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Abstract—Immersive imaging modalities have been receiving
growing attention over the last years. In this context, point
clouds demonstrated to be a competitive data representation
format, mainly due to its compatibility with most acquisition
devices such as LiDAR scans and depth cameras. On the
other hand, the large associated data volume is a challenge to
storage and transmission, resulting in the need for efficient point
cloud compression methods. Multiple subjective studies have
been conducted to assess the performance of such compression
methods, mostly limiting the analysis to flat monitors or virtual
and augmented reality headsets. In this paper, we investigate
the impact of a novel eye-sensing light field display on several
aspects of quality of experience, as well as on the subjective
perception of compression artifacts. The two visualization devices
have been observed to create distinct user experiences which lead
to noticeable differences in subjective opinion. The advantages
and disadvantages of each visualization strategy are underlined,
based on rigorous statistical analysis. The subjectively annotated
dataset is also released in order to foster future research.

Index Terms—point clouds, immersive imaging, perceptual
visual quality, subjective quality assessment, eye-sensing light
field display
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I. INTRODUCTION

Novel technologies for displaying three-dimensional (3D)

media are becoming increasingly popular, allowing users to

interact with digital content in more natural ways than ever

before. As a result, different imaging modalities have been

assessed using a variety of such visualization devices, in order

to enhance the quality of experience. Point clouds have been

identified as an effective alternative, representing models as

unconnected points in 3D space with associated color and

additional attributes. In order to enable its usage in realistic

use cases, compression methods are often needed, adding

distortion artifacts that may potentially impair the subjective

perception. The impact of these added distortions has already

been evaluated in several visualization devices, such as flat

monitors, virtual reality (VR) headsets, and augmented reality

(AR) glasses [1]–[6].

In the last few years, autostereoscopic displays have been

raising growing attention due to their capability of representing

3D images and videos in an immersive way without the need
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Fig. 1: Point cloud contents of the evaluated dataset.

for additional devices such as glasses. In this context, Sony

recently released the novel Spatial Reality Display, an eye-

sensing light field display (ELFD) able to produce a spatial

rendering of virtual objects and scenes, creating the perception

of a volume protruding from the screen [7]. Such technology is

based on a high-speed camera able to identify the position of

the user’s eyes, a real-time light field rendering system able to

determine and render the correct view based on this position,

and a novel eye-sensing-based lenticular lenses system. This

technology has drawn growing interest in the fields of product

designing, architecture, and entertainment [8], and promising

results in the field of education [9] thanks to the high quality

and realism of the rendered content.

While the interest in this type of visualization device is

rapidly growing, to date, no previous effort was conducted

to collect subjective visual quality scores on autostereoscopic

displays. In this paper, we present the results of a subjective

experiment assessing the quality of compressed point clouds,

which was conducted on both the novel Sony’s Spatial Reality

Display and on a flat monitor. The scores obtained in these two

different settings are compared in rigorous statistical analysis,

yielding valuable insights for future research on autostereo-

scopic displays, which are likely to become increasingly pop-978-1-6654-8794-8/22/$31.00 ©2022 IEEE



ular for the rendering of 3D immersive content. Additionally,

the results of a survey on the quality of experience conducted

following the subjective experiment are reported. The collected

subjective scores as well as the results of the evaluation survey

and the employed visualization framework are made publicly

available to facilitate further research on the topic 1.

II. PREVIOUS WORK

The increased interest in point clouds as an immersive

imaging modality has fostered the research on technologies

for compression. Octrees are one of the several studied data

structures for this purpose, being used to encode the geometry

of both static and dynamic [10] point clouds by representing

points as leaf nodes in a tree generated with a recursive parti-

tion of the space. Other methods [11] compress both geometry

and color attributes by projecting the points into multiple

views and generating two-dimensional maps with color and

distance. These maps are then encoded using well-established

video coding standards. Such technologies were adopted by

MPEG in their coding standards, with the Geometry-based

Point Cloud Compression (G-PCC) [12] leveraging octree-

based coding for geometry and Video-based Point Cloud

Compression (V-PCC) [13] being built from projection-based

methods. For color compression, graph Fourier transforms [14]

and region-adaptive hierarchical transforms [15] have been

explored to encode attributes on a pre-defined topology, the

latter being also added to the G-PCC compression standard.

Recent years have witnessed the rise of compression meth-

ods based on deep learning architectures. Autoencoders with

three-dimensional convolutional layers were employed [16]

to compress the geometry of points lying on a uniformly

quantized grid represented as occupancy maps. Other authors

leveraged architectures able to handle inputs directly in the

point domain [17], without the need for prior voxelization.

Efforts have also been devoted to compressing color attributes

with deep learning, either with an extension of convolutional

layers [18], learning-based operations that map colors into 2D

maps [19] or learned volumetric functions [20].

The impact of compression artifacts on subjective percep-

tion was studied in several experiments. In [21], a compre-

hensive study was conducted in two laboratories using colored

point clouds distorted with the two MPEG compression stan-

dards. Recently, a framework for crowdsourcing-based subjec-

tive visual quality assessment of models compressed with both

conventional and learning-based codecs was proposed in [22].

While most of the effort conducted thus far on the visual

quality assessment of compressed point clouds rendered the

content on flat monitors, some studies evaluated subjective per-

ception on alternative visualization devices. In [1], [2], subjects

wearing VR headsets rated with 6 degrees of freedom point

clouds compressed with G-PCC and V-PCC, respectively. The

authors of [3] went further and conducted a similar evaluation

with both flat monitors and VR headsets, identifying only

small effects from the viewing devices on the final scores.

1https://www.epfl.ch/labs/mmspg/downloads/sr-pcd/

[4] reported a novel methodology for point cloud subjective

visual quality assessment on augmented reality glasses, tar-

geting geometry-only point clouds corrupted by noise and

compression-like artifacts. The same authors successively ana-

lyzed the impact of the different subjective methodologies for

geometry-only point cloud quality assessment, i.e. interactive

subjective quality assessment on a flat monitor and on a

head-mounted display in an augmented reality scenario [5]. A

larger confidence interval on the data collected using the AR

approach was observed, probably caused by the variable level

of interaction or by the increased level of discomfort caused

by the head-mounted device. Nevertheless, a strong correlation

was observed between the two experiment methodologies.

Despite all these efforts using multiple settings, no subjec-

tive experiments have been conducted so far on autostereo-

scopic displays using point clouds. Although previous works

already studied different methods used to produce depth per-

ception without external glasses [23], this is the first study to

evaluate compressed 3D models using spatial rendering.

III. SUBJECTIVE EXPERIMENT

A. Experiment setup

The subjective visual scores were collected in a controlled

environment setup, where the subjects were asked to assess

the visual impairment between pairs of point clouds on both

a flat monitor and on an ELFD. In order to prevent exces-

sive tiredness of the subjects, the experiment was organized

over two consequent days, where one monitor was randomly

assigned to each subject during the first session and, upon

completion of the experiment, they were asked to return the

consecutive day to complete the experiment on the second

monitor. At the end of the second evaluation session, a short

survey, designed using [24], [25] as baseline and adapted for

the specific target of the paper, was conducted to assess the

quality of experience. Specifically, the beginning of the survey

contained questions on the users’ previous experience with 3D

data, including the estimated number of times they experienced

immersive contents and the utilized type of 3D devices. In the

subsequent questions, the subjects rated the overall immersion

level, involvement in the experiment, and quality of experience

on a 5-level discrete rating scale. Successively, a number

of questions on the naturalness of the displayed contents

were presented. The subjects then evaluated the discomfort

experienced during the experiment on both display devices,

including the indicative time when the discomfort appeared

and the kind and strength of the sensation. The final question

inquired the preferred display type for future experiments.

The simultaneous Double-Stimulus Impairment Scale

(DSIS) experiment with a 5-scale rating and hidden reference

was chosen for the experiment. The subjects were asked to

rate the impairment between the original and the distorted

point clouds on the following scale: “5 - Imperceptible”, “4

- Perceptible, but not annoying”, “3 - Slightly annoying”,

“2 - Annoying” and “1 - Very annoying”. The two models

were displayed side by side, with the position of the original

being randomly set to the left or right side of the screen
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Fig. 2: Content-based rate distortion plots.

and remaining the same during the entire session. Before the

experiment, instructions were given in written and oral form,

and a short training session was conducted to get the subjects

acquainted with the grading scale. All subjects rated the entire

compressed dataset in random order, and care was taken to not

display the same content consecutively. Four dummy stimuli

were included at the beginning of the experiment and their

scores were excluded from the analysis. At the end of the

experiment, the original stimuli were displayed once more in

a single stimulus fashion, where the subjects were asked to

assess the naturalness of the displayed content on a scale from

1 (very artificial) to 5 (very natural).

Two different viewing conditions were arranged for the

different displays, specifically: (1) as a flat monitor, a DELL

UltraSharp U3219Q with a native resolution of 3840 x

2160 pixels and 31.5 inches diagonal size was used. The

viewing conditions were selected according to ITU-R Rec.

BT.500 [26], i.e. the brightness of the monitor was set to 120

cd/m2 with a D65 white point profile, the viewing distance

was initially set to 35 cm proportionally to the height of

the rendered point clouds, and the ambient light measured in

the proximity of the monitor was set to 15 lux; (2) as an

ELFD, the Sony’s Spatial Reality Display with a resolution

of 3840 x 2160 pixels and of 15.6 inches diagonal size was

used. The viewing conditions were selected according to the

recommendations from the manufacturer [8], i.e. the viewing

distance was initially set to 30 cm, while the ambient light

measured in the proximity of the monitor was set to 100 lux.

The subjects were instructed to explore the viewing distance

that was most comfortable for them, while staying in the

proximity of the distance they were instructed to keep. Both

monitors and lights were switched on at least 30 minutes

prior to the experiment to avoid excessive fluctuations of the

reported values. The brightness measurements were collected

through an X-Rite i1 Display Pro calibration device.

Prior to the first evaluation session, the subjects were asked

to take multiple vision tests, i.e. Snellen visual acuity test,

Ishihara color vision test, VT-04 test for fine stereopsis, and

VT-07 test for dynamic stereopsis, as recommended in ITU-R

Rec. BT.500 [26]. Three subjects presented vision capabilities

below the average in one or more tests, and therefore their

scores were excluded from the analysis. Accordingly, the

scores from a total of 23 subjects were collected and used for

the experiment, being 11 females and 12 males. The average

and median age of the subjects are respectively 21.35 and 21

years, while the minimum and maximum age are respectively

18 and 25 years.

B. Test Material

The six point clouds presented to the subjects during the

experiment were selected to be representative of content from

relevant use cases. The test models longdress [27] and mitch

were recruited from the MPEG repository and depict full-

body human figures. CITISUP and ipanemaCut were chosen

from the University of São Paulo dataset [28] to represent

large-scale outdoor scenes. Finally, wooden dragon and fruits

were chosen as two models of small objects. These last two

point clouds were generated using photogrammetry algorithms

taking as input multiple pictures of these objects from different

angles captured with a mobile device. The entire dataset can

be observed in Figure 1.

The original test models were distorted using two com-

pression strategies at four quality levels. In order to assess

a range of distortions representative of current compression

techniques, both a conventional standard and a recent learning-

based method were selected. The first employed codec was

the MPEG coding standard G-PCC [12] (Geometry-based

Point Cloud Compression). The geometry was compressed

using the octree module while the lifting algorithm was

used for color coding, using version 13 of the open source

implementation. The second compression method was selected

from [16], and the implementation released with the paper

was employed. Since this learning-based algorithm is only

capable of compressing geometric data, it was combined with

the lifting module of G-PCC in order to encode color attributes

as well. Both compression strategies are henceforth referred

to as octree lifting and slicing lifting.

Since both geometry coding modules can only encode

models with quantized geometric coordinates, all point clouds

were voxelized with bit depth 10 prior to compression. The

original and distorted point clouds were also translated to have

their centroid in line with the vertical axis that goes through

the origin. CITISUP and ipanemaCut were additionally rotated

to have the ground aligned with the horizontal plane. The

loot [27] model was additionally selected for the training phase

and compressed with three different levels using octree lifting.



TABLE I: Performance indexes computed over the entire dataset.

Fitting PLCC SROCC RMSE OR CE UE OE CD FR FD FT

Flat monitor experiment as ground truth

No fitting 0.963 0.909 0.424 0.574 90.7% 0% 9.3% 86.2% 0% 1.3% 12.5%
Linear 0.963 0.909 0.343 0.593 100% 0% 0% 87.0% 0% 2.4% 10.6%
Cubic 0.978 0.909 0.265 0.370 100% 0% 0% 88.1% 0% 2.9% 8.9%

Eye-Sensing Light Field experiment as ground truth

No fitting 0.963 0.909 0.424 0.5 90.7% 9.3% 0% 86.2% 0% 12.5% 1.3%
Linear 0.963 0.909 0.308 0.463 100% 0% 0% 87.0% 0% 10.6% 2.4%
Cubic 0.988 0.909 0.176 0.167 100% 0% 0% 93.4% 0% 3.1% 3.5%

C. Visualization Framework

The framework for the visualization and rating of the point

cloud models was created using Unity. A virtual scene was

created as an initially empty space where a large ground

plane with dark gray tonality was positioned and a camera

was placed above the plane, facing down with an angle of 20

degrees. Both the distorted and reference point clouds were

scaled by a 0.001 factor and placed with their bases touching

the ground plane, at the same distance from the observer

and with an equal gap from the center of the screen. As

an exception, CITIUSP and ipanemaCut were scaled by a

factor of 0.0013, and were placed higher above the ground,

in order to ensure better inspection. A floating text box would

indicate at all times the distorted and reference models. The

point clouds were rendered using the Pcx package 2, and each

point was rendered as a disk with constant size determined

individually for each reference and distorted point cloud in

order to result in a visually watertight object.

During the subjective inspection, the models were rotated

through 360° for 12 seconds around their vertical axis to

reveal the most relevant viewpoints to the subjects, similarly

to methods adopted in previous passive subjective studies for

point clouds [6]. Afterward, following the recommendation in

[25], the framework would move to the voting interface where

the subjects would rate the stimulus without the possibility of

further inspection. Thereby, all the subjects are exposed to all

stimuli for the same amount of time, having consequently an

identical experience. A similar protocol was adopted for the

naturalness evaluation section, with the single model being

displayed in the center of the screen.

IV. STATISTICAL ANALYSIS

The collected subjective scores were grouped into two

different experiments according to the visualization device.

The outlier detection algorithm from ITU-R recommenda-

tion BT.500 [26] was separately applied to each experiment,

in order to identify and exclude scores from subjects with

deviating behavior. The mean opinion scores (MOS) and

95% confidence intervals (CI) were subsequently computed,

assuming a t-Student distribution. The stimuli used for the

naturalness were also considered in the computation of the

MOS and CI. These values were then examined through two

different perspectives: first, the subjective opinions on each

2https://github.com/keijiro/Pcx
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Fig. 3: Scatter plots of MOS collected on the two visualization

devices and corresponding CI.

compression method were plotted against the bitrate in order

to assess the performance of both codecs; moreover, the scores

from different experiments were compared to each other in

order to evaluate the impact of the visualization device on the

subjective opinions.

In order to evaluate linearity, monotonicity, accuracy and

consistency, four performance indexes were computed between

the MOS from both experiments: the Pearson linear correlation

coefficient (PLCC), the Spearman rank order correlation co-

efficient (SROCC), the root-mean-square error (RMSE) and

the outlier ratio (OR). The correct estimation (CE), over-

estimation (OE) and under-estimation (UE) percentages were

also obtained according to [29] to evaluate the statistical equiv-

alence between MOS results. Moreover, the percentage of

correct decision (CD), false ranking (FR), false differentiation

(FD), and false tie (FT) was obtained for all pairs of distorted

stimuli following recommendation ITU-T J.149 [30]. Linear

and cubic fitting were employed, following Recommendation

ITU-T P.1401 [29], and scores from both experiments were

used as ground truth for the computation of all above metrics.

Finally, a multi-way ANOVA with repeated measures is

performed after excluding scores given to the reference point

clouds. For each stimulus and subject, the scores obtained

with both rendering devices are regarded as repeated measures.

The content, compression method and rate level are regarded

as independent categorical variables. The p-value for the

rendering device as an influencing factor is computed, as well

as the p-values corresponding to the interactions between the

rendering device and each of the independent variables.



V. RESULTS AND DISCUSSION

The MOS and CI values of each stimulus against corre-

sponding bitrates are portrayed in Figure 2. It is clear that,

regardless of the display, slicing lifting has in general better

performance than octree lifting, which is mainly observed at

low and mid-range bitrates. This difference is smaller for

MOS values at bitrates corresponding to transparent quality,

or for the CITIUSP point cloud model, where there is no clear

distinction between the performance of both codecs. Overall,

we can safely state that the learning-based codec outperforms

the G-PCC standard, endorsing the recent research trends

toward such techniques for compression applications.

Another observation regards the MOS values for the ELFD,

which are on average higher than for the flat monitor. For

some stimuli, the distance between the MOS values is so high

that there is no overlap between the confidence intervals. This

trend can also be observed in Figure 3, where scatter plots

are presented for the MOS and CI values using both the flat

monitor and the eye-sensing light field display experiments

as the ground truth, along with the corresponding linear and

cubic fitting curves. The plots underline the tendency of higher

scores for the ELFD experiment, mainly visible at mid-range

quality levels. One likely reason for this observed difference

is the size of the rendered content, which is much smaller

in the ELFD. The compression artifacts are thus harder to

discern, and the overall scores are higher. Another potential

factor influencing the overall scores might be the pixel density

expressed in Pixels-Per-Degree (PPD). However, since the

PPD value depends on the viewing distance and since the

subjects were free to adjust to their preferred position, the

influence of this factor cannot be accurately estimated and

further studies are required to bring insights on this regard.

The confidence interval is also found 6.5% higher for the

ELFD, indicating that the subjects were less in agreement

when rating stimuli on this device. This behavior can be

explained by the higher level of discomfort generated during

this experiment, as demonstrated by the results of the final

survey presented at the end of this section. Additionally, most

subjects had never previously experienced displays with spatial

rendering, and were therefore less familiar with this form of

visualization.

The performance indexes reported in Table I suggest that

the scores from the two experiments were highly correlated.

Even without fitting, the MOS values for around 90% of the

stimuli could be correctly estimated from either experiment,

while the remaining consisted in under-estimations by the

flat monitor experiment, confirming that the scores for these

stimuli were indeed higher with the ELFD. The increase

in the CD percentage with cubic fitting also suggests that

the relationship between the MOS from both experiments is

not linear, which is also supported by the scatter plots from

Figure 3.

The results for the ANOVA with repeated measures are

presented in Table III. The first p-value confirms that the

rendering device is a significant influencing factor on the

TABLE II: Average naturalness scores per content.

Display CITIUSP fruits ipanemaCut longdress mitch wooden dragon

Flat 3.61 4.35 3.65 4.04 4.39 4.52
±0.39 ±0.31 ±0.56 ±0.40 ±0.34 ±0.22

ELFD 4.13 4.61 4.13 4.17 4.13 4.65
±0.40 ±0.25 ±0.35 ±0.38 ±0.38 ±0.34

TABLE III: Results of the ANOVA with repeated measures.

Source DF F p

Display 1 140.48 <0.001
Content:Display 5 2.495 0.029

Compression method:Display 1 0.121 0.728
Rate level:Display 3 31.338 <0.001

Error 1094

scores, which was already suggested in Figures 2 and 3.

A significant interaction is also observed between rendering

device and rate level with low p-value, revealing differences

in the influence of the display on the scores between levels.

Although scores are higher for the ELFD at lower levels, and a

crossing between curves is often present between the third and

the fourth level, where the MOS is higher with the flat monitor.

Moreover, the average of the scores given to the reference

was higher in the flat monitor (4.93) than in the ELFD

(4.79), indicating that subjects could discriminate more clearly

in the flat monitor between point clouds where perceptible

distortion was present versus point clouds with transparent

quality. Finally, the ANOVA also reveals that the difference

between scores of both experiments varies according to the

content. The average MOS difference between experiments is

lowest for wooden dragon (0.12), this value being higher than

0.26 for all the remaining models. A possible explanation is

that the color values in this point cloud are more uniform, but

its geometric shape has more fine details and large interesting

features. In such case, the advanced depth perception made

possible in the ELFD might have compensated for the smaller

screen size to help subjects distinguish the added distortion.

However, further studies are needed to evaluate which types of

content are able to better take advantage of spatial rendering.

In order to evaluate the naturalness of the rendering for each

uncompressed point cloud, the average scores and confidence

intervals for the final rating questions are presented in Table II.

Due to the increased immersion level, the ELFD achieves

higher naturalness scores across the majority of the contents.

However, the confidence intervals for both rendering devices

overlap, indicating that this difference may not be considered

as significant in this context. Also, the point cloud contents

representing small objects are considered the most natural

in both displays, with wooden dragon reaching the highest

scores. Point cloud models representing humans received

intermediate naturalness scores, which can be explained by the

fact that subjects are more sensitive to rendering imperfections

on human features. The large-scale scenes are considered the

least natural, likely due to the missing points as a consequence

of occlusions during acquisition.

The final survey on the quality of experience underlined



that most subjects (60.9%) had a previous experience with

3D contents with rendered depth, mainly on passive 3D

monitors with glasses (92.9%) or VR devices (71.4%). The

survey also revealed that, while the general quality of the

experience was higher on the flat monitor, the immersion

level and the involvement in the experiment were higher on

the Sony’s Spatial Reality Display. Additionally, most of the

subjects felt encouraged in exploring different viewpoints on

the ELFD. Almost half of the subjects (43.5%) reported mild

discomfort on the Spatial Reality Display, being headaches,

eye strain, and blurred vision the most common symptoms.

This might explain the lower overall quality of experience on

the ELFD. Lastly, subjects did not express a clear preference

for a visualization device, as 30.4% preferred the flat monitor,

34.8% the Spatial Reality Display and another 34.8% declared

to prefer both. The complete results of the survey are made

available on the project’s repository.

VI. CONCLUSIONS

In this paper, we describe a point cloud subjective exper-

iment designed to investigate the impact of spatial rendering

on human perception when compared to a flat monitor, using

an eye-sensing light field display. The results indicate that

this novel visualization device allows for enhanced immersion

and naturalness, but decreases the discriminatory power of the

evaluation regarding compression artifacts, mainly due to its

reduced size. Although the scores from both experiments were

globally highly correlated, detailed analysis shows that they

are statistically different. This study suggests that there are

benefits to using spatial rendering in immersive applications,

although there are still drawbacks related to experienced

discomfort and reduced display size.
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