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Abstract—Lossy image compression is a popular, simple and
effective solution to reduce the amount of data representing
digital pictures. In most lossy compression methods, the reduced
volume of data in bits is achieved at the expense of introducing
visual artifacts in the picture. The perceptual quality impact
of such artifacts can be assessed with expensive and time-
consuming subjective image quality experiments or through
objective image quality metrics. However, the faster and less
resource demanding objective quality metrics are not always
able to reliably predict the quality as perceived by human
observers. In this paper, the performance of 14 objective image
quality metrics is benchmarked against a dataset of compressed
images labeled with their subjective quality scores. Moreover, the
performance of the above objective quality metrics in predicting
the subjective quality of images distorted by both conventional
and learning-based lossy compression artifacts is assessed and
conclusions are drawn.

Index Terms—image compression, perceptual visual quality,
objective quality metrics, objective-subjective correlation, deep
learning

I. INTRODUCTION

In the last decades, the number of images captured on

a daily basis using digital devices has grown exponentially.

For this reason, more efficient solutions in the field of image

compression are constantly under research. Recently, learning-

based image compression methods have demonstrated compet-

itive, if not superior, compression performance when compared

to conventional methods in terms of compression efficiency

and perceived visual quality. The compression performance

may be evaluated through expensive and costly subjective ex-

periments, or objectively through metrics that aim at predicting

the visual quality as perceived by a human observer. However,

the objective quality metrics don’t always match the human

perception for a wide range of distortions.

In the past, multiple studies have been conducted to eval-

uate the correlation performance of objective image quality

metrics with the corresponding subjective quality scores. As

an example, Zhang et al. [1] proposed an extensive correlation

study on 7 different subjective quality datasets, i.e., image

datasets with subjective quality scores, and 11 full-reference

objective quality metrics. In [2], Ma et al. proposed a new

subjective quality dataset, which was used for assessing the

correlation of 20 image quality metrics, both full-reference

and non-reference. Furthermore, Hanhart et al. [3] proposed a

correlation experiment for High Dynamic Range (HDR) im-

ages. Recently, Valenzise et al. [4] evaluated both subjectively

and objectively the performance of two deep-learning based

compression methods, observing that the objective metrics

are, in general, less accurate in predicting the quality of

learning-based methods compared to JPEG 2000 or Better

Portable Graphics (BPG). However, a comprehensive study

on the objective-subjective correlation performance between

conventional and learning-based compression approaches has

not been conducted yet. Also, the state-of-the-art lacks a study

addressing a wide range of objective quality metrics and a

large number of learning-based codecs.

In this paper, the performance of several objective image

quality metrics is assessed in the context of lossy image com-

pression, including conventional as well as multiple emerging

learning-based image codecs. The objective-subjective cor-

relation performance of 14 full-reference objective quality

metrics is assessed based on a subjective study including

8 test images and 8 image codecs, both conventional and

learning-based, at multiple bitrates. In fact, these two image

compression approaches introduce different types of visual

artifacts/distortions, and therefore it is important to assess
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Fig. 1: Visual comparison of conventional and learning-based (LB) compression artifacts in the image ”port” at 0.12bpp.

how the objective quality metrics perform against the hu-

man perception, expressed by subjective quality scores, for

each type of compression solution and associated artifacts.

The reported subjective experiment follows a crowdsourcing

approach and was organized in the context of the JPEG AI

Call for Evidence, co-organized with the IEEE MMSP’2020

Challenge on Learning-Based Image Coding. To the best of the

authors’ knowledge, no other objective-subjective correlation

experiments have been conducted on an image compression

specific dataset with such a large variety of objective quality

metrics and codecs, including both conventional and learning-

based compression artifacts, and therefore on a wide set of

possible degradation. Moreover, only a few studies in the field

have been conducted utilizing subjective visual quality scores

collected through a crowdsourcing subjective experiment, and

therefore including a large variety of subjects and viewing

conditions. The conclusions and insights will be useful for

future objective image quality assessment efforts, as they

will highlight which objective quality metrics perform better

with learning-based image codecs, and the main strengths

and limitations of the available objective quality metrics for

different types of lossy image compression.

II. SUBJECTIVE QUALITY ASSESSMENT EXPERIMENT

The subjective quality assessment experiment has been

conducted on a novel image dataset that includes subjective

quality scores, which targeted the evaluation of the compres-

sion efficiency performance of both conventional and learning-

based lossy image compression methods.

Test Material: The dataset includes 8 uncompressed im-

ages with different contents including faces, signs, buildings,

natural scenery, repetitive patterns and artificially generated

images. The raw images were compressed with eight different

compression methods, two conventional and six learning-

based, at four different target bitrates.

Image Codecs: The conventional codecs include HEVC In-

tra and JPEG 2000 visually optimized, while the six learning-

based codecs correspond to the submissions made to the

JPEG AI Call for Evidence in conjunction with the IEEE

MMSP’2020 Challenge on Learning-Based Image Coding.

In particular, five compression methods use a novel end-to-

end approach based on convolutional neural networks, and

another is a hybrid codec extending the Versatile Video

Coding (VVC Intra) [5] standard with deep learning-based

tools. Since not all the teams participating in the JPEG AI

Call for Evidence/MMSP’2020 Challenge agreed to reveal the

information about their compression method, only the details

about the accessible compression methods are mentioned in

this paper [6]–[9].

Distortion analysis: The dataset includes both conventional

and learning-based image compression artifacts. In particular,

HEVC is known for introducing blocking artifacts, blurriness

and color bleeding, while JPEG 2000 mainly introduces blur-

riness and ringing artifacts. On the new learning-based codecs,

it is possible to observe that the reconstruction of the colors

is not always accurate, and in few cases, the color component

is completely lost at the lowest bitrates. Furthermore, the

learning-based approaches also introduce blurring artifacts and

degradation of the texture areas, as well as blocking artifacts

in some cases. Some visual examples of compression artifacts

are shown in Figure 1.

Subjective Quality Assessment Protocol: The subjective

scores were collected through a Double Stimulus Continuous

Quality Scale (DSCQS) experiment [10] with hidden refer-

ences, in which the distorted/decoded and original images were

presented side-by-side and subjects were asked to rate the

visual quality of both stimuli on a continuous scale between 0

and 100. The choice of this quality assessment protocol derives

from the fact that learning-based compression methods may

improve the quality of decoded images, especially at higher

bitrates, and thus, might exhibit a better visual subjective

quality compared to the original stimulus. As not all the

codecs achieved the target bitrates, the dataset includes, in

total, 240 compressed images with the respective subjective

quality scores.

Experiment setup: Due to the COVID-19 pandemic, the

subjective assessment experiment was conducted through

crowdsourcing on Amazon Mechanical Turk (MTurk). A total

of 118 naı̈ve subjects took part in the experiment but only 116

successfully completed the evaluation. Among them, 32 were

females and 84 males, with age between 18 and 70, and mean

age 34.72. The subjects took part remotely in the experiments

from 10 different countries, where the United States, India, and

Brazil registered the highest number of participants. All the

subjects had a monitor with 1920x1080 resolution or higher,

with the HiDPI/Retina mode disabled. The original images

were cut into tiles of size 945×880 to fit the screen side-by-

side. No specific instructions about the distance to the screen

were given to the subjects.

Subjective Data Processing: After collecting the subjective

scores, two outliers were detected using the methodology

specified in ITU Rec. BT-500 [10], and therefore their scores



were discarded. Then, the Mean Opinion Score (MOS) was

computed among the valid subjective scores. Subsequently, the

Differential Mean Opinion Score (DMOS) has been computed

from the MOS of the source reference (SR) and processed

stimuli (PS).

The subjective quality scores collected through this proce-

dure were correlated to the objective quality scores for several

metrics, following the procedure described in the next section.

III. OBJECTIVE QUALITY METRICS AND DATA

PROCESSING

A. Full-Reference Objective Quality Metrics

Although subjective image quality assessment is more reli-

able, it is also more costly and time-consuming, and in many

scenarios, for example, perceptual quality optimizations in

image compression, it is not even feasible. To avoid subjective

image quality assessment, several objective image quality

metrics have been proposed over the years. In particular, three

main approaches to this problem are possible: full-reference,

reduced-reference and no-reference. In the context of image

compression, the full-reference approach is the most popular as

it expresses the fidelity of the compression process; however,

it requires both the original and the decoded images to be

simultaneously available.

One of the most popular full-reference objective image

quality metrics is the Peak Signal to Noise Ratio (PSNR),

which measures the mathematical dissimilarity between two

images through the Mean Squared Error (MSE) between the

original and the degraded/decoded images. A more advanced

version of the PSNR, computed in the DCT domain, is the

PSNR-HVS-M [11], which considers the characteristics of the

Human Visual System (HVS) and it was shown in the past

to correlate better with human perception than the standard

PSNR.

A turning point in the development of objective image

quality metrics was the Structural Similarity Index Measure

(SSIM) [12], inspired by the HVS and claimed as a better

solution than PSNR. The objective quality score is computed

through a combination of three different comparisons related

to luminance, contrast and structure. Successively, different

variants of this metric were proposed, notably, the Multi-Scale

Structural Similarity Index (MS-SSIM) [13], which assesses

the SSIM at multiple resolutions and viewing conditions, and

the Information Content Weighted Structural Similarity Mea-

sure (IW-SSIM) [14], which weights the SSIM by perceptual

coefficients, proportional to the amount of local information

in the image.

Many other objective image quality metrics have also been

proposed over the years. Among them, the Visual Information

Fidelity (VIFp) [15] measures the loss of information between

a reference and a distorted image, taking into account the nat-

ural image statistics and the HVS characteristics. This metric

was adopted as part of the Video Multi-Method Assessment

Fusion (VMAF) metric [16], an objective quality metric pro-

posed by Netflix. Although this metric was designed for video

quality, it can also be computed for single frames/images. The

Metric Ref
Color

space
Remarks

CIEDE2000 [20] Lab
The final score corresponds to the
average difference for all pixels in

the image.

FID [21] RGB
The default inception model was

used.

FSIM [18] RGB
The color version of the metric

was used.

IW-SSIM [14] Y The default parameters were used.

LPIPS [22] RGB The pre-trained model was used.

MS-SSIM [13] Y The default parameters were used.

NLPD [19] Y
The default parameters and the
output scores in the normalized

domain were used.

PSNR - Y The Matlab version was used.

PSNR-
HVS-M

[11] Y The default window size was used.

SSIM [12] Y The default parameters were used.

VDP2 [17] RGB The LDR mode was used.

VIFp [15] Y The default parameters were used.

VMAF [16] YUV libvmaf version V.2.1.1 was used.

WaDIQaM [23] RGB
The weighted approach pre-trained

on both the LIVE and TID2013
datasets was used.

TABLE I: Summary of the objective image quality metrics

benchmarked in this paper.

intra-frame quality estimation fuses VIFp with the so-called

Detail Loss Metric (DLM), which estimates the loss of detail

in the decoded image. These two metrics are then combined

through a Support Vector Machine (SVM) regressor trained

on subjective quality data to obtain the final quality score.

Other popular objective image quality metrics are the HDR-

VDP-2 (also know as VDP2) [17], designed to be robust

to different lighting conditions, the Feature-Similarity Index

Metric (FSIM) [18], which assesses the quality through the

Phase Congruency (PC) and Gradient Magnitude (GM), the

Normalized Laplacian Pyramid Distance (NLPD) metric [19],

which decomposes images using the Laplacian pyramid, and

CIEDE2000 [20], which computes the difference between two

colors in the CIELab color space.

Recently, a few learning-based objective image quality

metrics have been developed. As an example, the Weighted

Average Deep Image QuAlity Measure (WaDIQaM) [23] is an

end-to-end deep neural network metric able to assess the visual

quality of images both with full-reference and no-reference

approaches. This metric computes the score in a patch-wise

fashion, with the final score being a weighted combination

of the patches’ scores considering their saliency. Another

learning-based approach to objective image quality assessment

is the Learned Perceptual Image Patch Similarity (LPIPS)

[22], where the perceptual similarity is measured between

two images using deep neural network activations, in this

case using a VGG (Visual Geometry Group) neural network

trained for image classification on ImageNet. Moreover, the

Fréchet Inception Distance (FID) [21] was proposed to assess

the quality of images generated with Generative Adversarial

Networks (GANs).

In this paper, the objective-subjective correlation perfor-
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Fig. 2: DMOS versus VIFp scores (left) and DMOSp (right)

scatter plots.

mance of all the objective image quality metrics introduced

in this section will be evaluated against the subjective dataset

presented in Section II. Table I summarizes the studied objec-

tive image quality metrics.

B. Color Transformations

Since not all the objective image quality metrics were

designed to work in the RGB color space, some color transfor-

mations are sometimes necessary. Table I indicates the color

spaces in which the quality metrics are assessed in this paper.

In particular, the PSNR, SSIM, MS-SSIM, IW-SSIM, VIFp,

NLPD and PSNR-HSV-M are designed to work with gray-

scale images, so the input RGB images were used to obtain the

luminance component following ITU-R Rec. BT.709-6 [24]. Y

was computed as a weighted combination of the red, green and

blue channels as:

Y = 0.2126 ∗R+ 0.7152 ∗G+ 0.0722 ∗B (1)

Moreover, for VMAF, the images were converted to the

YUV color space. To do so, the FFmpeg libraries were used

to convert the images to the yuv444 format.

Lastly, since CIEDE2000 computes the color difference in

the CIELab color space, the images have been converted into

this space using the Matlab function rgb2lab.

C. Statistical Analysis

The performance of the objective image quality metrics in

Table I has been evaluated through their objective-subjective

correlation scores. This was performed by computing the

Pearson Linear Correlation Coefficient (PLCC), Spearman’s

Rank Correlation Coefficient (SROCC) and Kendall’s Rank

Correlation Coefficient (KROCC), which are different methods

to assess the relationship between two variables.

While the subjective scores usually have a non-linear be-

haviour, PLCC looks for a linear correlation. For this reason,

a least-squares regression procedure was applied to the data,

following the method proposed in the ITU Tutorial [25]. To

remove the non-linearity, a non-linear regression was fitted

to the objective quality scores through the logistic function

proposed in [26]:

DMOSp =
β1

1 + exp(−β2 ∗ (IQS − β3))
(2)

Where IQS represents the image quality scores obtained from

the objective image quality metrics. The non-linear regression

was performed using the Matlab function nlinfit, while the

final score prediction was done through the Matlab function

nlpredci. As an example, Figure 2 shows the scatter

plots of DMOS against the VIFp scores and the DMOSp

(predicted DMOS) data obtained with the process described

above.

It is important to underline that, while the PLCC looks for

a linear correlation, the SROCC and the KROCC are based

on the ranking of the data, and therefore are not influenced by

the fitting procedure.

The correlation scores presented above have values in the

range ±1, where +1 denotes perfect positive correlation, -1

perfect negative correlation and 0 no correlation. Since we are

not interested in the trend of the correlation, only its absolute

value will be considered.

Besides the correlation scores, the objective quality metrics

performance against the subjective quality scores can also be

assessed with two other metrics, i.e., the Root Mean Square

Error (RMSE) and the Outlier Ratio (OR). To compute them,

the guidelines in ITU-T Rec. P.1401 [27] were followed.

Contrary to the previous correlations measures, a lower RMSE

or OR value expresses a better performance by the metrics.

IV. PERFORMANCE AND ANALYSIS

The PLCC, SROCC, KROCC, RMSE and OR scores

are computed between the subjective DMOS and predicted

DMOSp scores, to identify the best performing objective

image quality metrics. To compare the performance on the

different compression artifacts, the subjective dataset was split

into two subsets: the first contains only the images coded

with the conventional codecs, i.e., HEVC Intra and JPEG

2000, while the second subset includes only the images coded

with the learning-based codecs. The two types of compression

artifacts are, as previously explained, different from each

other, and this division allows to assess the objective image

quality metrics for both cases. Thus, the PLCC, SROCC,

KROCC, RMSE and OR scores are separately computed for

the conventional and learning-based (LB) subsets, as well as

for the entire dataset.

Table II shows the PLCC, SROCC, KROCC correlation

results for the two subsets and the entire dataset, and Table III

shows the results for the RMSE and OR metrics. The results

show that the quality metrics with the highest correlation

scores and the lowest RMSE and OR are VMAF, VIFp, PSNR-

HVS-M and FSIM. Moreover, the following observations can

be formulated:

• Among the best correlating metrics, VMAF and FSIM

consider the color information, while VIFp and PSNR-

HVS-M are computed only for the luminance component.

The color components do not seem to impact much the

overall objective image quality metrics performance.

• The metrics with the lowest correlation scores are

WaDIQaM and CIEDE2000. A possible explanation for



TABLE II: PLCC, SROCC and KROOC correlation scores for the benchmarked objective image quality metrics.

PLCC SROCC KROCC

Metrics Conventional LB Overall Conventional LB Overall Conventional LB Overall

CIEDE2000 0.4973 0.6698 0.6251 0.4785 0.6021 0.5720 0.3373 0.4409 0.4143
FID 0.8029 0.8395 0.8281 0.7964 0.7922 0.7967 0.6012 0.5999 0.6001

FSIM 0.9283 0.9177 0.9192 0.9004 0.8955 0.8992 0.7341 0.7177 0.7204

IW-SSIM 0.8719 0.8574 0.8611 0.8427 0.8314 0.8359 0.6637 0.6428 0.6487
LPIPS 0.8292 0.8232 0.8243 0.7888 0.7570 0.7660 0.6011 0.5773 0.5850

MS-SSIM 0.8719 0.8574 0.8611 0.8427 0.8314 0.8359 0.6637 0.6428 0.6487
NLPD 0.7861 0.6807 0.7007 0.7825 0.6861 0.7090 0.5784 0.4962 0.5147
PSNR 0.8473 0.8062 0.8080 0.8697 0.8070 0.8168 0.6766 0.6123 0.6194

PSNR-HVS-M 0.9445 0.9162 0.9137 0.9381 0.9000 0.9028 0.7927 0.7256 0.7276

SSIM 0.8156 0.7810 0.7890 0.7959 0.7420 0.7569 0.6181 0.5609 0.5755
VDP2 0.8823 0.8306 0.8370 0.8739 0.8120 0.8209 0.6865 0.6134 0.6192
VIFp 0.9460 0.9269 0.9299 0.9346 0.9171 0.9208 0.7936 0.7495 0.7534

VMAF 0.9522 0.9046 0.9087 0.9275 0.8746 0.8826 0.7778 0.7042 0.7065

WaD LW 0.7157 0.5832 0.6087 0.7169 0.6367 0.6531 0.5079 0.4658 0.4722
WaD TW 0.8029 0.7442 0.7461 0.8122 0.7714 0.7708 0.6091 0.5831 0.5735

TABLE III: RMSE and OR scores for the benchmarked objective image quality metrics.

RMSE OR

Conventional LB Overall Conventional LB Overall

CIEDE2000 0.2201 0.1860 0.1958 0.8437 0.7898 0.8083
FID 0.1513 0.1361 0.1407 0.8125 0.7898 0.8000

FSIM 0.0944 0.0995 0.0988 0.6250 0.6591 0.6708

IW-SSIM 0.1243 0.1289 0.1276 0.6562 0.7273 0.7125
LPIPS 0.1418 0.1422 0.1420 0.7969 0.7443 0.7583

MS-SSIM 0.1242 0.1290 0.1276 0.6562 0.7273 0.7125
NLPD 0.1569 0.1835 0.1790 0.8125 0.7500 0.7583
PSNR 0.1424 0.1392 0.1418 0.7187 0.7159 0.7208

PSNR-HVS-M 0.0834 0.1004 0.1020 0.5312 0.6023 0.6375

SSIM 0.1472 0.1568 0.1545 0.7656 0.7273 0.7375
VDP2 0.1194 0.1395 0.1373 0.6562 0.7614 0.7583
VIFp 0.0823 0.0940 0.0923 0.4375 0.6250 0.5958

VMAF 0.0775 0.1068 0.1047 0.6094 0.5739 0.6375

WaD LW 0.1772 0.2044 0.1996 0.7969 0.7954 0.8125
WaD TW 0.1512 0.1673 0.1670 0.7812 0.7216 0.7583

this might be the fact that WaDIQaM, a deep learning-

based objective image quality metric, was trained on

datasets including only a small percentage of conven-

tional compression artifacts and no learning-based com-

pression artifacts at all. Regarding CIEDE2000, this met-

ric does not include any information about the image

structure and only considers the difference between the

colors.

• As expected, the PSNR appears in the lower range of

the correlation scores ranking, since simple pixel-wise

error measures do not correlate very well with human

perception. However, the PSNR-HVS-M variant, which

considers the distortion visibility in the frequency domain

and thus some HVS characteristics, is well correlated

with the subjective mean opinion scores.

• Surprisingly, MS-SSIM and IW-SSIM do not show out-

standing correlation performance as they are in the middle

of the ranking even for the conventional coding subset.

This finding is in contrast with what was observed in [1]

and [2], and could be caused by the fact that the subjective

experiment reported in this paper has been performed

with a crowdsourcing approach, thus closer to the way

humans consume images nowadays.

From Table III, it is possible to observe that, on average,

the PLCC, SROCC and KROCC correlation scores are lower,

while the RMSE and OR scores are higher on the learning-

based compression subset compared to the conventional com-

pression subset. This confirms the hypothesis that all quality

metrics, excluding the CIEDE2000, perform better on the

conventional subset. In fact, most of the reviewed objective

image quality metrics were designed before the emergence

of learning-based codecs, and therefore were naturally not

designed taking into account the types of compression artifacts

the latter exhibit. This conclusion, however, doesn’t hold in

the case of LPIPS and FID: they were, in fact, designed

to specifically deal with images generated with learning-

based approaches, so they exhibit comparable or, in some

cases, slightly higher performance on the learning-based subset

compared to the conventional one. Anyway, these metrics

don’t present remarkable performance in the global ranking

of the quality metrics.

In general, it may be observed that learning-based codecs

lack of an accurate reconstruction of the colors, and that

CIEDE2000, i.e., a metric specifically designed to evaluate



the color difference between two images, performs better on

the learning-based subset rather than on the classical one. This

might suggest that incorporating a more accurate evaluation of

the colors on objective metrics might lead to an improvement

in the objective-subjective correlation results. This observation

might be taken into account in the design of a future objective

image quality assessment metric able to deal with a wider

range of distortions.

V. CONCLUSIONS

In this paper, the correlation performance of 14 full-

reference objective image quality metrics was assessed on a

subjective dataset labeled with a crowdsourcing-based sub-

jective quality assessment experiment targeting at assessing

the image compression performance of both conventional and

learning-based compression approaches. It was found that the

quality metrics correlating better with the subjective quality

scores are VIFp, VMAF, FSIM and PSNR-HSV-M. Moreover,

the correlation scores show that most objective quality met-

rics perform better for the conventional codecs than for the

learning-based codecs, as expected. This observation motivates

further research to seek better objective image quality metrics

to more reliably predict the quality of images compressed with

learning-based codecs, possibly introducing a better evaluation

of the color accuracy.
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