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Abstract— This short paper proposes a new database – NeRF-
QA – containing 48 videos synthesized with seven NeRF based 
methods, along with their perceived quality scores, resulting from 
subjective assessment tests; for the videos selection, both real and 
synthetic, 360 degrees scenes were considered. This database will 
allow to evaluate the suitability, to NeRF based synthesized 
views, of existing objective quality metrics and also the develop-
ment of new quality metrics, specific for this case.  
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I. INTRODUCTION 
Since 2020, Neural Radiance Fields (NeRF) methods have 
been proposed as a powerful technique for synthesizing novel 
views of a visual scene, from a set of input views [1,2]. Com-
pared to traditional Depth Image-Based Rendering (DIBR) 
algorithms [3,4], NeRF methods achieve a significant quality 
increase in novel view synthesis [1,4,5], by representing 3D 
scenes as a radiance field approximated by one or more Multi-
Layer Perceptron (MLP). The MLP’s is trained using, as in-
put, the spatial location and viewing direction coordinates of 
scene views, with the output being the color and opacity val-
ues corresponding to the input coordinates; thus, a continuous 
mapping between 3D points, along a given view direction, and 
their corresponding colors and opacity, is learned. By applying 
classic volume rendering to a trained NeRF, it is possible to 
project the output colors and opacities into a single image. 
With the development of NeRF methods, and seeking the 
rendering time reduction, neural-network-free methods have 
also been proposed, using direct optimizations of voxel grids 
features for scene representation [6,7]. 
      The use of NeRF methods creates new types of artifacts on 
the synthesized views, notably the so-called floaters  [8], be-
sides flickering object edges which are also common to DIBR-
based synthesis. In the NeRF related literature, five objective 
quality metrics have been typically used to evaluate the view 
synthesis results, namely PSNR, SSIM [9], MS-SSIM [10], 
LPIPS [11], and JOD [12]. However, the adequacy of these 
metrics to assess the fidelity and realism of the rendered views 
was not proven and, considering the floaters artifact, they may 
be not well suited for NeRF based synthesized images. 

Recently, the authors of [13] have conducted a subjective 
quality evaluation study for NeRF based view synthesis con-
sidering only real scenes with front-facing views, i.e. the train-
ing images were acquired on a uniform grid, covering  limited 
vertical and horizontal visual ranges. To the best of our 
knowledge, no subjective studies have assessed the quality of 
NeRF synthesized views for 360 degrees scenes – where the 

camera may rotate 360 degrees around a point, or move 
around an interest region – for real or synthetic scenes. 

This paper proposes a new database – NeRF-QA – con-
taining videos synthesized with seven NeRF based methods 
along with their perceived quality scores, resulting from a 
subjective test campaign; both real and synthetic 360 degrees 
scenes were considered. This database, available in [14], will 
allow to evaluate the suitability, to NeRF based synthesized 
views, of existing objective quality metrics and also the devel-
opment of new quality metrics, specific for this case.  

The remaining of this paper is organized as follows. In 
Section II, the framework used for views synthesis and their 
subjective quality assessment process, are described; a brief 
summary of the considered NeRF methods is also presented. 
Section III describes the video datasets used for the synthesis 
and the subjective test methodology. In Section IV the subjec-
tive test results are presented and analyzed, and main conclu-
sions are drawn.  

II. NERF CREATION AND VIEW SYNTHESIS & ASSESSMENT 
In this section, the designed framework for the NeRF method 
training, NeRF based views synthesis and respective subjec-
tive quality assessment, is presented; the selected NeRF meth-
ods are also summarily described. 

A. Framework  
Fig. 1 depicts the framework’s pipeline designed for real 

scenes; the required changes for synthetic scenes are described 
at the end of this section. As can be figured out, the frame-
work is composed by two main modules - train and test - cor-
responding, respectively, to the training of the NeRF method, 
and to the views’ synthesis and assessment. The training views 
(or “training frames” in Fig. 1) are extracted from a video 
representing a 360 degrees scene. A section of the input video 
is also extracted to be used as reference (“reference video” in 
Fig. 1) on the subjective assessment tests; the considered sec-
tion length is defined by the “test time interval”. The reference 
video frames are further subject to pose estimation, enabling 
the video synthesis at the resulting coordinates with the al-
ready trained NeRF model. The procedures involved in the 
framework are described in the following: 
• Video preprocessing: Consists of spatially downsampling 
and cropping the input video, using the FF-MPEG tools [15]. 
• Frames selection: Corresponds to the selection of frames 
from the preprocessed video according to: i) a set of n uni 
formly spaced frames are selected from the input video, for 
NeRF training purposes   and,  ii)  a  set  of   adjacent  frames  
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on a defined test time interval are extracted, to be used as 
reference video by the test module. 
• Pose estimation: This process utilizes the COLMAP algo-
rithm [7,8]  to estimate the poses of the selected frames. 
• NeRF training: Consists of an optimization procedure that 
aims to minimize a loss function between synthesized and 
reference images pixel values. A set of training images and the 
respective, pre-computed camera poses, are used for that pur-
pose, enabling the method parameters tuning by minimizing 
the difference between the synthesized pixel values and the 
corresponding ones for the reference training images.  
• View synthesis: This process involves querying to the 
trained NeRF method, for each pixel of the image being syn-
thesized, the 5D coordinates (3D spatial location and 2D di-
rection) of a set of sampling points along a camera ray (repre-
senting the scene intersection by that same pixel), about the 
respective color and opacity values. Finally, a classic volume 
rendering technique is applied to project the sampled points’ 
colors and opacities into a novel image, corresponding to the 
requested viewpoint. 
• Subjective assessment: The subjective quality assessment 
targets the perceptual quality evaluation of the synthesized 
views, by several human viewers. Several test methodologies 
are available, which are defined in international standards 
(mostly from ITU). This paper uses the Double Stimulus Con-
tinuous Quality Scale (DSCQS) method, defined in [18]. 

For synthetic scenes, the input scene is represented as a 3D 
model in Blender [19], which is used to render  the training 
frames and the reference video. Thus, the video preprocessing, 
the frames selection, and the pose estimation are not applied, 
given that all these processes are suppressed by the use of 
Blender. An additional procedure corresponding to the sub-
sampling of the training frames is added, seeking that the 
resulting synthesized views’ quality also cover the lowest 
qualities range. 

B. Selected NeRF Methods 
From the wide range of NeRF methods that have been pro-

posed in literature, a subset was selected according to their   
popularity in the related scientific community: 
• DVGO [7]: This method adopts a scene representation con-
sisting of a density voxel grid for scene geometry, and a fea-
ture voxel grid, with a shallow network, for complex view-
dependent appearance. It includes new techniques to increase 
the training convergence speed and the view synthesis quality, 
namely post-activation interpolation on voxel density, and 
several priors to increase the robustness of the optimization 
process. In this paper the last version of DVGO was used [20]. 

• Instant-NGP [21]: Compared to previously proposed 
NeRFs, this method achieves a significant speedup in training, 
by implementing neural graphics primitives with a small neu-
ral network, using a multiresolution hash table. 
• Mip-NeRF 360 [22]: This method addresses the high chal-
lenging rendering of the so-called “unbounded” 360 degrees 
scenes (corresponding to arbitrarily large scenes, and where 
objects may exist at any distance from the camera). To over-
come issues such as blurry renderings, the authors use a non-
linear scene parameterization, online distillation, and a distor-
tion-based regularizer. 
• NeRF++ [23]: Aiming to improve the view synthesis fideli-
ty for 360 degrees unbounded scenes, NeRF++ incorporates a 
novel hierarchical sampling scheme and a shape-prior regular-
izer. 
• Nerfacto [24]: This method was developed by the Nerfstu-
dio framework authors [24] by combining components from 
pre-existing methods – notably, the NeRF-- ray generation and 
sampling [25], the Mip-NeRF 360 scene contraction [22], the 
Instant-NGP hash encoding [21], and the NeRF-W appearance 
embedding [26] – seeking the best  trade-off between speed 
and quality. 
• Plenoxels [6]: This method proposes a view-dependent 
sparse voxel model that can achieve a  fidelity level similar to 
the one obtained with the seminal NeRF, work [1] without 
relying on neural networks. Plenoxels achieves this by using a 
sparse voxel grid that is optimized using a reconstruction loss 
relative to the training images, along with a total variation 
regularizer. 
• TensoRF [27]: This method models and reconstructs radi-
ance fields of a scene using a 4D tensor that represents a voxel 
grid with per-voxel multi-channel features. Unlike NeRF 
methods that purely use Multi-layer Perceptrons (MLPs), 
TensoRF factorizes the 4D scene tensor into multiple compact 
low-rank tensor components using traditional CAN-
DECOMP/PARAFAC decomposition. 
  The NeRF++, Nerfacto, and Mip-NeRF 360 methods were 
specifically designed and tested for real scenes datasets. The 
remaining methods did not have a specific type of scene target 
and were tested for both real and synthetic scenes. 

III. SUBJECTIVE ASSESSMENT STUDY 
This section describes the subjective test evaluation of  NeRF 
based synthesized videos. 

A. Experimental Setup 
The views synthesis and the subjective quality assessment 

of the resulting videos was conducted for eight videos taken 
from two popular datasets, namely Tanks and Temples [28] 
and Realistic Synthetic 360º [1], where the former resulted 
from real-world 360 degrees captures of large scenarios, and 
the latter was obtained with Blender [19]. The selected videos 
from Tanks and Temples were M60, playground, train, and 
truck. This dataset was used as processed in [23], where the 
number of training frames are equal to 277, 275, 258, and 226 
frames, respectively, having spatial resolutions of 1077×546, 
1008×548, 982×546, and 980×546 pixels. The scenes selected 
from Realistic Synthetic 360º were drums, ficus, lego, and 
ship, having all 100 training frames with spatial resolutions of 

X 
Fig. 1: Framework’s pipeline for real scenes. 
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800×800 pixels. It is worthy to note that drums and ship vide-
os are quite challenging, since they contain objects with non-
Lambertian and specular reflection effects. For the subjective 
test purpose, the spatial resolutions of the real scenes were 
uniformized with a downsampling to 960×540 pixels, fol-
lowed by a cropping to 928×522 pixels.  For generating the 
reference videos, the test time interval was set to 10 s for real 
scenes, and to 6 s for synthetic scenes. In every case, the ren-
dered camera poses do not coincide with the training poses. In 
particular, for the real scenes, the test time interval value was 
selected to an in between training frames interval. The NeRF 
methods selected for the real scenes were DVGO, Mip-NeRF 
360, Nerfacto, NeRF++; the last three methods have been 
specifically designed for the view synthesis of real scenes. For 
the synthetic scenes, the selected synthesis methods were 
DVGO, Instant-NGP, Plenoxels, and TensoRF, all being 
methods targeting the view synthesis of synthetic scenes. The 
selected datasets have already been used in published works, 
enabling the validation of the herein generated synthesized 
videos, by comparison of the obtained objective quality met-
rics values (using PSNR and SSIM) with the values reported 
on those works. Lastly, the synthetic scenes were also synthe-
sized for the case where a subsampling with a factor of 2 was 
applied to the training set, seeking synthesized video qualities 
covering the lowest qualities range. 

B. Subjective Assessment Methodology 
The DSCQS [18] was selected as the subjective assessment 

method. In this case, the subjective test participant is presented 
with two side-by-side videos displayed on a monitor, one of 
which is the reference video and the other is its synthesized 
version, generated by one of the selected NeRF methods. The 
participant is not aware of which of the videos is the reference 
and the synthesized video is being displayed at each side and 
may watch two repetitions of the videos. The users are asked 
to evaluate each video using two continuous sliders (one for 
each displayed video) with a scale between 0 and 100, but 
where five qualitative scores – Bad, Poor, Fair, Good, and 
Excellent – are the visible scale marks to help the participants 
decision. A total of 48 pairs of stimulus (32 synthesized syn-
thetic videos + 16 synthesized real videos, together with the 
respective original videos) were assessed, resulting in a test 
duration of approximately 30 minutes per participant. The test 
session objectives were briefly explained before, with a train-
ing session that preceded the main test. The subjective as-
sessment was performed using an ASUS ProArt PA32UC-K 
4K HDR monitor, with native resolution of 1920×1080 pixels. 
A total of 21 non-expert-viewers, aged between 16 and 61 
years, have participated in the subjective assessment. After the 
test, the resulting scores were processed according to [18] to 
obtain Differential Mean Opinion Score (DMOS) values for 
each synthesized video. To check for outliers, the Z-scores 
were also computed, resulting in one participant scores’ re-
moval. 

IV. RESULTS AND CONCLUSIONS 
Table I presents the performance of each NeRF based synthe-
sis method, concerning the training time (Tr. time), rendering 
time (Re. time), and model size (#Param). These results were  

TABLE I. NERF METHODS’ PERFORMANCES. 

X 
obtained on two NVIDIA GeForce RTX 4090 GPUs using the 
original methods’ configurations published with the respective 
codes. Fig. 2 depicts the resulting DMOS values for the 48 
synthesized videos contained in the NeRF-QA database 
(available in [14]), showing a full coverage of the visual quali-
ty that the higher the DMOS value, the lower the quality). Re- 
garding the real scenes, the “excellent” quality levels were 
never achieved, revealing a less accurate view synthesis in this 
case. As discussed in [22,23], this is due to the fact that large 
and detailed scenes require an higher neural network capacity, 
and ambiguity on the synthesized content distance is easier to 
occur because of the inherent complexity of reconstructing a 
large scene from a small set of images. 
 Fig. 3 depicts the DMOS values of each synthesized video, 
discriminated by the used synthesis method. From its analysis 
it is possible to conclude that, for real scenes synthesis, the 
NeRF methods that took longer training and rendering times 
(cf. Table I) – which are also the MLP-based methods – 
achieved the best scores, evidencing a trade-off between per-
formance and synthesis quality. 
 Finally, regarding the synthetic scenes, Fig. 3 reveals the 
existence of negative DMOS values, meaning that some syn-
thesized videos had, on average, better subjective evaluations 
than the reference video. In contrast to real scenes results, for 
synthetic scenes there is a significantly higher variation of the 
resulting DMOS values, depending on the analyzed scene. 

 
 
 

X 

Fig. 2.  DMOS values of the synthesized videos. 
X 

Fig. 3.  DMOS values of each synthesized video, discriminated by the used 
synthesis method.   

NeRF Method Tr. time Re. time #Param

DVGO (w/ syn. scenes) 2.0 mins 0.36 mins 4.1 M

DVGO (w/ real scenes) 7.7 mins 1.4 mins 4.1 M

Instant-NGP 4.9 mins 0.4 mins 12.6 M

Mip-NeRF 360 ~ 30 hours 23.7 mins 9.9 M

Nerfacto 7.2 mins 1.2 mins -

NeRF++ ~ 19 mins 22.6 mins 2.4 M

Plenoxels 3.5 mins 0.6 mins 10 M

TensoRF 4.0 mins 6.4 mins 27 M
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