. The average results for
each dataset over all runs are shown in Table[ll It can be noted

that the efficiency of the proposed algorithm depends on the
datasets it has been trained and evaluated on. For five of the six
datasets, the proposed loss outperforms the vanilla MSE loss
function, whereas, for dataset EXPlo, the vanilla MSE loss
performs better. On the EXP3a dataset, a performance increase
of about 0.05 in terms of PCC can be observed, showing
that the speech quality prediction can notably be improved
by applying the proposed bias-aware loss.

C. Image quality

To analyse the efficiency on real image quality datasets,
we use the following five publicly available datasets with
subjective quality ratings, which are often used in image
quality prediction research. It should be noted that the datasets
come from different sources and each individual dataset may
contain unique distortions that are not present in the other
datasets.

CSIQ [21]: 866 images in total from 30 reference images,
each distorted using one of five types of distortions. TID 2013
[22]]: 3,750 images in total from 24 reference images and 25
types of distortions. Live Challenge [23]: 1,162 images with
authentic image distortions captured using a representative
variety of modern mobile devices. Live IQA R2 [24]: 779
images in total with 5 different distortion types. Live MD
[25]: 450 images in total, containing two types of multiply
distorted images.

We again analysed the proposed algorithm with a leave-one-
dataset-out cross-validation, where we trained the model on the
four remaining datasets. As the datasets were rated on different
scales, we linearly re-scaled all ratings to a range from 1-5,
where 5 is the highest possible quality. Then, for each training
run, we saved the model of the epoch on which the best results
in terms of PCC was achieved on the validation dataset. As
prediction model, we used Pytorch’s ResNet50 implementation
with 50 layers, where we replaced the last fully connected



layer with a fully connected layer with only one output. Due
to the large variety of different distortion in the datasets, we
used the ImageNet pretrained weights and then fine-tuned the
entire model during training. Because ResNet expects images
of size 224x224x3, we only considered the center crop of
the validation images to simplify the evaluation (instead of,
e.g., averaging over multiple crops). However, to improve the
accuracy of the predictions, a random crop on the training data
was applied to increase the training data variety.

We ran the training 15 times with an early stop of 20 epochs
on the validation PCC, a learning rate of 0.0001, and a mini-
batch size of 32. The average results in terms of PCC are
presented in Table[l] On four of the five datasets, the proposed
loss outperforms the vanilla MSE loss function, whereas, for
dataset TID 2013, the vanilla MSE achieves the same results.
The correlation of the Live Challenge dataset is overall very
low with a PCC of 0.49/0.50. The low performance can be
explained by the different types of distortions in this dataset
(e.g., lens flare) compared to the training datasets. On the
CSIQ dataset, a performance increase of 0.02 in terms of PCC
can be observed, showing that the image quality prediction can
be improved by applying the proposed bias-aware loss.

TABLE I: Validation results as average PCC of 15 training
runs.

Validation Dataset MSE-Loss  Proposed
Synthetic 0.77 0.93
Speech Quality: EXPla 0.95 0.96
Speech Quality: EXP1d 0.95 0.97
Speech Quality: EXPlo 0.96 0.95
Speech Quality: EXP3a 0.87 0.92
Speech Quality: EXP3c 0.89 0.90
Speech Quality: EXP3d 0.89 0.92
Image Quality: CSIQ 0.82 0.85
Image Quality: Live Challenge 0.50 0.52
Image Quality: Live IQA 0.88 0.89
Image Quality: Live MD 0.81 0.83
Image Quality: TID 2013 0.70 0.70

IV. CONCLUSION

We presented an open-sourced loss function that automat-
ically learns biases that occur when subjective quality exper-
iments are conducted. The bias-aware loss does not punish
prediction errors caused by biases, while the rank order within
the dataset is predicted correctly. We could show, on the basis
of a synthesised dataset, that the proposed method obtains
almost the same results as if the datasets were not exposed
to any biases and outperformed the vanilla MSE loss by a
relative improvement of 21%. The performance on real data
largely depends on the datasets that it is applied to. In cases
where no biases are present between datasets, the model gives
similar results as a vanilla MSE loss, however, in most cases
the results could be improved. Because the bias-aware loss can
be applied without additional data or computational costs, it
is a helpful tool to improve speech, image, or video quality
prediction models that are trained from multiple datasets.
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