
Test Suite Reduction Does Not Necessarily Require
Executing The Program Under Test*

Hermann Felbinger
Institute of Software Technology
Graz University of Technology

Graz, Austria
Email: felbinger@ist.tugraz.at

Franz Wotawa
Institute of Software Technology
Graz University of Technology

Graz, Austria
Email: wotawa@ist.tugraz.at

Mihai Nica
AVL List

Graz, Austria
Email: mihai.nica@avl.com

Abstract—Removing redundancies from test-suites is an im-
portant task of software testing in order to keep a test-suite as
small as possible, but not to harm the test-suite’s fault detection
capabilities. A straightforward algorithm for test-suite reduction
would select elements of the test-suite randomly and remove them
if and only if the reduced test-suite fulfills the same or similar
coverage or mutation score. Such algorithms rely on the execution
of the program and the repeated computation of coverage or
mutation score. In this paper, we present an alternative approach
that purely relies on a model learned from the original test-suite
without requiring the execution of the program under test. The
idea is to remove those tests that do not change the learned model.
In order to evaluate the approach we carried out an experimental
study showing that reductions of 60–99% are possible while still
keeping coverage and mutation score almost the same.

Index Terms—Machine learning; Software testing; Redun-
dancy; Coverage; Mutation Score;

I. INTRODUCTION

When systems and programs evolve over time, their cor-
responding test-suites become bigger and bigger causing a
growth of computation time needed to execute the test-suite.
In addition, over time some elements of the test-suite might
lead to a redundancy within the test-suite [1]. Eliminating
such a redundancy can be performed based on analyzing the
program and identifying test cases leading to execution traces
that are covered by execution traces of other tests (e.g., [2],
[3]). Alternatively, we are able to remove tests that do not
change the obtained coverage or mutation score value (e.g.,
[4], [5], [6], [7], [8], [9], [10]). All these reduction methods
have in common that they require the program under test to
be repeatedly executed. Depending on the computational com-
plexity and the underlying test-suite, such reduction can take a
longer time. Hence, leading to the question whether there are
faster approaches for redundancy elimination. Answering this
question with yes, requires to introduce such a method, which
does not rely on program execution or analysis for test-suite
reduction. One idea going in this direction would be to replace
the program with an appropriate model, which would require
additional effort if done manually (e.g., [11]). At this point we
bring in another idea. Every test-suite should at least partially
capture the behavior of the program under test in a sufficient

*This work was originally published at 2016 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C)

way. Hence, why not using the test-suite itself to obtain the
required model?
For model extraction we make use of available machine learn-
ing techniques. In this way, we are able to automate the whole
test-suite reduction approach and furthermore do not require
the program to be executed. The proposed test-suite reduction
approach now works as the following process: We obtain a
model from the original test-suite. Then we successively select
test cases from the test-suite, remove them, and learn again
a model from the reduced test-suite. In case the model of
the original test-suite and the new model are equivalent, the
reduced test-suite should have the same capabilities as the
original one and we again repeat this process. Otherwise,
the test case is added again to the current test-suite. The
process stops in case no test case can be removed without
changing the model. The most important question of course
is RQ1: Is the proposed test-suite reduction approach able to
reduce a test-suite without compromising coverage or mutation
score substantially? In order to answer this question we have
to evaluate the approach. For this purpose, we introduce an
instantiation of the approach that relies on decision trees as
models and decision tree inference as their corresponding ma-
chine learning technique where we use the C4.5 algorithm [12]
for inference. Of course there are many other machine learning
techniques that can be used. We selected decision trees because
of the underlying application domain of embedded systems
we had in mind. There the programs often implement state
machines using state transfer functions, which are more or
less represented using nested conditional statements.

We further on present the test-suite reduction algorithm and
provide results from the empirical evaluation of the algorithm
also in comparison with traditional test-suite reduction based
on coverage and mutation score. The empirical evaluation is
based on 7 example programs. These examples and examples
of similar size (size in lines of code) were already used to
evaluate model learning, test-suite reduction, and test case
generation approaches (e.g., [13], [14], [15], [16], [17]).
The obtained results of our model learning based reduction
approach are very promising, showing substantial reductions
and almost no decline of coverage and mutation score. E.g.
in [18] the authors also reduced the TCAS test-suite and
obtained average reductions of 76.87% and 86.88%. But they

Fig. 1. Decision tree inferred from
all test cases in Table I and from a
subset containing only three of these
test cases.

Fig. 2. Decision tree inferred from
2 of 4 test cases in Table I excluding
test case #3 and #4.

also reported a huge decline of the mutation score of 55.1%
and 63.95%. As shown in Section IV, we obtain for the TCAS
test-suite a reduction of up to 70.87% with a max. mutation
score decline of 7.32%. Compared with traditional test-suite
reduction, we are able to compute the reduced test-suites in a
fraction of time which is shown empirically to answer RQ2:
Is our model learning based test-suite reduction approach
more efficient regarding size and execution time than a
coverage and mutation score based reduction approach?

In Example 1 we provide an introductory example of a
simple test-suite TS containing 4 test cases, and show different
decision trees inferred from TS and subsets of TS.

Example 1 (Introductory example): Table I represents an
example test-suite for the Boolean expression (x > 0)∨ (y >
0). A decision tree inferred from this test-suite is shown in
Figure 1. The decision tree inferred from the test-suite in Table
I excluding the test case with index #4 is the same decision
tree as inferred from all existing test cases. The test-suite used
to infer the decision tree from Figure 2 was the test-suite from
Table I excluding the test cases with indexes #3 and #4.

TABLE I
TEST-SUITE FOR A BOOLEAN EXPRESSION WITH TWO INPUT VARIABLES x

AND y OF TYPE INTEGER, BOOLEAN OUTPUT, AND # AS INDEX OF THE
TEST CASES.

x y out
1 0 0 F
2 1 0 T
3 0 1 T
4 1 1 T

The paper is organized as follows: We first discuss some
preliminaries. Afterwards, we introduce the test-suite reduction
algorithm. In the experimental results section we report the
underlying setting of the empirical study and the obtained
results. Finally, we discuss related research and conclude the
paper.

II. BASIC DEFINITIONS

In our approach we reduce test-suites TS, containing test
cases, to subsets of these test cases. We consider a test case
to be either a test vector tc of k input values and an expected
output value, e.g., tc = (in1, .., ink, out) or a sequence ts
of n test vectors, e.g., ts = 〈tc1, .., tcn〉. A test case can

either fail or pass. A test case passes if the expected outcomes
from the vectors are equivalent to the outputs of the program
under test after it was executed with the input values from the
test vectors, otherwise it fails. The input types can be either
discrete or numeric. Outputs are discrete. From such a test-
suite we infer a decision tree.
In this work we provide a new test-suite reduction approach
where we define reduction as follows:

Definition 1 (Reduction): Given a test-suite TS and a
reduced test-suite RTS ⊆ TS, reduction is the difference in
size of the two test-suites, given in %, and calculated as:

Reduction = (|TS|−|RTS|
|TS| 100).

A. Decision tree inference

In our work we utilize the widely used C4.5 algorithm
[12] to infer a decision tree (V,E) from a test-suite TS. A
decision tree is a tree (V,E) having nodes V and edges E
between nodes with the usual restrictions applying to trees.
The tree has decision nodes, and leaf nodes. Each decision
node represents a decision (i.e. a relational equation), e.g.,
x > 0 for numeric inputs or x equals ”open” for discrete
inputs. A leaf node represents a classification, which is one
of the discrete output values. E.g., the decision tree shown in
Figure 1 has two decision nodes x > 0 and y > 0, and three
leaf nodes F, T, T . The root node of the tree is a decision
node having only outgoing edges.

B. Coverage

In this work we assess code coverage by measuring the
degree to which test cases exercise the source code of the
program. There exist several different metrics to assess code
coverage [19], from which we use the following in this work:
• Statement Coverage: To reach full statement coverage,

each statement of the program code has to be executed
at least once.

• Decision Coverage: To reach that 100% decision cover-
age a test-suite has to be provided s.t. each decision has
a true and a false outcome at least once. In other words,
each branch direction must be traversed at least once.

• MC/DC Coverage: To achieve 100% modified con-
dition/decision coverage (MC/DC) requires a test-suite
where each condition within a decision is shown by exe-
cution to independently and correctly affect the outcome
of the decision [20].

C. Mutation score

The mutation score is the result of mutation testing. Mu-
tation testing [21] is a fault-based testing technique where
modifications of the SUT lead to faulty versions of the SUT.
These faulty versions are called mutants. A mutant is said to
be a killed mutant, if a test-suite can distinguish the mutant
from the original program. Mutation score is defined as:

Definition 2 (Mutation score): Mutation score µ is the pro-
portion between killed mutants r and the number of existing
mutants s.

In this work we used mutants for Java source code from
the categories Operator Replacement Binary an Literal Value
Replacement, which are described in detail in [22].

III. TEST-SUITE REDUCTION APPROACH

Our reduction approach is based on changes in the test-suite
that do not cause changes in the learned model. After each
reduction we learn a new model from the reduced test-suite.
Whenever a reduction causes a change in the learned model,
in comparison to the model we had before the reduction, we
detect the change. In order to detect these changes, we have
to provide a notion of equivalence for the learned models,
i.e., the decision trees. In this work, we define two methods
to check for equivalence, where one model is learned from
the reduced test-suite RTS, and the other, learned from the
original test-suite TS, serves as reference model. The first
method determines syntactic equivalence of two models and
the second method is based on a misclassification rate.

For simplicity, we assume a function ρ: DT → V with the
universe of decision trees DT under consideration as input
domain that returns the root node of a decision tree. E.g.
the root node of the decision tree shown in Figure 1 is the
decision node x > 0. We assume a function λ: V → D ∪ C
with the union of the set of decisions D and the set of
classifications C as range that returns the content of a node.
The content of a node is either a decision for decision nodes,
or a classification for leaf nodes. E.g., the union of D ∪ C for
the decision tree in Figure 1 is {x > 0, y > 0} ∪ {F, T, T}.
Because we infer binary decision trees the answer of a
decision, e.g., whether x > 0 or not, is represented by a
label of an outgoing edge from the decision node that can
be accessed via the γ: E → {True,False} function. E.g. the
outgoing edges of the root node from the decision tree in
Figure 1 are labeled with T and F (short for True and False).

A. Syntactic Equivalence

Two decision trees are syntactically equivalent if and only
if each node in a decision tree has a corresponding node in the
other decision tree, representing the identical content and each
edge in the decision tree has a corresponding edge in the other
decision tree with the same label and connecting the same pair
of nodes. This form of equivalence can be represented using
a function EQUAL: V × V → {True,False}, which we define
recursively as follows: Given two decision trees (V1, E1) ∈ DT
and (V2, E2) ∈ DT, and nodes n1,m1 ∈ V1 and n2,m2 ∈ V2,
EQUAL returns True, if and only if:

1) λ(n1) = λ(n2) (The content of the corresponding nodes
has to be equivalent)

2) |{(n1,m1)|m1 is a direct successor of n1}| =
|{(n2,m2)|m2 is a direct successor of n2}| (The number
of outgoing edges has to be equivalent)

3) ∀(n1,m1)∃(n2,m2)[m1 is a direct successor of n1∧m2

is a direct successor of n2 ∧ γ(n1,m1) = γ(n2,m2) ∧

EQUAL(m1,m2)] (The corresponding outgoing edges
and the sub-decision trees have to be equivalent)

Otherwise, EQUAL returns False. Using this function, we
define syntactic equivalence of two decision trees as follows:

Definition 3 (Syntactic equivalence): Given two deci-
sion trees (V1, E1) and (V2, E2), these decision trees
are syntactically equivalent if and only if the function
EQUAL(ρ(V1, E1), ρ(V2, E2)) returns True.

B. Equivalence Based on a Misclassification Rate

Two decision trees, a reference decision tree (V1, E1)
inferred from a test-suite TS, and a decision tree (V2, E2)
inferred from a test-suite RTS are equivalent regarding their
misclassification rate, if the following two conditions hold:
First, the misclassification rate of (V2, E2), when evaluating
TS (therefore the reduced test cases serve as test data for
the machine learning algorithm), is less than or equal to the
misclassification rate of (V1, E1). Second, for all distinct clas-
sifications which exist in (V1, E1) an equivalent classification
exists in (V2, E2). The misclassification rate is defined as:

Definition 4 (Misclassification rate): The misclassification
rate MR of a decision tree (V,E) is the ratio of the number
of incorrectly classified test cases TF ⊆ TS to the number of
all classified test cases TS.

MR(V,E) =
|TF|
|TS|

(1)

In the remainder of this work equivalence based on the
misclassification rate is named semantic equivalence. Thus we
define semantic equivalence as follows:

Definition 5 (Semantic equivalence): A decision tree
(V2, E2) is semantically equivalent to a reference decision
tree (V1, E1) when classifying a test-suite TS, if the following
equation holds:

MR(V2, E2) ≤ MR(V1, E1) ∧
∀v∃w[v ∈ Classifications(V1, E1)∧
w ∈ Classifications(V2, E2) ∧ v = w]

The algorithm REDUCE for reducing a test-suite without
executing the program under test is shown in Figure 3. As a
result the algorithm yields a reduced test-suite RTS. REDUCE
requires three inputs, i.e., a test-suite TS, an integer number
iterations > 0, and an integer number retries > 0. TS is a test-
suite containing all initially given test cases, iterations declares
how often the function REDUCE is restarted, and retries is the
maximum number of attempts, where a test case is removed
from TS randomly, until a decision tree is inferred, which is
equivalent to the decision tree inferred from TS. The decision
trees are inferred in function inferDecisionTree(TS) us-
ing the C4.5 algorithm as explained in Section II. Equivalence
of the models in REDUCE is checked either syntactically or se-
mantically (set by configuration) as explained in Sections III-A
and III-B. During execution the function REDUCE finds a
subset tRTS of test cases from TS for each iteration. After
each iteration of REDUCE, the size of tRTS is compared to
the size of RTS. If the size of tRTS is smaller than the size of

1: function REDUCE(TS, iterations, retries)
2: RTS = TS
3: DT = inferDecisionTree(TS)
4: for i = 0; i < iterations; i++ do
5: tRTS = TS
6: while true do
7: found = False
8: for j = 0; j < retries; j++ do
9: t = getRandomTestCase(RTS)

10: tRTS = tRTS\t
11: DT2 = inferDecisionTree(tRTS)
12: if DT equals DT2 then
13: found = True
14: break
15: else
16: tRTS = tRTS ∪ t
17: end if
18: end for
19: if !found then
20: break
21: end if
22: end while
23: if |tRTS| < |RTS| then
24: RTS = tRTS
25: end if
26: end for
27: return RTS
28: end function

Fig. 3. Function to reduce a test suite TS.

RTS, tRTS is assigned to RTS. This ensures that the algorithm
returns the smallest reduced test-suite which was found, but
REDUCE does not guarantee to find a reduced test-suite.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this Section we provide experimental results to answer
the research questions posed in Section I.

A. Example Programs

We evaluated our approach on seven different example
programs which are:

1) TCAS1: An aircraft collision avoidance system for
which a test-suite and mutants exist.

2) BMI: Categorizes the body mass index [13].
3) Triangle: A function that determines either one of the

triangle types: equilateral, scalene, or isosceles, for valid
inputs, otherwise it returns: no triangle [23].

4) POP3: An implementation of the state machine in [17].
5) Car Alarm System (CAS): An implementation of the

state machine in [16].
6) Guava UTF82 (UTF8): A function in Google’s Guava

library which checks if an input sequence of bytes is a
well formed UTF8 encoded input.

1http://sir.unl.edu/portal/bios/tcas.php
2https://github.com/google/guava

TABLE II
ATTRIBUTES OF THE EXAMPLE PROGRAMS.

Name SLOC classifications |TS| s
TCAS 100 3 1,545 41
BMI 19 5 1,000 28
Triangle 30 4 1,000 35
POP3 122 10 1,000 167
CAS 110 5 1,000 167
UTF8 56 2 1,000 147
CC 261 4 1,000 363

7) Cruise Control3 (CC): Simulates a car and its cruising
controller.

The attributes source lines of code (SLOC), number of
distinct discrete output values (classifications), size of the
test-suite TS (|TS|), and number of mutants (s) for the seven
examples are given in Table II. The size of a test-suite is the
number of test cases it contains.

B. Reductions With Proposed Equivalence Check Methods

The test-suites of the seven example programs were reduced
with a Java implementation of REDUCE. This reduction was
executed using four different configurations for decision tree
inference and the equivalence check. Two configurations uti-
lized syntactical equivalence with first requiring the inference
to classify a minimum of one test case per leaf node (min
1) and second a minimum of two test cases per leaf node
(min 2). The other two configurations were also first with a
minimum of one test case per leaf node and second with two
test cases, but with semantic equivalence. We used the values
L = {1, 3, 5, 7, 9} for iterations and M = {10, 20, 30, 40, 50}
for retries where the values for retries are values in % relative
to |TS|, e.g., if |TS| = 1000 and r ∈ M = 10% then
retries = |TS|∗r

100 = 100. Each of the four configurations was
executed once with each of the 25 value pairs in L×M .

The first results were obtained by executing REDUCE for TS
of the TCAS example. The results for Redcution are shown
in Figure 4. These results show that Reduction > 60% is
possible for each of the four different configurations. For the
other examples we obtained similar results regarding the effect
of the four different configurations, but with different results
for Reduction.

An overview of the results for Reduction from the seven
examples is given in Table IV. Table IV shows the min.,
max., and avg. value of Reduction for each example, which
were obtained by the 100 executions of REDUCE (4 configu-
rations * 25 value pairs for iterations and retries).

C. Test-Suite Reduction Results Using Syntactic Equivalence

In this section, to obtain a reduced test-suite RTS we
executed REDUCE with different value pairs for iterations and
retries, and syntactic equivalence. After some initial experi-
ments we used the values L = {1, 2, 3, 4, 5} for iterations and
as in Section IV-B with M = {10, 20, 30, 40, 50} for retries

3http://sir.unl.edu/portal/bios/Cruise\%20Control.php

40

45

50

55

60

65

70

75

1 iteration/10% of
testsuite size as retries

1/20%

1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%

9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Fig. 4. Reduction of TS for the TCAS example for four different configu-
rations and 25 executions of REDUCE for each configuration.

TABLE III
Reductions WITH PROPOSED EQUIVALENCE CHECK METHODS.

Reduction (%)
Name min. max. avg.
TCAS 45.11 70.87 62.49
BMI 75.10 82.20 80.08
Triangle 34.00 74.40 58.79
POP3 95.60 97.50 96.74
CAS 98.80 99.70 99.44
UTF8 75.80 91.10 88.27
CC 99.10 99.80 99.58

which are values in % relative to |TS|. We executed each pair
in L×M (e.g., iterations=1, retries=10% of |TS|) 25 times.

Figure 5 shows the results for Reduction of the TCAS
example. These reductions cut the original test-suite by around
60%. The box plots in Figure 5 are grouped by the five
different values for iterations. These results show that for an
increasing number of iterations the rectangles and whiskers in
the plot become narrower and the median reduction value only
slightly rises for an increasing number of retries. An example

TABLE IV
Reductions WITH PROPOSED EQUIVALENCE CHECK METHODS.

Reduction (%)
syntactic semantic

Name min. max. avg. min. max. avg.
TCAS 52.56 69.39 62.43 45.11 70.87 62.54
BMI 75.10 82.00 79.95 77.20 82.20 80.20
Triangle 34.00 74.40 58.62 34.70 74.20 58.96
POP3 95.90 97.50 96.77 95.60 97.40 96.72
CAS 98.80 99.70 99.42 98.90 99.70 99.46
UTF8 75.80 91.10 88.23 83.70 91.10 88.32
CC 99.20 99.80 99.61 99.10 99.80 99.54

min. 1 per leaf node min. 2 per leaf node
Name min. max. avg. min. max. avg.
TCAS 45.11 64.01 58.54 57.93 70.87 66.43
BMI 75.10 80.80 79.08 79.70 82.20 81.07
Triangle 34.00 74.40 59.56 38.20 73.20 58.02
POP3 96.30 97.50 97.15 95.60 96.80 96.33
CAS 99.30 99.70 99.58 98.80 99.50 99.30
UTF8 75.80 90.30 87.54 83.70 91.10 89.00
CC 99.10 99.80 99.57 99.30 99.80 99.59

45

50

55

60

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

45

50

55

60

1 2 3 4 5

number of iterations

Fig. 5. Reduction results for the TCAS example.

test vector tc1 ∈ TS for the TCAS example is the vector tc1 =
(958, 1, 1, 2597, 574, 4253, 0, 399, 400, 0, 0, 1, unresolved)
with the last value (unresolved) as expected outcome
and the remaining values as inputs. An example test
vector tc2 ∈ TS for the Triangle example from which the
decision trees during execution of REDUCE are inferred
is the vector tc2 = (64, 64, 64, equilateral) with the
last value (equilateral) as expected outcome and the
remaining values as inputs. An example test vector tc3 ∈ TS
for the BMI example from which the decision trees
during execution of REDUCE are inferred is the vector
tc3 = (1.717075, 183.332056, veryobese) with the last value
(veryobese) as expected outcome.

An example test vector tc4 ∈ TS for the UTF8 example
from which the decision trees during execution of REDUCE
are inferred, is the vector tc4 = (0, ?, ?, ?, T rue) with the last
value (True) as expected outcome and the remaining values
as inputs. An input for the UTF8 example consists of up to
four bytes. In tc4 the input has a length of only one byte but,
as the expected outcome indicates, is a valid UTF8 sequence.
Decision tree inference can be used even when some input
values have unknown values which are given as ? in tc4. It
is common to estimate missing input values for decision tree
inference. For estimation either the value that is most common
among the test vectors in TS for the input variable is used, or
probabilities are estimated based on the observed frequencies
of the various values for the input variable from which a value
is derived.

For the POP3 example a test case is a sequence ts =
〈tc1, .., tcn〉 of n test vectors. As input for decision tree
inference we use the test vectors tc1, .., tcn from all ts ∈ TS.
An example test vector tc5 ∈ ts for the POP3 example,

from which the decision trees during execution of REDUCE
are inferred, is the vector tc5 = (USER(0),off, 1, passr),
where the first value is the input value, the second value is
the expected outcome after executing the last test vector from
the current test case ts, the third value is a label representing
the current state of the program under test, and the fourth value
is the expected outcome after executing tc5. The decision trees
are inferred from the test vectors of all remaining test cases
ts ∈ RTS, but REDUCE removes entire test cases.

For the CAS example a test case is a sequence
ts = 〈tc1, .., tcn〉 of n test vectors. An example test vector
tc6 ∈ ts, used as input for decision tree inference, is tc6 =
(opendoor, armed, PCAlarm, activated flash alarm).
The properties of the values in the test vectors are the same
as explained for the POP3 example.

For the CC example a test case is a sequence ts =
〈tc1, .., tcn〉 of n test vectors. As input for decision tree
inference we use the test vectors tc1, .., tcn from all ts ∈ TS.
An example test vector tc7 ∈ ts for the CC example, from
which the decision trees during execution of REDUCE are
inferred, is the vector tc7 = (accelerator, true, 0, 1), where
the first value is the input value, the second value is true,
if the speed of the car is the equivalent to the speed after
executing the last test vector from the current test case ts.
The third value is represents the current state of the speed
control, and the fourth value is the current state of the Cruise
Control. The trend of the Reduction results with increasing
values for iterations and retries is for all examples similar as
shown in Figure 5 for the TCAS example.

D. Evaluation

To evaluate our results we created an adapted version of
REDUCE, namely CMREDUCE, where we used coverage and
mutation score for the equivalence check. CMREDUCE uses
the tool CodeCover and the mutants as listed in Table II and
returns the two values MC/DC coverage4 and mutation score
for the provided test-suite. Coverage and mutation score of a
test-suite are equivalent to coverage and mutation score of a
different test-suite if both values are equivalent.

Table V shows the differences of Reduction from using
REDUCE to using CMREDUCE. The execution time to obtain
the results for Reduction is given in Table VI. The values
in Tables V and VI are the min., max., and avg. values
of the results obtained in Section IV-C and the results of
executing CMREDUCE with iterations = 1 and retries = 10%
of |TS|. The results in Table VI show that REDUCE is multiple
times faster than CMREDUCE. Further the results in Table V
show that the results of Reduction differ by up to 76% for
test-suites, where a test case is a single vector, but for test-
suites where a test case is a sequence of vectors the maximum
difference is only 3%. Knowing these initial results we answer
RQ2 as follows: The model learning based test-suite reduction

4The applied tool to measure coverage, namely CodeCover, implements the
Ludewig term coverage, which subsumes MC/DC for Boolean short circuit
semantics.

TABLE V
MODEL LEARNING BASED Reduction RESULTS (ML BASED) VS

COVERAGE+MUTATION SCORE BASED Reduction (CM) RESULTS.

Reduction (%)
ml based cm

Name min. max. avg.
TCAS 41.75 63.50 58.54 98.9
BMI 69.80 80.60 79.10 99.5
Triangle 22.40 80.00 59.19 99.3
POP3 96.40 97.70 97.17 99.4
CAS 99.10 99.70 99.57 99.6
UTF8 73.30 91.10 87.66 94.4
CC 98.00 99.80 99.50 99.5

TABLE VI
REDUCTION TIME TO OBTAIN Reduction RESULTS WITH MODEL

LEARNING BASED (ML BASED) AND COVERAGE+MUTATION SCORE BASED
(CM) METHODS.

reduction time (sec)
ml based cm

Name min. max. avg.
TCAS 21.2 654.0 212.6 3692
BMI 5.2 81.9 28.5 1856
Triangle 9.7 206.8 69.9 1916
POP3 5.1 58.1 24.0 5708
CAS 7.0 81.1 35.0 188,925
UTF8 2.7 28.9 11.3 2809
CC 6.4 53.5 20.5 34,221

approach is not more efficient regarding size than the cov-
erage and mutation score based reduction approach, but for
some examples the results are almost equivalent. Regarding
execution time the model learning based reduction approach
is multiple times faster. That is because for our approach it is
not necessary to execute the program under test.

We further evaluated our results of Reduction against a
random reduction. For this random reduction we took the avg.
Reduction of our results from Section IV-C and cut this size
from the original test-suite TS of each example by randomly
selected test cases. To get a representative result we executed
this random reductions 25 times. These evaluation results
are shown in Table VII. Table VII shows the min., max.,
and avg. values for statement coverage, decision coverage,
MC/DC coverage, and mutation score (µ) for the test-suites
RTSr and the test-suites RTSml. We obtained RTSr by random
reduction and gained RTSml in Section IV-C (ml based).
The results in Table VII show that for the TCAS example
the coverage results are not different for RTSr and RTSml.
A difference of the mutation score for the TCAS example is
shown where the mutation score for RTSml is higher. For the
Triangle example and the BMI example coverage and mutation
score of RTSr and RTSml are equivalent to the coverage and
mutation score of TS. Mutation score of the POP3 example is
for both, RTSr and RTSml, equivalent to the mutation score
of TS. There are almost no differences of statement coverage,
decision coverage, and MC/DC coverage for RTSml to these
values of TS. For RTSr the coverage results are considerably
lower. The CAS example shows clearly that coverage and
mutation score of RTSml are higher than for RTSr. The UTF8

example provides higher values for statement coverage for
RTSr than for RTSml. Decision coverage, MC/DC coverage,
and mutation score are higher for RTSml. The CC example
shows that coverage and mutation score of RTSml are higher
than for RTSr. Knowing these results we can answer RQ1
partially. Our model learning based reduction approach does
not compromise coverage and mutation score as severely as a
random reduction. For examples where coverage and mutation
score of the initial test-suite are at maximum or close to
maximum, coverage and mutation score for the test-suites
reduced by our approach, are close to coverage and mutation
score of the initial test-suite. Since the results are consistently
better for our model learning based approach than a random
reduction, our approach might be used to reduce a test-suite.

The selected examples in this work are used to investigate
whether model learning based test-suite reduction is possible
in principle. Hence additional examples with more lines of
code will be investigated in future work to underpin the
approach. Since the structure (control flow, data flow, lines
of code, etc.) of the program under test affects the approach,
with more examples a possible classification can be created,
where we can derive from the structure of the program under
test whether the reduction approach is applicable.
In this work only two of the numerous existing methods to
check whether two decision trees are equivalent were applied.
Because the results are promising using these equivalence
methods, additional methods will be investigated in future
work. The test-suites were generated randomly for various
examples. Therefore of course, as for all test-suite reduction
approaches, the question, whether a test-suite which is already
of minimal size for a certain test purpose, is recognized as such
from the reduction approach or not, arises.

V. RELATED RESEARCH

Harrold et al. [6] developed a test-suite reduction technique
based on a heuristic that selects a representative test-suite
from the original test-suite by approximating the optimal
reduced set. A representative test-suite is a potential subset
of test cases from the original test-suite, which provides
the same coverage. Their approach requires an association
between a testing requirement and test cases, which satisfy
the requirement. Since selecting a subset of test cases from
the original test-suite that satisfies all testing requirements with
minimal cardinality is known as the NP-complete problem of
finding the minimum cardinality hitting set, they introduce a
heuristic to approximate the minimum cardinality. They also
detect redundant test cases with this approach as we do in our
work, but in addition they remove obsolete test cases from a
test-suite if a test requirement does not exist anymore. Lin and
Huang [18] introduce a test-suite reduction technique called
reduction with tie-breaking (RTB). In their paper they show
the integration of their technique into two existing test-suite
reduction techniques, which are the technique introduced in
[6] and the technique introduced in [24]. As an extension they
use, additionally to a primary coverage criterion for the test
requirements, a second coverage criterion to avoid elimination

of a test case, which is more likely to detect faults when more
than one test case has the same importance with respect to
the primary coverage criterion in both cases. In their work
they provide very interesting results, which can be directly
compared to the results in our work as explained in detail in
Section I. Taylor et al. [25] present a multi-objective search-
based technique using behavior inference as fitness metric,
to reduce a test-suite. Behavior inference is a test adequacy
metric first suggested in 1983 [26]. Taylor et al. infer finite
state machines (FSM)s as models from execution traces of
a test-suite. They compare the FSM inferred from execution
traces of a reduced test-suite to the FSM inferred from
execution traces of the original test-suite, and thus compare
the behavior coverage of test sets that produce them. Their
results show that as long as the FSMs are equivalent, assessed
by a Balanced Classification Rate, the reduced test-suite retains
the fault finding capability of the original test-suite. The
authors demonstrate that the reduced test-suite retains all of
the fault finding capability of the original test-suite by using
mutation testing, which also holds for our approach. In [17]
the authors provide an empirical evaluation of the correlation
between mutation score and a model inference based test-suite
adequacy assessment method. Briand et al. [15] describe a test-
suite refinement approach that relies on the black box testing
technique Category Partition and machine learning. They use
categories and choices to define the functional properties of
a program under test where categories are associated with
choices. E.g. a category representing an inequality relation has
two choices of an inequality relation which are either greater
than or less than. Based on these categories they transform test
cases into abstract test cases. These abstractions are tuples
of choices and an expected output value or an equivalence
class of expected output values. Like in our work, they use
the C4.5 algorithm to learn a decision tree in [15]. But in
contrast to our work where we learn a decision tree from
the raw values in a test-suite, they learn decision trees from
the abstractions obtained by category partitioning. Because
scientific work in test-suite reduction has been done since
decades, a tremendous amount of related publications exist.
However, detailed overviews of test-suite reduction literature
can be found in [27] and [28].

VI. CONCLUSION

In this paper we introduced an algorithm for test-suite
reduction, which is based on model learning. The underlying
idea is, any test case that is not relevant for learning a model
from a test-suite can be removed. In our implementation we
utilized a decision tree inference algorithm for model learning
and introduced two different notions of model equivalence. We
did an empirical evaluation that is based on seven example
programs and their test-suites to answer the two research
questions posed in Section I. The answer for RQ1 is that
coverage and mutation score for the test-suites reduced by
our approach are close to coverage and mutation score of
the original test-suite. Coverage and mutation score for the
randomly reduced test-suites show much higher differences.

TABLE VII
RESULTS OF RANDOM REDUCED USING SAME REDUCTION SIZE AS OBTAINED BY MODEL LEARNING BASED REDUCTION VS MODEL LEARNING BASED

(ML BASED) REDUCTION.

statement - RTSr (%) statement - RTSml (%) decision - RTSr (%) decision - RTSml (%)
Name min. max. avg. min. max. avg. min. max. avg. min. max. avg.
TCAS 97.22 97.22 97.22 97.22 97.22 97.22 91.67 91.67 91.67 91.67 91.67 91.67
BMI 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Triangle 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
POP3 84.78 100.00 93.13 97.80 100.00 99.99 90.38 100.00 94.77 98.08 100.00 99.99
CAS 62.30 95.08 77.77 93.44 96.72 96.69 42.86 83.33 64.19 80.95 85.71 85.67
UTF8 92.85 100.00 99.14 85.7 100.00 96.71 90.00 100.00 96.20 90.00 100.00 97.70
CC 70.00 82.00 78.08 62.00 86.00 79.53 59.38 78.13 72.00 50.00 84.38 74.22

MC/DC - RTSr (%) MC/DC - RTSml (%) µ - RTSr ([0..1]) µ - RTSml ([0..1])
Name min. max. avg. min. max. avg. min. max. avg. min. max. avg.
TCAS 85 85 85 85 85 85 0.85 1.00 0.96 0.93 1.00 0.97
BMI 100.00 100.00 100.00 100.00 100.00 100.00 1.00 1.00 1.00 1.00 1.00 1.00
Triangle 100.00 100.00 100.00 100.00 100.00 100.00 1.00 1.00 1.00 1.00 1.00 1.00
POP3 94.05 100.00 96.76 98.80 100.00 99.99 1.00 1.00 1.00 1.00 1.00 1.00
CAS 39.77 62.50 51.05 65.91 68.18 68.16 0.13 0.43 0.27 0.41 0.46 0.44
UTF8 72.50 97.50 86.10 85.00 100.00 93.64 0.52 0.90 0.75 0.80 0.99 0.90
CC 62.50 81.25 75.13 50.00 87.50 77.33 0.18 0.35 0.30 0.25 0.38 0.33

For RQ2 the answer is that our model learning based reduction
approach is multiple times faster, but not as efficient in size
as a traditional approach depending on the content of a test
case and the types of the inputs.

In future work, we will extend out empirical evaluation
considering more examples from the application domain, i.e.,
automotive control software. Here the open research question
is whether the program’s structure, e.g., the existence of loops
or recursive functions, or the use of certain expressions in
the code, impacts the reduction results when using a specific
machine learning algorithm. Another idea in a similar direction
is the use of machine learning to obtain a measure for the
quality of different test-suites. Here, we want to compare
models obtained from the test-suite with the program itself.
In case of a large similarity, we are able to conclude that the
test-suite captures the program’s behavior sufficiently.

ACKNOWLEDGMENT

The project has received funding from the ECSEL Joint
Undertaking under grant agreement No. 662192 (3Ccar). This
Joint Undertaking receives support from the European Unions
Horizon 2020 research and innovation programme and the
ECSEL member states.

REFERENCES

[1] I. Pill, S. Jehan, F. Wotawa, and M. Nica, “Analyzing the reduction
of test suite redundancy,” in 2015 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2015, pp. 65–
65.

[2] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 2, pp. 173–210, 1997.

[3] G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,”
in Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering. Springer-Verlag, 2007, pp. 291–
305.

[4] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization
of a test suite,” Information Processessing Letters, vol. 60, no. 3, pp.
135–141, 1996.

[5] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[6] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for control-
ling the size of a test suite,” ACM Transactions on Software Engineering
Methodology, vol. 2, no. 3, pp. 270–285, 1993.

[7] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size
of coverage-based test sets,” in Proceedings of the 12th International
Conference on Testing Computer Software. ACM, 1995, pp. 111–123.

[8] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of the International Conference on Software
Maintenance, 1998, pp. 34–43.

[9] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” in Proceedings of the
17th International Conference on Software Engineering. ACM, 1995,
pp. 41–50.

[10] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test set
size minimization and fault detection effectiveness: a case study in a
space application,” in Proceedings of the 21st International Conference
on Computers, Software and Applications, 1997, pp. 522–528.

[11] B. Korel, L. H. Tahat, and B. Vaysburg, “Model based regression test re-
duction using dependence analysis,” in Proceedings of the International
Conference on Software Maintenance, 2002, pp. 214–223.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[13] G. Fraser and N. Walkinshaw, “Assessing and generating test sets
in terms of behavioural adequacy,” Software Testing, Verification and
Reliability, vol. 25, no. 8, pp. 749–780, 2015.

[14] P. Papadopoulos and N. Walkinshaw, “Black-box test generation from
inferred models,” in Proceedings of the Fourth International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering,
ser. RAISE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 19–24.

[15] L. C. Briand, Y. Labiche, and Z. Bawar, “Using machine learning to
refine black-box test specifications and test suites,” in Proceedings of
the eighth International Conference on Quality Software, 2008, pp. 135–
144.

[16] B. Aichernig, F. Lorber, and S. Tiran, “Integrating model-based testing
and analysis tools via test case exchange,” in Sixth International Sym-
posium on Theoretical Aspects of Software Engineering (TASE), 2012,
pp. 119–126.

[17] H. Felbinger, F. Wotawa, and M. Nica, “Empirical study of correlation
between mutation score and model inference based test suite adequacy
assessment,” in IEEE/ACM 11th International Workshop on Automation
of Software Test (AST), 2016.

[18] J.-W. Lin and C.-Y. Huang, “Analysis of test suite reduction with en-
hanced tie-breaking techniques,” Information and Software Technology,
vol. 51, no. 4, pp. 679–690, 2009.

[19] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley
& Sons, 2004.

[20] J. J. Chilenski and S. P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Engineering Jour-
nal, vol. 9, no. 5, pp. 193–200, 1994.

[21] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[22] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis,” in Proceedings of the 2012 23rd IEEE
International Symposium on Software Reliability Engineering. IEEE
Computer Society, 2012, pp. 11–20.

[23] D. Hoffman, C. Chang, G. Bazdell, B. Stevens, and K. Yoo, “Bad pairs
in software testing,” in Testing – Practice and Research Techniques,
2010, pp. 39–55.

[24] T. Chen and M. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 56, pp. 347–354,
1998.

[25] R. Taylor, M. Hall, K. Bogdanov, and J. Derrick, “Using behaviour
inference to optimise regression test sets,” in Testing Software and
Systems, 2012, pp. 184–199.

[26] E. J. Weyuker, “Assessing test data adequacy through program infer-
ence,” ACM Transactions on Programming Languages and Systems,
vol. 5, no. 4, pp. 641–655, 1983.

[27] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test
selection techniques: A survey.” Informatica, vol. 35, no. 3, pp. 289–321,
2011.

[28] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verifification And Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

