
Model Dressing for Automated Exploratory Testing
Mehmet Cagri Calpur∗, Sevgi Arca†, Tansu Cagla Calpur‡ and Cemal Yilmaz§

Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul, Turkey

∗mehmetcagri@sabanciuniv.edu,†sevgiarca@sabanciuniv.edu
‡tcagla@sabanciuniv.edu,§cyilmaz@sabanciuniv.edu

Abstract—Automation of software testing is a complex problem
with multiple facets to be handled in sync to be viable. In this
work we propose two novel concepts;model dressing for auto-
mated exploratory testing. Model dressing maps an application
under test to a model created for the domain of the application.
In its simplest form, the domain model defines the business
tasks as well as the user actions that can be carried out from
the perspective of the end-user. Automated exploratory testing
leverages the domain knowledge as well as the experience gained
from testing applications in the same domain to test another
application.

Keywords—Exploratory Testing, Model-Based Testing, Soft-
ware Domain Analysis, Application Text Mining, Automated
Testing, Domain Classification

I. I NTRODUCTION

Applications that run on mobile devices are usually GUI
based thin-clients of varying complexities. User interactions
are of physical nature focusing on using the application
via interacting with the screen and the physical buttons on
mobile devices. Consequently, systematic testing of mobile
applications typically requires simulation of the actionsthat
would normally be conducted by a regular user.

A regular user is a sentient human being, capable of
intuitively determining how to interact with the application and
find out what kind of data is required by the application. The
main research question we have in this work is whether such
knowledge can automatically be discovered, such that testing
approaches, which have some domain knowledge, can be
developed to efficiently and effectively test previously unseen
applications of the domain in a way that can be regarded as
automated exploratory testing.

II. A PPROACH

To this end, the very first step is to automatically classify
the domain of the application under test. Since determining
the domain would let the automated testing agent be aware of
the application context, it would help the agent narrow down
both the input space and the test concerns.

Once the domain is automatically determined, the knowl-
edge about the domain is represented in the form of a model.
In its simplest form, this model defines both the business
tasks and the set of actions that can be performed by an end-
user from the perspective of the user. We, initially chose to
express such a model using finite state machines. The model
can further be partitioned according to the classification of
resources that constitute the program and its sub-units, the

activities. Figure 1 presents as an example a partial model for
the airline ticket reservation domain.

Given a domain model and an application under test,
the goal is then to automatically map the application under
test to the model, so that the test cases that are generated
using the domain model and that represent the knowledge of
the business as well as development experts in the domain,
can automatically be executed against the previously unseen
application under test. We call the former partmodel dressing
and the latter partautomated exploratory testing. Note that
model dressing lets an automated testing agent to use the
test cases developed for testing an application for testing
another application in the same domain. We believe that the
proposed approach is of practical importance because with the
increasing number of cloud-based testing services, it is quite
vital for such services to 1) learn from testing each and every
application and 2) to carry out the knowledge learned from
testing one application to do a better job of testing another
application.

The proposed approach requires to map the states, state
parameters, and transitions in the model to, for example,
screens, input fields on the screens, and the user actions,
respectively. To this end, we have been developing data mining
and machine learning-based approaches. In particular, we use
the data available directly from outside the applications to
perform the mapping. For example, we automatically collect
all the natural language text descriptions appearing in an
application, on a screen, or about an input field and analyze
the collected data by using some natural language processing
techniques to determine the domain of the application as well
as to map the screens and input fields to the states and the
state parameters of the domain model.

We use Android platform as our initial experimentation
platform. The proposed approach, however, is independent
of the hardware and software platforms used to develop
the application under test. An android application consistof
programs that are called activities. Even though the activities
may rely on the output from other activities, the lifetime
of activities are independent of each other. The application
packages store information and resources for each activityand
the activities as well as the relationships between activities
are constructed with this information. Independent natureof
these activities makes them suitable candidates for defining
them as the states constituting the finite state model of the
application. The configuration of the activity may change but

!"#$%&'%"(

)*%#+%&(

,"-".&*+/

0$*/(

1$2"
3++456-*27&53&/8#%"99":

)%%*;$-(

)*%#+%&(

,"-".&*+/
:"#5$*%#+%&8< $%%5$*%#+%&8<

!"#$%&'%"(

!$&"(

,"-".&*+/

="&'%/(

!$&"(

,"-".&*+/
:"#5:$&"8<

=+'/:(>%*#
:"#5:$&"8<

+453&/8#%"99":

?/"(@$A(

>%*#

?
/"
5B
$A
53
&/
8#
%"
99
":

=
+'
/:
5&
%*#
53
&/
8#
%"
99
":

,
"-
".
&5
%"
&'
%/
5:
$&
"8
#%
"9
9"
:

?/"5B$A53&/8#%"99":
,"$%.7(

C-*27&

9"
$%.
75
3&/
8#
%"9
9"
:

9"$%.753&/8#%"99":

C-*27&(D/6+(

1$2"

+'&53+'/:53&/8<

%"&'%/53&/8<

/"E&53&/8#%"99":

C-*27&(

1$AF"/&

G$F"8<(,'%/$F"8<(H"/:"%8<(

!$&"5+653*%&78<(("F$*-8<((

F*-"9I9F*-"95*/6+(8<(

17+/"5/'F8<(

H+53++4*/253&/8#%"99":

G$F"8<(,'%/$F"8<((

J$%:5/+8<((.$%:5"E#5:$&"8<((

.$%:5.;;5/'F(8<(

>"%F95.+/:*&*+/953&/8.7".4":

3++456-*27&53&/8#%"99":

?
/"
5B
$A
53
&/
8#
%"
99
":

K+2*/

3$
.4
53
&/
8#
%"
99
":

0
"F
3"
%5
D!
8<
(#
*/
5.
+:
"8
<

K+
2*
/5
3&
/8
#%
"9
9"
:

,*2/('#

3".+F"5F"F3"%53&/8#%"99":

>*&-"8<(G$F"8<(

,'%/$F"8<(H"/:"%8<(

!$&"5+653*%&78<((/$&*+/$-*&A8<

J*&*L"/5/+8<("F$*-8<(

#*/5.+:"(8<(#*/5.+:"5%"#"$&8<(

>"%F95.+/:*&*+/98.7".4":(

M+*/5F"F53&/8#%"99":

1$99"/2"%(

!"&$*-9

/"E&53&/8#%"99":

J7".4ND/ 1$AIC-A
C-*27&(

,&$&'9

1$A5$/:56-A53&/8#%"99":

J7".45*/53&/8#%"99":

C-*27&59&$&'953&/8#%"99":
C-*27&(

,&$&'9

C-*27&(

,&$&'9

C-*27&(

,&$&'9

=+'
&"53

&/8#
%"99

":

C-*27&5/+53&/8#%"99":

)
*%#+%&53&/8#%"99":

Fig. 1. The formal model of a commercial airliner mobile application.

the general business task handled by the activity generally
stays the same. This means that an activity can be regarded as
a ”Meta-State” and the sub-configurations of the activity asthe
sub/inner-states of the activity. The initial configuration upon
reaching an activity can then be defined as the default state.
Some action and input combinations may lead to transition to
another state (activity), while others may not result in a state
change. A transition can be defined as reaching a state after a
collection of user input and actions on an activity. A transition
may cause a self loop, which means, the state (activity) does
not change after the set of transition actions. There can be
two cases for such transition. The first case is the invalid
transition action, which is a collection of input or action items
that are not handled by the mobile application. In this case the
system does not capture the invalid action and stays in stand
by mode waiting for a legitimate action. The second case is
the transitions between sub-classes. In this case the activity,
which represents the meta-state, does not change but the
configuration of the state change resulting in a different sub-
state. The set of components that can be interacted is modified,
which also updates the required transition function. On this
platform, therefore, the proposed approach, for example, maps
a state of the domain model to an activity, a state parameter
to an input field defined by the activity, and a transition to a
tap (or any user gesture, such as swipe).

III. R ELATED WORK

Zhu et. al. [1] conducted GUI similarity research on large
number of android applications. The data source for the
research is gathered from the XML resource files in the
application packages. Text on the application GUI, information
in XML resources and image files are used for detection of
application similarity. The similarity metric is then usedfor
plagiarism detection and insertion of malicious content.

He et. al. [2] processes xml files that define Java application
GUIs for screen similarities in order to find out similar

interfaces. The idea is to select test cases from dissimilarGUI
formations to increase the diversity of test suite.

Hallenberg et. al [3] engages the need for domain knowl-
edge for appropriate test case generation and proposes that
there is a gap between the focus of quality assurance profes-
sionals testing focus, which is based on more technical prob-
lems of the application, an the business domain requirements.
Their focus is on the GUI and the test actions that can be
performed on the GUI is extracted from a program model.

Kowalczyk et. al. [4] inspect application behavior from the
information that can be mined from the GUI and resource files
of application package, as well as information from application
store reviews and descriptions. The argument of the paper is
that, when combined data gathered from these sources are
sufficient identifying the behavior of the application.

IV. CONCLUSION

Pairing a domain model with processed textual informa-
tion gathered from the application is the key to building an
automated exploratory testing approach, mimicking domain
experts. Currently, domain expert’s manual labor is required,
leading to a loss of precious workforce time and proneness to
human error.

REFERENCES

[1] Jiawei Zhu, Zhengang Wu, Zhi Guan, and Zhong Chen, “Appearance
similarity evaluation for android applications,” in7th International Con-
ference on Advanced Computational Intelligence, March 27-29 2015.

[2] Zhi-Wei He, Cheng-Gang Bai, “Gui test case prioritization by state-
coverage criterion,” inIEEE/ACM 10th International Workshop on Au-
tomation of Software Test, 2015.

[3] N. Hallenberg and P. L. Carlsen, “Declarative automatedtest,” in
Proceedings of the 7th International Workshop on Automation of Software
Test, ser. AST ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 96–102.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2663608.2663628

[4] E. Kowalczyk, A. M. Memon, and M. B. Cohen, “Piecing together app
behavior from multiple artifacts: A case study,” in2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
Nov 2015, pp. 438–449.

