
Regular Expression Based Test Sequence Generation for HDL Program Validation

Onur Kilincceker
University of Paderborn,

Paderborn, Germany.
Mugla Sitki Kocman

University, Mugla, Turkey.
okilinc@mail.upb.de

Ercument Turk
International Computer
Institute, Ege University,

Izmir, Turkey.
ercument_turk@hotmail.com

Moharram Challenger
International Computer
Institute, Ege University,

Izmir, Turkey.
moharram.challenger

@ege.edu.tr

Fevzi Belli
University of Paderborn,

Paderborn, Germany.
Izmir Institute of Technology,

Izmir, Turkey.
belli@upb.de

Abstract— This paper proposes a test sequence
generation approach for behavioral model validation of
sequential circuits implemented in Hardware Description
Language (HDL). In the procedure of test sequence
generation proposed in this study, Regular Expressions
(REs) are utilized to model the behavior of the System Under
Test (SUT). First, the HDL program is converted to a Finite
State Machine (FSM). Then, the obtained FSM is
transformed to RE which is represented by a Syntax Tree
(ST). In this way, the test sequence generation problem is
simplified to the tree traversal algorithm in which symbol
and operator coverage criteria are satisfied. The required
tools for test sequence generation are provided to automatize
the whole procedure of the proposed approach. Also, a
running example, based on a real-life-like Traffic Light
Controller (TLC), validates the proposed approach and
analyzes its characteristic features.

Keywords— regular expression; test sequence generation;
hardware design validation; behavioral model; hardware
description language

I. INTRODUCTION

According to the well-known Moore’s Law, the
number of transistors or components on a Very Large-
Scale Integration (VLSI) chip doubles approximately in
every 18 months. Therefore, the testing and validation of
hardware become increasingly critical and overwhelming.
As a result, the emergence of new methods to handle this
problem in an efficient way becomes a necessity.

The validation of hardware in early stages of the design
flow not only reduces the cost, due to low complexity
considering the abstraction level, but also provides
reusability of test sequences at lower design levels.
Generally, test sequences or patterns are generated for two
purposes: validation testing to target design faults; and
structural testing to address manufacturing faults. The first
one can be applied at the early stage of the design flow,
i.e., behavioral design, and the generated test sequences
can be reused at lower levels, e.g., register transfer level or
gate level. The second one, structural testing, is applied at
the gate level and requires extensive analysis. Thus, it
demands a high cost for test pattern generation. On the
other hand, the structural testing provides appropriate and
effective coverage of targeted manufacturing faults that are
commonly stuck-at 0/1. In these faults, signals or pins are
assumed to be stuck at logical '1' or '0'. It is reported in [1]
that there is a direct correlation between design faults in
the behavioral level and manufacturing faults in the gate
level as illustrated in Figure 1. Therefore, the test

sequence generation approach discussed in this study can
be useful for targeting design faults as well as
manufacturing faults.

This paper proposes a methodology for test sequence
generation to validate a given HDL program (as a Finite
State Machine (FSM)) and target design faults at the
behavioral level. The FSM model is automatically
extracted from the HDL program by scanning the code to
find the state and transition patterns. Then, this FSM is
converted into a RE, which offers more abstraction,
compactness and conformity to algebraic operations based
on Kleene Algebra [2]. This RE is represented by a Syntax
Tree (ST). Operators and symbols of RE are represented in
the external and internal nodes of the ST, respectively. As
a result, the procedure of the test sequence generation is
carried on by traversing this ST. The proposed approach is
evaluated on a real-life-like traffic light controller
example.

Figure 1. Relation of Gate and Behavioral Level Faults [1]

Next section presents related work covering studies on
validation testing at behavioral and RTL levels and test
sequence generation based on RE. Section 3 introduces the
background including used notions and coverage criteria.
Section 4 explains the proposed approach which is
demonstrated by an example, a traffic light controller, in
Section 5. In Section 6, the results are presented and
discussed. Finally, Section 6 concludes the paper and gives
the highlights of our further research.

II. RELATED WORK

Conventional validation approaches for hardware
design utilize combination of simulation-based techniques
and formal verification methods [3]. However, coverage
oriented/driven test generation, which is extensively used
in software testing, is becoming popular for hardware
design validation at high-level of abstraction. HYBRO [4]
works at Register Transfer Level (RTL) based on branch-
coverage directed approach. It uses Satisfiability Modulo
Theory (SMT) solver and requires dynamic and static
analysis of RTL source code for generation of test

585

2018 IEEE International Conference on Software Quality, Reliability and Security Companion

978-1-5386-7839-8/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS-C.2018.00103

sequences. Therefore, the computation cost of SMT solver
and the source code analysis limits the effective generation
of test sequences in desired time and may results in long
test sequences.

Branch-oriented Evolutionary Ant Colony
OptimizatioN (BEACON) [5] also works at RTL and uses
an algorithm to increase search capacity of design space. It
is also based on branch coverage and converts HDL
program to C++ code for fast simulation. However, lack of
proper guidance of simulation results in long test
sequences and requires high time consumption [6]. Particle
Swarm Optimization-based Functional Test (PSOFT)
generator [6] utilizes an algorithm to reach corner cases of
design and uses branch coverage for design validation at
RTL. It is combined with a controlled graphical search
method. Thus, PSOFT is highly resource consuming for
generation of effective test sequences in limited time. On
the other hand, RTL level test sequences may result in high
coverage of manufacturing faults at the gate (structural)
level. Benefit from abstraction offers diminishing cost
depending on decreasing complexity of HDL program.
Therefore, the current work uses behavioral level instead
of RTL or gate level for this reason.

Test sequence generation algorithms at behavioral level
are varying depending on specific coverage metrics. For
example, bit and condition coverages are proposed in [9].
Bit coverage assumes that each bit of variable or signal in
the design may be stuck at 0/1. Condition coverage
assumes that each condition in the design may be stuck at
True/False. In [9], a high correlation between bit coverage
at the behavioral level and stuck-at fault coverage at the
gate level is found whereas it is reported in [1] that test
sequence generation at the behavioral level reduces the
costs and increases the final product quality.

Jervan at al. [7] analyze existing coverage metrics at
the behavioral level with correlation of gate level stuck-at
faults. Results from the analysis show that the combination
of bit and condition coverage can be effectively utilized for
evaluating the quality of a test set at the behavioral level.
Moreover, Jervan at al. [7] use Random Mutation Hill
Climber (RMHC) algorithm for test sequence generation.
The RMHC is based on random generation of test
sequences starting from given initial solution whose
neighbors are examined to find the next solution.
Procedure continues until the pre-defined iteration is
completed. As another study, Kilincceker et al. [8]
elaborate an approach to apply the ideal testing on HDL
programs at the behavioral level. To this end, they provide
a testing methodology in conjunction with mutation
testing. They also combine positive and negative testing to
fulfill requirements of the ideal testing with novel test
selection criteria.

Regular expression provides higher abstraction,
compactness and conformity to algebraic operations based
on Kleene Algebra [1]. Brzozowski [10] uses regular
expression for modeling sequential circuits. He provides
an algebraic algorithm for construction of a regular
expression from given finite state machine. In addition, in
his seminal work [11], he introduces derivatives of regular
expression.

In recent years, regular expression became more
popular for software testing. Belli and Grosspietsch [12]
propose integration of fault tolerance properties into the

design of complex software systems by utilization of
regular expression. They also define insertion, deletion,
and replace operators to model faulty behavior of the
software system. These operators can be also used in the
generation of mutations of given regular expression.
Arcaini et al. [13] provide a fault-based algorithm for test
sequence generation, which uses regular expression in
conjunction with mutation testing. They introduce several
mutation operators and implement proposed algorithm in a
tool called MuTreX [14] to generate fault-detecting
sequences.

Mariani et al. [15] propose alphabet, operator, and
expression coverage criteria for self-testing of software
components using RE. However, they do not provide any
test generation methodology using defined coverage
criteria. Current work uses the criteria in [15] for
generation of test sequences. Liu and Miao [16] offer
theory of test modeling based on regular expression for
software behavior. Liu et al. [17] introduce an extended
regular expression for modelling and testing software
behavior. They define some rules for modeling given
software using the extended regular expression to generate
test sequences from this novel model and detect program
errors.

Ravi et al. [18] utilize regular expression for testability
analysis and optimization at RTL controller/data path
circuits. In addition to the conventional use of regular
expressions, they represent symbols of Boolean functions
instead of input/output combinations and generate test
sequences for predefined actions. However, the authors
indicate that their methodology unifies testability analysis
for several types of digital circuits. Current work uses
regular expression for test sequence generation to validate
the given HDL program at the behavioral level. This test
sequence generation approach conforms to some coverage
criteria to target design faults, including bit stuck-at 0/1.

III. BACKGROUND

In this section the terminologies which are used in this
paper as well as the coverage criteria are discussed. The
notations and models used in the current work, including
Finite State Machine (FSM), Regular Expression (RE),
Extended Regular Expression (ERE), and Syntax Tree
(ST), are elaborated in the first subsection. In the following
subsection, the coverage criteria for the defined models are
presented.

A. Used Notions
Finite State Machine (FSM): A FSM is defined by 5-
tuples [19] as <Q, Σ, δ, q�, F> where,

Q: a finite set of states

Σ: a finite set of input symbols (alphabet)

δ : state transition function, mostly represented by a
table

q�: an initial (starting) state which is an element of Q

F: a finite set of final states which is a subset of Q.

Regular Expression (RE) [20]: RE is basically a sequence
of symbols connected by following operators.

586

� Concatenation – is represented by ‘.’ or without
any specific symbol. For example, “a.b” or “ab”
means that symbol a is followed by symbol b.

� Selection (Union) - is represented by ‘+’ operator.
For example, a+b means ‘a or b’.

� Iteration (Kleene’s Star) - is represented by ‘*’
operator. For example, “a*” means ‘a is iterated
infinite times’ (including zero times which
represents empty word “λ”). Similarly, a+ means at
least one-time iteration, that is excluding λ.

Example 1: An example regular expression is given
below;

� �� a� b�� c�� d����	� �
��

This regular expression means that a symbol “a” is
followed by a symbol “b” that is followed by zero or more
times iteration of symbol “c” or “d”.
Extended Regular Expression (ERE) [17]: The definition
of regular expression given above is extended using the
following range operator applied to Kleene’s Star operator.

� Range - is represented by “n~m” instead of “*”
operator. For example, “a1~2” means that one to two
times iteration included.

Example 2: The regular expression given in example 1
can be extended as follows:

� �� a� b�� c�� d��
���	� ����

Figure 2. The ST of the RE given in Example 1

Syntax Tree (ST): A syntax tree is basically a tree to
represent a regular expression. It can be either right-to-left
or left-to-right associative. Root and internal nodes store
operators and leaves store symbols of the regular
expression. The ST representation, left-to-right associative,
of RE in Example 1 is shown in Figure 2.

The set of test sequences generated from the ST model,
using the approach proposed in this study, constitutes a test
suite. Depending on the selection of consecutive Kleene’s
star operator, the length of any test sequence can be
infinite. To tackle this problem, there is a solution
requiring utilization of the range operator based upon the
ERE model. The range operator can be defined using any
specific values.

B. Coverage Criteria
There are several coverage criteria to assess adequacy

of the test. They define how the system is tested

thoroughly and whether the generated test sequences are
good enough. In software testing perspective, “thorough”,
“good enough”, and “adequate” refer to same meaning
[21]. Coverage criteria are used to achieve these quality
measurements. A test set is adequate when it satisfies
particular coverage criteria.

The bit coverage defined for HDL program validation
at the behavioral level is used in this study.
Bit coverage [9]: It is satisfied if for each bit of a variable,
signal, and port in the behavioral design, there is at least a
test sequence which exercises bit stuck-at 0/1 assignments
of these bits.

The alphabet and operator coverage criteria are defined
for test sequence generation based on RE in the literature
[14].
Alphabet coverage [15]: It is satisfied if for each symbol
‘a’ in the alphabet, there is at least a test sequence,
including symbol ‘a’, in the test suite. For instance, the test
suite {abcd} satisfies this criterion for the RE given in
Example 1.
Operator coverage [15]: It is satisfied if for each union
operator, the test suite includes a test case containing the
first operand and another test case containing the second
operand of the union operator.

For each Kleene’s star operator, the test suite includes
a test sequence containing no iteration, exactly one
iteration and more than one iteration of operand of the
Kleen’s star operator. For instance, the test suite {ab, abc,
abd, abcc, abcd, abdd} satisfies this criterion for the RE
given in Example 1.

IV. APPROACH

The proposed approach includes the following steps:
extraction of FSM from the given HDL program,
conversion of FSM to RE, ST construction from RE,
traversal of ST to generate test sequences satisfying the
alphabet and operator coverage criteria. Figure 3 depicts
these steps.

Figure 3. General overview of the proposed approach

In the FSM extraction step, an HDL program is
analyzed to generate a FSM. Note that only HDL
programs, which satisfy specific patterns, can be taken into
consideration. The FSM Extraction program reads the
HDL program to determine states and transitions.

In the FSM to RE conversion step, the well-known
Brzozowski [10] algorithm is used, which requires to

587

construct an equation system from the state transition table
of FSM. This equation system defines transition relations
of states. The system is represented by a square matrix on
which an elimination algorithm, e.g. Gaussian elimination
algorithm, is run to generate the RE. Arden’s rule [22] is
applied on these equation system to eliminate redundant
transitions and shorten the system. The application of this
elimination continues until obtaining one column and one
row for equation which represents the expected RE.

Based on the proposed approach, the FSM to RE
conversion can be done using PQ-Analysis tool [23].
However, this conversion may result in a longer RE.
Therefore, the JFLAP tool [24] can be used to shorten this
RE as depicted in Figure 3. This approach provides a
compacted RE model to reduce the computation in the
further steps.

Note that in some systems, the HDL program is not
already available. So, the model extraction phase of the
proposed approach is not useful in these cases. However,
the hardware specification of the system, such as state
machine diagram, activity diagram, and sequence diagram,
may be available and provide the behavior model for the
system. As these specifications imply dynamic of the
system, the designer can create the FSM for the system
using tools such as PQ-Analysis [23] or JFLAP [24].

As a result, the proposed approach supports both
creating the FSM from the system specification and
extracting it from the given HDL program.

For the ST construction, a tool called
dk.brics.automaton [25] is used. This tool provides an
open source implementation of an antichain algorithm
called forward subset. In our study, this tool has been
extended in a way that it gets rid of infinity Kleene’s Star
operator.

Based on the proposed approach, the test sequence
generation from RE requires traversing the ST. For
example, the following test sequences can be generated
from the given RE in (1) by traversing the corresponding
ST.

��������������������������
�ab, abc, abd, abcc, abdd, abcd, ... �� ����

According to the Kleene’s Star operator, the length of
the test sequences can be infinite (see (3)). This infinity
can be resolved by utilization of the ERE model. For
example, the ERE given in (2) can be used for (1). In this
example, the iteration of the Kleene’s star is bounded to 1-
2 by utilizing a range operator. Therefore, the following
test sequences can be generated;

� {ab, abc, abd, abcc, abdd, abcd}� ����

The following algorithm defines the procedure of test
sequences generation in this study. The input of the
algorithm is the ST of the RE model. The output is the
resulting set of test sequences by traversing the ST.

This algorithm starts with the root node of the ST and
traverses the left and right nodes based on the given
procedure. The following values can be encountered in
each node during traversal of the ST;

� A Symbol: The symbol is added to the current
test sequence because it is a leaf node.

� A Union operator: The test sequences from the
left and right nodes of union operator are
combined and returned as the result.

� A Star operator: As it is already discussed, 0 and
1 iterations are considered for star operator to
satisfy the operator and alphabet coverage
criteria. Therefore, test sequences including
empty word and the string set from the left node
of the current node are combined as the result of
this operator.

� A Plus operator: The same procedure of the star
operator is applied for the plus operator excluding
empty word, as it only contains 1 iteration.

� A Concatenation operator: This operator
concatenates each string of the left node with
each string of the right node.

� A Range (n~m) operator: In this operator, the
lower bound of the rage is considered to cover
the criteria and extra iterations are avoided.
Therefore, concatenation of the operand for n
times is the result of this operator.

Algorithm: Test sequence generation based on ST of RE
Input: S // S is syntax tree of given RE
Output: ti ϵ T, i=1,…,n//T is the resulting test suite
node = ST.root
Set RegExTestGeneration (SyntaxTree node) {

if (node.data == symbol)
return {node.data}

if (node.data == union)
return RegExTestGeneration(node.left) U

 RegExTestGeneration (node.right)
if (node.data == Star)

return RegExTestGeneration (node.left) U Epsilon
if (node.data == Plus)

return RegExTestGeneration (node.left)
if (node.data == Concatenation)

return Concatenation(
 RegExTestGeneration(node.left),
 RegExTestGeneration (node.right))
if (node.data == 'n~m'){

Set s = RegExTestGeneration (node.left)
for (i=0 to n)

Set p = Concatenation (p, s)
return p

}
}
Set Concatenation (Set s1, Set s2){

Set result = empty
for each item1 in s1

for each item2 in s2
result = result U item1.item2

}

After the execution of one of the above-mentioned
conditions for each node, based on the node’s data, the
traversal continues with the predecessor operator node
using the test sequence set already generated.

A tool called RegExTestGen, demonstrated in
Section V, is developed by implementing the proposed
test sequence generation algorithm. The RegExTestGen
takes the RE and construct the ST from which test
sequences are generated.

588

V. A RUNNING EXAMPLE

This section discusses a running example called Traffic
Light Controller (TLC). To this end, the System Under
Test (SUT) in this study is TLC which is implemented in
Verilog HDL. As it can be seen in Figure 4, four traffic
signals and four lanes present a real-life-like traffic light.
Every lane has a separate traffic light with red, yellow and
green lights. Verilog HDL implementation of TLC was
realized by Xilinx Basys 3 Artix-7 FPGA development
board and using Vivado 2017.4 design suite [26].

Figure 4. Block Diagram of Traffic Light Controller (TLC)

An excerpt code of the HDL for the TLC is given in
Figure 5. The TLC is implemented in Verilog HDL and
the source code contains 117 lines and nine states in an
always block using case statement.

`timescale 1ns / 1ps
...
module Lights (n_lights,s_lights,
e_lights,w_lights, clk_point1hz, btn,
segment,input_ligth_status,
output_ligth_status);
...
always@(clk_point1hz)
begin
case (state)

4'b0000:
begin

$display("The value of input:%h,
state%d",input_ligth_status,state) ;

segment = 7'b0000001;
if (btn==0)
begin

state = 4'b1000;
output_ligth_status = 16'h1444;
n_lights = 3'b001;
s_lights = 3'b100;
e_lights = 3'b100;
w_lights = 3'b100;

end
else if (btn==1)
begin

state = 4'b0000;
output_ligth_status =

16'h0000;
n_lights = 3'b100;
s_lights = 3'b100;
e_lights = 3'b100;
w_lights = 3'b100;

end

else
begin

state = 4'b0000;
output_ligth_status =

16'h4444;
n_lights = 3'b100;
s_lights = 3'b100;
e_lights = 3'b100;
w_lights = 3'b100;

end
end
4'b0001:

…
4'b0010:

...
4'b0011:

...
4'b0100:

...
4'b0101:

...
4'b0110:

...
4'b0111:

...
4'b1000:

...
endcase // case (state)
end
endmodule

Figure 5. An excerpt code for TLC in Verilog HDL

To apply the proposed approach, in the first step, the
FSM model is extracted from HDL of TLC automatically.
The extraction tool scans each line of the Verilog code to
find particular pattern. These patterns are checked to figure
out whether they satisfy pre-defined rules or not. The lines
satisfying the rules are used to define states of the FSM.
The transitions of the FSM are also extracted from the
relations between states in the HDL program.

TABLE I. ENCODING OF TRANSITIONS. KEY: G=GREEN;
Y=YELLOW; R=RED

Symbol I/O
Combination Symbol I/O

Combination Symbol I/O
Combination

a grrr 0 /
yrrr

g rrrg 0 / rrry n xxxxx -
rrgr 0 / rrrr

b yrrr 0 /
rgrr

i rrry 0 / grrr o xxxxx -
rryr 0 / rrrr

c rgrr 0 /
ryrr

j xxxxx -
grrr 0 / rrrr

p xxxxx -
rrrg 0 / rrrr

d ryrr 0 /
rrgr

k xxxxx -
yrrr 0 / rrrr

r xxxxx -
rrry 0 / rrrr

e rrgr 0 /
rryr

l xxxxx -
rgrr 0 / rrrr

s xxxx 1 /
rrrr

f rryr 0 /
rrrg

m xxxxx -
ryrr 0 / rrrr

h xxxx 0 /
grrr

The extracted FSM, modeling the behavior of TLC, is
converted into a RE, considering encoding of input/output
combinations to the symbols given in TABLE I. The FSM
of original HDL contains 9 states and 18 transitions see
Figure 6.

Figure 6. The FSM of TLC

Figure 7. The ST of the RE in (5)

589

The extracted FSM model is directly imported to PQ-
Analysis [23] tool for the RE conversion. Resulting RE is
compacted by JFLAP tool [24] and the RE (5) is obtained.
�(h(abcdefgi)*(abcdefgr+abcdefp+abcdeo+abcdn+abcm+abl+ak+j)+s)
*	����

The representation of the RE, given in (5), is carried
out by utilization of the ST in which external nodes, i.e.
leaves, store symbols whereas internal nodes along with
root store operators. The ST of the RE in (5) is shown in
Figure 7 where root node is a star operator. The number of
external nodes equals to number of symbols. Each symbol
contained in the RE is stored in an external node of the ST.
The height of the tree roughly equals the number of
operators in the worst-case scenario.

Figure 8. A Screenshot of RegExTestGen Tool

Test sequences are generated from the ST by traversal
algorithm given in Section 4. For the ST construction and
the test sequence generation, RegExTestGen tool, see
Figure 8, is used. The details of the algorithm used for test
sequence generation are given in Section IV.

The RegTextGen tool results in test sequences
satisfying alphabet and operator coverage criteria. The
generated test suite, which is a set of test sequences, is
given in TABLE II. Total length of the test suite is 162.

TABLE II. GENERATED TEST SEQUENCES

Test Sequences

t1 habcdefgiabcdefgr t11 habcdefp

t2 habcdegiabcdep t12 habcdeo

t3 habcdefgiabcdo t13 habcdn

t4 habcdefgiabcdn t14 habcm

t5 habcdefgiabcm t15 habl

t6 habcdefgiabl t16 hak

t7 habcdefgiak t17 hj

t8 habcdefgij t18 s

t9 habcdefgr

t10 habcdefp

The test sequences are executed on the TLC via test
bench using simulation environment provided by Vivado
2017.4 [26]. The test bench software written in HDL reads
the test entries from a file and applies them to the TLC
system and then analyzes the system's outputs. The details
of collected results from the test execution are given in
Section VI.

VI. RESULTS AND DISCUSSION

To evaluate effectiveness of proposed approach, a tool
called GraphWalker [27] is used for random test sequence
generation with the edge and vertex coverage criteria.
Also, a bit stuck-at fault model is used to measure fault
coverage of generated test sequences of both proposed
approach and random test sequence generation. Therefore,
the output bit stuck-at 0/1 faults and case bit stuck-at 0/1
faults are simulated for test sequence execution. Statistics
of simulated fault models is given in TABLE III.

TABLE III. FAULT STATISTICS

Fault Types Number of Design Faults

B
it

St
uc

k-
at

Output Bit
Stuck-at 0

12
Output Bit
Stuck-at 1

12
Case Bit

Stuck-at 0
3

Case Bit
Stuck-at 1

3
Total 30

To do an evaluation, a comparison between the
proposed approach, with alphabet and operator coverage
criteria, and random testing method, with edge and vertex
coverage criteria, is realized. Considering the proposed
approach, the test sequences are generated for the TLC
case study using RegExTestGen tool. For random testing,
test sequences were generated using GraphWalker. To
have the same condition for both approaches, the tools are
adjusted to have %100 coverage for related criteria to
assess adequacy of the test. Therefore, the edge and vertex
coverage criteria of random testing was set to %100. To
eliminate the effect of randomness on test sequence
generation time, the GrapWalker was run 10 times and the
average value is taken. The test suits generated by the two
approaches are executed automatically using the provided
test bench in Vivado design suite.

The results show that the current approach is more
efficient than the random method in terms of both length
of the test sequences and the required time for test
sequence generation, see TABLE IV. The fault coverages
of the two approaches are %100 for 30 faults. However,
the length of the test suite for random testing is bigger than
length of the test suite for the proposed approach. This
leads to increase of test generation and execution time for
random testing comparing to the proposed approach.

With maximum edge coverage for random testing the
generated test suite is about 3 times longer than the one
generated by proposed approach. This is about 42 times

590

longer when the maximum vertex coverage is used for
random testing, see Figure 9 for the comparison.

TABLE IV. COMPARISON OF RESULTS

Graph
Walker

Proposed
Approach

Edge
Coverage

Vertex
Coverage

Operator and
Symbol Coverage

%100 %100 %100

Fault Coverage (%) 100 100 100
Length of Test

Sequences (Symbols)
532 6816 162

Time for Test
Generation (ms)

4789 4045 611
Time for Test
Execution (ns)

18785 55320 2370

As you can see in Figure 9, the proposed approach
has about 8 times faster test execution time than the
random testing with full edge coverage. The proposed
approach is about 23 times faster than random testing
when the maximum vertex coverage is used.

Figure 9: Comparison for the GraphWalker and the proposed approach

Please note that the random testing method used for the
evaluation in this study is not a traditional random testing.
Because, the current random testing method is more
systematic with respect to the edge and vertex coverage
criteria. This explains how to reach %100 fault coverage
by means of the current random testing. Also, it is clear
that the fault coverabe will be decreased if the traditional
random testing method is utilized due to the generation of
redundant test sequences which do not confrom to the
system behavior.

VII. CONCLUSION AND FUTURE WORK

In the scope of this paper, an approach for test
sequence generation using RE is introduced to target
design faults at behavioral level. The proposed approach
starts with extraction of FSM model from given HDL
program. Then the obtained FSM is converted into RE by
means of well-known Brzozowski algorithm [10].

Afterwards, this RE model is represented by ST from
which the test sequences are generated using tree traversal
algorithm considering pre-defined coverage criteria on RE.

A traffic light controller example is used to
demonstrate and validate the approach. The resulting test
sequences are executed on the SUT by means of a test
bench provided by Vivado design suite [26]. The results of
the experiment confirm that the proposed approach is
efficient for the real-life-like example considering length
of test sequences, time for test generation, and time for test
execution.

Briefly, the contributions of the proposed approach can
be listed as follows:

� Test sequence generation based on regular
expression in terms of operator and alphabet
coverage criteria to target design faults at
behavioral level for validation testing

� Developing a tool chain to support entire
methodology

� Supporting both available HDL programs and
specification of system under development in the
proposed approach

Within this study, we address the behavioral fault
models including bit stuck-at 0/1. As one of our future
works, we plan to cover some of the faults in the gate level
such as stuck-at 0/1 faults. To do this, we plan to use a
fault simulator in the gate level and apply generated test
sequences from our approach to find out the fault coverage
at the gate level.

Another future work is to decrease and adjust the
alphabet and operator coverage for analyzing its impact on
fault coverage. In this way, the suite can be tightened; thus,
the cost of test generation and execution may reduce.

Finally, the proposed approach can be adapted with
hierarchical modularization of HDL programs, which
improves the scalability.

REFERENCES

[1] M. Lajolo, L. Lavagno, M. Rebaudengo, Sonza M. Reorda,
M. Violante, "Behavioral level Test Vector Generation for
System-an-Chip Designs", Proc. High level Design
Validation and Test Workshop, pp. 21-26, 2000.

[2] S.C. Kleene, Representation of events in nerve nets and
finite automata. No. RAND-RM-704, Rand Project Air
Force Santa Monica Ca, 1951.

[3] Chen, Mingsong, Xiaoke Qin, Heon-Mo Koo, and Prabhat
Mishra. System-level validation: high-level modeling and
directed test generation techniques. Springer Science &
Business Media, 2012.

[4] L. Lingyi, and S. Vasudevan,"Efficient validation input
generation in RTL by hybridized source code analysis." In
Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011, pp. 1-6. IEEE, 2011, doi:
10.1109/DATE.2011.5763253

[5] L. Min, K. Gent, and M. S. Hsiao,"Design validation of rtl
circuits using evolutionary swarm intelligence." In Test
Conference (ITC), 2012 IEEE International, pp. 1-8. IEEE,
2012, doi: 10.1109/TEST.2012.6401556

[6] P. Prateek, and M.S. Hsiao. "Fast stimuli generation for
design validation of rtl circuits using binary particle swarm
optimization." In VLSI (ISVLSI), 2015 IEEE Computer

0

1000

2000

3000

4000

5000

6000

7000

8000

Length of Test Suite

GraphWalker with Edge
Coverage

GraphWalker with Vertex
Coverage

Proposed Approach

0

10000

20000

30000

40000

50000

60000

Time for Test Execution (ns)
0

1000

2000

3000

4000

5000

6000

Time for Test Generation (ms)

591

Society Annual Symposium on, pp. 573-578. IEEE, 2015,
doi: 10.1109/ISVLSI.2015.26

[7] G. Jervan, Z. Peng, O. Goloubeva, M.S. Reorda, and M.
Violante, “High-level and hierarchical test sequence
generation”, In: Seventh IEEE International High-Level
Design Validation and Test Workshop, pp. 169-174,2002,
doi: 10.1109/HLDVT.2002.1224448

[8] O. Kilincceker, E. Turk, M. Challenger, and F. Belli,
“Applying the Ideal Testing Framework to HDL
Programs”, ARCS 2018 – 31st International Conference on
Architecture of Computing Systems, 14th Workshop on
Dependability and Fault Tolerance (VERFE'18), in press.

[9] F. Ferrandi, G. Ferrara, D. Scuito, A. Fin, F. Fummi,
"Functional Test Generation for Behaviorally Sequential
Models", Proc. Design Automation and Test in Europe, pp.
403-410, 2001, doi: 10.1109/DATE.2001.915056

[10] J.A. Brzozowski,"Regular expressions from sequential
circuits." IEEE Transactions on Electronic Computers 6
,pp. 741-744,1964.

[11] J.A. Brzozowski,"Derivatives of regular expressions."
Journal of the ACM (JACM) 11.4, pp. 481-494,1964, doi:
10.1109/PGEC.1964.263932

[12] F. Belli, and K-E. Grosspietsch. "Specification of fault-
tolerant system issues by predicate/transition nets and
regular expressions-approach and case study." IEEE
Transactions on software engineering 17, no. 6, pp.513-
526,1991, doi: 10.1109/32.87278

[13] P. Arcaini, A. Gargantini, and E. Riccobene. "Fault‐based
test generation for regular expressions by mutation."
Software Testing, Verification and Reliability, 2018.

[14] Code is available at https://github.com/fmselab/mutrex/
(last access: April 2018).

[15] L. Mariani, M. Pezze, D. Willmor,”Generation of
integration tests for self-testing components”, In
International Conference on Formal Techniques for
Networked and Distributed Systems (pp. 337-350).
Springer, Berlin, Heidelberg,2004, doi: 10.1007/978-3-540-
30233-9_25

[16] P. Liu, and H. Miao. "Theory of test modeling based on
regular expressions." In International Workshop on
Structured Object-Oriented Formal Language and Method,
pp. 17-31. Springer, Cham, 2013.

[17] P. Liu, J. Ai, and Z.J. Xu. "A study for extended regular
expression-based testing." In Computer and Information
Science (ICIS), 2017 IEEE/ACIS 16th International
Conference on, pp. 821-826. IEEE, 2017, doi:
10.1109/ICIS.2017.7960106

[18] S. Ravi, G. Lakshminarayana, and N.K. Jha. "TAO:
Regular expression-based register-transfer level testability
analysis and optimization." IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 9, no. 6 (2001):
824-832, doi: 10.1109/TEST.1998.743171

[19] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction
to automata theory, languages, and computation. Harlow:
Pearson,2014.

[20] S.C. Kleene, Representation of events in nerve nets and
finite automata. No. RAND-RM-704. RAND PROJECT
AIR FORCE SANTA MONICA CA, 1951.

[21] A.P. Mathur. Foundations of software testing, 2/e. Pearson
Education India, 2013.

[22] D.N. Arden,"Delayed-logic and finite-state machines."
Switching Circuit Theory and Logical Design, SWCT
1961. Proceedings of the Second Annual Symposium on.
IEEE, 1961, doi: 10.1109/FOCS.1961.13

[23] PQ-Analysis Tool, available online:
http://download.ivknet.de/ (last access: April 2018).

[24] S. Rodger, T. Finley. JFLAP - An Interactive Formal
Languages and Automata Package, ISBN 0763738344,
Jones and Bartlett ,2006.

[25] Code is available at http://www.brics.dk/automaton/ (last
access: April 2018).

[26] Xilinx Vivado, Available online:
https://www.xilinx.com/products/design-tools/vivado.html
(last access: Jan 2018).

[27] GraphWalker Tool, available online:
http://graphwalker.github.io/ (last access: April 2018)

592

