2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

Random Test Generation from Regular Expressions
for Graphical User Interface (GUI) Testing

Onur Kilincceker
University of Paderborn
Paderborn, Germany
Mugla Sitki Kocman University
Mugla, Turkey

okilinc@mail.upb.de

Alper Silistre
International Computer Institute,
Ege University,

Izmir, Turkey.
alpersilistre@gmail.com

Abstract— Generation of test sequences, that is, (user)
inputs - expected (system) outputs, is an important task of
testing of graphical user interfaces (GUI). This work proposes
an approach to randomly generate test sequences that might be
used for comparison with existing GUI testing techniques to
evaluate their efficiency. The proposed approach first models
GUI under test by a finite state machine (FSM) and then
converts it to a regular expression (RE). A tool based on a
special technique we developed analyzes the RE to fulfill
missing context information such as the position of a symbol in
the RE. The result is a context table representing the RE. The
proposed approach traverses the context table to generate the
test sequences. To do this, the approach repeatedly selects a
symbol in the table, starting from the initial symbol, in a
random manner until reaching a special, finalizing symbol for
constructing a test sequence. Thus, the approach uses a symbol
coverage criterion to assess the adequacy of the test generation.
To evaluate the approach, mutation testing is used. The
proposed technique is to a great extent implemented and is
available as a tool called PQ-Ran Test (PQ-analysis based
Random Test Generation). A case study demonstrates the
proposed approach and analyzes its effectiveness by mutation
testing.

Keywords— Random Test Generation, GUI Testing, Regular
Expression, Finite State Machine

1. INTRODUCTION

Testing of software user interfaces (UI) or graphical user
interfaces (GUI) is an important topic in software
development process. Testing, in general, is a critical part of
software development life cycle and should be considered
during the development process. Customers generally tend to
care the aesthetics and usability of the application she/he is
interested in purchasing. There are many reasons for this, but
one of the most important is that the Internet forms a rapid
and very competitive environment, so users usually have
alternatives of the same kind of products, which results in
many challenges in testing GUIs to check and increase the
attractiveness of offered products.

Application developers need to consider their GUI and
user experience designs in order to attract more users. Poorly
designed GUI will lead to unsatisfied customers who will get
bored with the offered product.

It is very important to catch unnoticed bugs and flaws in
GUI and in the project before their designs go into
production. GUI testing is the process of testing the visual
elements of an application and it’s design to prevent the
problems mentioned above before any user can perceive
them. Those elements that influence the attractiveness can be
color, font, size, etc., of the visual elements on the screen and
business policy can be checked with the help of automated
UI testing. Any undesirable event, such as a design flaw, that
will occur during the automated GUI testing will reveal the

Fevzi Belli
University of Paderborn,
Paderborn, Germany.
Izmir Institute of Technology,
Izmir, Turkey.

belli@upb.de

Moharram Challenger
Electronics-ICT Dep.
University of Antwerp
Antwerp, Belgium.
moharram.challenger(@
uantwerpen.be

problems at the core of the application. Manual GUI testing
is a cumbersome process of checking the application before
it goes to the market. This process tends to be sloppy because
of the difficulties of the manual testing.

With the evolution of technology, new techniques and
processes have emerged to improve testing aspects of
software development life cycle. GUI testing is no longer
considered as a job to be done by a tester manually.
Nowadays, software projects become larger and larger, and
thus the required labor for testing every part of their GUI by
hand increases excessively, so that it almost becomes
infeasible.

Random tests are in general not an effective way to
validate products. However, random testing plays a crucial
role in testing activity [1] due its simplicity that explains its
popularity to be used as a yardstick to compare a novel,
suggested method with existing testing techniques, and to
evaluate its efficiency.

This work proposes an approach to random generation of
test sequences for GUI testing to address sequencing and
functional faults. In case of sequencing faults, GUI under test
(GUT) is unable reach the final event, this might cause a
system crash. In case of functional faults, the GUT is unable
to provide the desired functionality even if it reaches the
final event.

This paper suggests modeling the GUT by a finite state
machine that will automatically be converted to a regular
expression (RE) using a tool. The RE has the same
expressional power as the corresponding FSM as both can be
represented by a type-3 grammar, generating the same
regular language. The tester can also model the GUT directly
with a RE if he/she is familiar with working with RE.

There are several reasons why we prefer working with
RE to working with FSM. First, RE form algebra (event
algebra, see [2]) that allows algebraic operations that are
considerably easier and more efficient to be handled than
graph-based operations on FSM. Secondly, a RE model is
mostly less spacious than a graph model. Last but not least,
analyzing contextual relations can easier and more efficiently
be carried out by RE than with graph models.

Therefore, a tool to make up the missing context
information such as the position of a symbol that cannot
directly be determined in the original model, that is, FSM,
will analyze the RE. The result of this analysis is the context
table representing the contextual relations of the symbols. As
a next step, the context table will be traversed to generate the
test sequences. To do this, a symbol in the table is repeatedly
selected, starting from the initial symbol, in a random
manner until reaching a special, finalizing symbol for
constructing a test sequence. The selected symbol will be
excluded from the further iterations and included in the list

978-1-7281-3925-8/19/$31.00 ©2019 IEEE 170
DOI 10.1109/QRS-C.2019.00044

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



of covered symbols. Thus, the approach uses a symbol
coverage criterion to assess the adequacy of the test
generation. Once the required symbol coverage ratio is
achieved, the test generation terminates to exclude redundant
test sequences. For example, setting symbol coverage to
100% requires covering all of the different symbols in the
table. Once predefined coverage ratio achieved, test
generation terminates and excludes redundant test sequences
that are incomplete sequences. The proposed technique is
implemented and is available as a tool called PQ-Ran Test
(PQ-analysis based Random Test Generation). The case
study in Section V demonstrates the utilization of this tool,
among other aspects.

The approach comprises test preparation and testing
steps. In test preparation step, the tester models the GUI by a
FSM using the tool JFLAP [19] that also converts the FSM
into a corresponding RE. A tool analyzes the RE to construct
the context table that contains contextual information of the
symbols contained in the RE. In festing step, the developed
tool PQ-RanTest applies to the context table to generate test
sequences.

For wvalidation of the approach, mutation testing
technique is used. This technique entails generation of
mutants of the GUT as its faulty versions [28,29] to model
functional and sequencing faults. Mutants are obtained by
applying mutation operators to the source code of the GUT.
These mutation operators form slight changes of the code,
such as manipulation of an assignment. The test sequences
generated from the RE and its context table will then be
applied to these mutants. If they reveal a fault the mutant is
said to be “killed”, that is, the test sequence was successful.
Otherwise we have a behavioral equivalent mutant of the
GUT. For running the tests, a test automation tool will be
used.

Section 2 summarizes related work on GUI testing and
random test generation. Section 3 briefly summarizes the
used notions and techniques as background information.
Section 4 presents the proposed approach. A case study
demonstrates and evaluates the proposed approach in Section
5. Section 6 provides the tool support. Section 7 summarizes
the results of case study. Section 8 concludes the paper
discussing the results and further perspectives.

II. RELATED WORK

The term GUI testing refers to testing a GUI-based
application, that is, one that has a graphical-user interface
(GUI) front-end. GUI testing is based on executing
sequences of operations as events, such as, “click on
button”, “enter text”, “open menu” on GUI widgets, such as ,

“button”, “text-field”, “pull-down menu” [3].

The GUI testing can be effectively specified via a well-
selected model, for example a finite state machine (FSM) [4],
event sequence graph (ESG) [5,6], event flow graph (EFG)
[7,8]. The FSM and ESG are graph-based models, thus
requires usage of the graph traversal and optimization
algorithms on the graph model to generate test sequences.
Semi-formal models as EFG and UML diagrams are harder
to be used for algorithmic operations, such as optimization of
test suites, as their rich syntax and semantics do not always
allow application of strict mathematical methods, for
example graph theory.

171

Shehady and Siewiorek [4] introduced a formal way of
representing a GUI, namely variable finite state machine
(VFSM) that is constructed from the specification of the
system. VFESM is then converted to a finite state machine
(FSM) for test generation using the well-known W-Method,
originally proposed by Chow [9]. The W-Method requires a
fully specified FSM, thus, the model may contain a huge
number of NULL transitions. Even though the VFSM
involves less number of states than the FSM, test generation
algorithm runs on the huge number of states of the FSM.

Belli [5] proposes event sequence graphs (ESG) for
modeling GUI and test sequence generation techniques based
on optimization algorithms. The ESG represents the given
GUI’s events at the vertexes and the relations of the events at
the edges on this a graph like a model. Testing methods in
[5] combines positive and negative testing to achieve a
holistic view. The system is checked against legal inputs
(correct behavior) in positive testing and illegal inputs
(incorrect behavior) in negative testing in accordance with
the expectations of the user. The proposed method is generic,
i.e. defining both legal and illegal cases.

Memon et al. [7] present a planning algorithm based on
artificial intelligence for automatic test generation from the
EFG model. They also propose a hierarchical model
generation from the given GUI structure. The EFG model is
constructed and then the planning algorithm, which requires
defining a set of operators, an initial state, and a goal state, is
initiated. Finally, the algorithm generates test sequences
between initial and goal states by considering GUI events
and interactions. They also use decomposition of the GUI
model to handle the scalability problem.

Besides mentioned models to represent GUI, Belli [5]
offers RE model being equivalent to FSM in expressive
power that is variety and quantity contained in the model.
Moreover, RE offers compactness and different coverage
metrics than FSM. Kilincceker and Belli [22] offer novel RE
based coverage criteria and analysis their features regarding
to test generation complexity. They also apply these
coverage criteria on GUI testing.

Ravi et al. [23] introduce RE based testability analysis
and optimization methods for register transfer level
sequential circuits. Kilincceker et al. [24] present an RE-
based technique for validation of hardware description
language (HDL). They use abstract syntax tree (AST)
representation of RE for which they suggest a traversal
algorithm on this tree considering algebraic operators of RE
model. RE becomes more popular and applies on different
domains [25,26,27] of testing area due to its algebraic
structure and compactness.

Random testing is a fundamental and important aspect of
software testing due its simplicity [10]. It refers to selection
of random test input from input domain of software under
test. There are several approaches proposed for random
testing such as Adaptive Random Testing (ART) [11] and
Directed Automated Random Testing (DART) [12]. These
approaches apply on source code of the system.

The present paper introduces a specific method for
random test generation from RE model based on symbol
coverage criteria. AutoTest [13] is a similar research tool
developed by ETH Ziirich. It generates test inputs from
contract specifications. GraphWalker [14] is another model-
based random test generation tool. It uses graph model of the

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



system and generates random test inputs from this model. It
also enables to terminate test generation by means of
predefined coverage criteria, which are edge coverage and
vertex coverage.

To our best knowledge, this is the first work to propose a
random test generation using a RE-based model. This work
presents a test generation technique that consists of test
preparation step and testing step, controlled by the coverage
criterion specifically developed.

III. PRELIMINARIES

The notions of finite state machine (FSM) and regular
expression (RE) will be used in further sections extensively.
The formal definition can be given as follows.

Definition 3.1. Finite State Machine (FSM) [15]: Following
S-tuple defines a FSM
<Q, %, 3, q 0, F>with

Q: a finite set of states

X: a finite set of input symbols (alphabet)

d: a state transition function

qo: an initial (starting) state belongs to Q

F: a finite set of final states belongs to Q.

Definition 3.2. Regular Expression (RE) [15]: A RE by
means of rules is defined by an alphabet which is shown by a
sequence of symbols a, b, c,... Symbols can occur zero or
more times related to the following rules that define the RE.

or “”’(blank). For
example, “xy” refers to ‘a is followed by b’.

[T

e Concatenation — is represented by .

e Selection (Union), is represented by “+”. For example,

x+y refers to ‘x (exclusive) or y’.

o

° . For

Iteration (Kleene’s Star), is represented by
example, “x*” refers to ‘x is iterated a desired
times’ (including zero times that means the empty
word “\”’). Moreover, “x+” means at least one time
iteration that is excluding A.

Example 1: As an example, a RE below can be given.
[(xy(t+z)*)] @)

The RE in (1) refers that the symbol “x” is followed by
the symbol “y” which is followed by zero or more times
iteration of symbol “t” or “z”.

IV. PROPOSED APPROACH

The proposed approach comprises of two steps: Test
preparation and festing. In test preparation step, we model
the GUI behavior by means of a FSM using JFLAP tool [19]
that also converts the FSM to RE and finally analyzes the RE
to construct context table.

In testing step, the random test generator, called PQ-
RanTest developed in our research work, is executed to
generate test sequences. Fig. 1 depicts the concept of the
proposed approach. Following subsections explain the details
of the test preparation and testing steps.

172

A. Test Preparation

The GUI is the input of this step. A tester models the
GUI manually to obtain an appropriate finite state machine
(FSM) representation. The tester can also draw the FSM
model from GUI using the JFLAP tool [19] that is then
utilized to convert FSM into RE model. RE contains missing
context information that is necessary for random test
generation. Context refers to location of a symbol in RE and
its relations with other symbols. For example, “[(xy (t+z)
*)]” is a RE given in (1). Right side of symbol “x” is only
“y” and left side is symbol “[”. Thus, right side of the “x”
symbol in the context table contains symbol “y” and left side
is “[”. We use terms right context and left context of a
symbol. Context table contains for all symbols of the RE
their right and left context. Moreover, PQ-Analysis uses
indexing the RE to remove ambiguities in the RE that might
cause missing context-based errors. Consider a same symbol
in different locations in the RE, covering a symbol means
addressing only one symbol in one location and missing
others. Thus, PQ-Analysis uses indexing to overcome these
problems.

B. Testing

The output of the PQ-Analysis tool [16,17] is the input of
the PO-RanTest tool which is developed and utilized within
the scope of the proposed approach. PO-RanTest traverses
the context table starting from initial symbol to end symbol
in a random manner.

GUI

Test Preparation

(&),

v

5)

=

Context Table

FSM RE Analysis
Testing

Test Automation)

o :

Test Report

Fig. 1:Illustration of the Approach

To assess adequacy of the test generation, a symbol
coverage criterion is used. The symbol coverage criterion is a
predefined ratio to terminate test generation when it is
achieved. For example, 80 coverage ratios refers to 80% of
the all different symbols in the context table required to be
contained in the already generated test sequences for test
generation termination.

PQ-RanTest terminates the test generation process when
the predefined symbol coverage ratio is achieved. Then, the
generated test sequences are put together into a test suite.
Finally, a test automation tool, such as Selenium,
automatically executes this test suite on GUI under test
(GUT). Test report from testing step finishes the procedure.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



V. CASE STUDY

In this paper, we select a case study that is a module of
Web-based commercial tourist portal, the GUI of ISELTA
(Isik’s System for Enterprise Level Web-Centric Tourist
Applications (ISELTA) [16]. ISELTA [16] is a commercial
web portal for marketing tourist services and an online
reservation system for hotel providers. It is a cooperative
work between ISIK Touristic and the University of
Paderborn. ISELTA implemented in PHP programming
language. We apply mutation operators to the PHP source
code of ISELTA to obtain mutants that model the addressed
sequencing and functional faults.

“Special” module of ISELTA enables users to offer
advertisements for special events, for example, a celebration
event from high school. Thus, users provide special prices,
rooms at specific date to customers. “Special” module
contains “title” for event name, “number” for number of
available rooms, “price” for event value and others shown in
TABLE 1.

Fig. 2: ISELTA “Special” Module Original FSM

TABLE I: ABBREVIATIONS OF THE EVENTS ON FSM

Letter Action

k Click edit

1 Click save

Click Add

Set title text

Set number value

Set price value

N < X = <

Set description text

Remove all text

-

Remove title input

p Remove price input
n Remove number input

In the original FSM model of the “Special” module, see
Fig. 2, we assign a symbol to each event as a transition label.
The events represent actions such as filling an input, clicking
a button, or removing some text from an input. These labels
enable to implement Selenium test scripts. The event letters
used in the current work are defined in TABLE 1.

JFLAP tool [19] automatically converts the FSM in Fig. 2
into the RE model in (2).

173

Example 2: An example, a RE of the “Special” module is
given in (2);

(kz (u(y (x1+1)+1)+1) +ku(y(xl+1l)+1)+ky (x1+
1) tkxl+uyzv+tuzyv+zyuvt+kl+yzuv) (kz (u(y(x1
+1)+1)+1)+ku(y(x1+1)+1)+ky(x1+1)+kxl+kl)

)

After obtaining the RE model from the FSM, we input
the RE into a software tool called PQ-Analysis [16,17]. This
is specific software designed to analyze RE for context
properties. Fig. 3 shows main screen of the PQ-Analysis
tool.

*

|2 PQ-Analysis X

Regular Expressior [ab{c+d)*] import RegExp

-
v

The regular expression field accepts the RE that we
obtained from the JFLAP tool [19]. PQ-Analysis generates
the context table shown in Fig. 4.

Word-Selection Mode:

() manual

[abcad]

() read from file

(®) automatic Maximal length for Correction Areas: 0

[]save PQ-Results in Textfile results bt

D save word proposals and corrected words

Fig. 3: PQ-Analysis tool

## CONTEXT TABLES &
## RIGHT-LEFT-CONTEXT-TABLE OF T ##

®'L | Symbzol | ® 'R
_____________________________ S,
| 2'[ |2'a + 3'b + 4']
_____________________________ e
1'[ +2'a+ 7'a+ 10'c + 11'a|] 2'a |2'a+ 2'b + 4"]
————————————————————————————— Fm—————t
1'[ +2'a+ 7'a+ 10'c + 11'a| 3'b |
————————————————————————————— Fm—————t
10°'c + 11'a| 4'] |
—————————— Fm—————t
| s*a |
Fm————— +
i'h + 6'h | &'b |
————————————————————————————— Fm—————t
5'a | #'a |
————————————————————————————— Fm—————t
5'a | 8B |
————————————————————————————— Fm—————t
8'b + 12'b | 2'a
————————————————————————————— Fm—————t
8'b + 12'b | 10'¢c |2'a + 2'b + 4']
_____________________________ e
2'a | 11'a |2'a + 2'b + 4']
_____________________________ e
3'a | 12'b | 9'a + 10'c

Fig. 4: PQ-Analysis result window

PQ-Analysis tool helps to save the results in a text file.
We need a text file because in the next step our tool called
PQ-RanTest takes the results.txt as an input and generates
test sequences.

After generating test sequences, we utilize Selenium tool
[20] to automate test execution that can run each mutant of
ISELTA. Testing each case by hand would take a huge
amount of time. With the help of the automated test process
and Selenium, we can finish each mutant test suite within 2-3
minutes.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



There are in total 12 mutants generated from original

code of ISELTA by means of mutation operators. All
mutants of the ISELTA system are available on [21].

TABLE 2: MUTANTS AND SEMANTICS

Mutant Semantics

Add empty input boxes

Update empty input boxes

Add empty Number of Packages input box

Add empty price input box

Add empty title input box

Update empty title input box

Update empty price input box

RN | (W o=

Update empty number input box

Add click does not respond

Edit click does not respond

Both Add and Edit click does not respond

After edit save button move to initial state without
saving

*Mutants are available online on [21].

Mutant 1-8 model functional faults and mutant 9-12
model sequencing faults. For example, mutant one has “add
empty input boxes” semantics meaning that someone enables
to add a special feature without filling required information
in the boxes. This mutant models functional fault due to
undesired action by passing required fields without system
warning. To model this fault, the deletion and insertion
mutation operators change the code of the system. Fig. 5
shows that condition of “if” statement, red under lined in (a)
and (b), deleted and “true” is inserted.

FHEEFREF R R R R AR R 444
FHEEEEEEEE add Special #####EEEEEd
HHERERERERER AR R AR SRR EE

} elseif (isset($_POST['btn_,
$obj_product $ SESSION['r

if(Sallvalid && specialsArevalid(Scbj product))

if {!50bj_ product->addSpecial ($_POST['frm a1
ULD Bry;

error ("«

debug ("E
} else {

HTMLElement: : flushElements () 5

}
(a) Original Code

FHEFFHFFFFFFAIAAA A4
########## add sSpecial ####E######
#HEFAHAFAAAAA AR A AR RS

} elseif(isset (5 POST['btn add

Sobj_product = $_SESSION[
if ({true)
if(! éobj_product7>add5pecial ($_PO:
error (" ULD Sl

1 il
g Z113

HTMLElement: : flushElements () ;

(b) Mutated Code

Fig. 5: Original (a) and mutated (b) code segments

174

VI. TOOL SUPPORT

A set of tools are available for the proposed approach.
Within the scope of the current work, we developed some of
the tools, and we obtained others from different sources. We
integrated all tools into a tool chain that helps us to get rid of
tedious and error-prone manual work. Fig. 6 shows the tools
used in the current work. Among these tools, JELAP [19],
PQ-Analysis [16,17], and PQ-RanTest are domain
independent tools, whereas Selenium [20] is domain
dependent designated for test automation for software
testing.

JFLAP PQ-Analysis PQ-RanTest Selenium

0~0~0~0

The FSMis drawn from
specification then converted
to regular expression

Create Context Table from  Generate Random Test

the regular expression Sequences Test execution

Fig. 6: The tools used in the proposed approach

A. JFLAP

Java Formal Languages and Automata Package (JFLAP)
assists to design and experiment with techniques known from
formal languages and automata theory [19]. JFLAP supports
several formal models such as finite-state automation, Mealy
and Moore machine, and regular expression. It also enables
conversion between these models. It is extensively used in
both teaching formal languages and experimenting in
academia.

We use JFLAP for modeling a given GUI of software by
means of a finite state machine (FSM) and converting it to a
regular expression (RE). There are several algorithms for
conversion from a FSM to a RE. The algorithm used in
JFLAP results in more compact RE than others as we found
from on our experiments. Therefore, JFLAP is selected for
both modeling and conversion.

B. PQ-ANALYSIS

PQ-Analysis [16,17] tool is a software for modeling the
GUT, which can be a software system or a hardware system
coded in a hardware description language (HDL).

PQ-Analysis results in a table that contains contextual
information. This context table contains valuable information
for test generation that is normally missing in a conventional
regular expression. To be more precise, we use the context
table resulted from PQ-Analysis for test generation.

PQ-Analysis tool enables to convert FSM into RE model.
However, we choose JFLAP for conversion due to size of the
resulted RE model. JFLAP results in compact RE based on
the difference between the algorithms used for conversion.

PQ-Analysis results in a context table divided into two
parts that are forward and backward context table and each
part containing right and left context information.
Kilincceker and Belli [22] propose coverage criteria based on
forward and backward parts of the context table.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



C. PO-RANTEST

PQ-RanTest is a tool for random test sequence generation
from a context table resulted from PQ-Analysis tool. It
utilizes a symbol coverage criterion for the context table that
contains symbols. It traverses the context table to generate
test sequences starting from the opening symbol “[” and
ending at the closing symbol “]” in a random manner. PQ-
RanTest finishes test generation when the required symbol
coverage ratio achieved, and resulting test sequences are
collected into a test suite.

D. SELENIUM

Selenium is a test automation tool to execute test
sequences and produce a test report. It consists of the
components Web-Driver and IDE. The Web-Driver provides
functions for integrating the programming languages Java
and Python for automation of the test execution. IDE has an
easy-to-use interface including plug-ins for specific internet
browser and simple record-and-playback of interactions with
the browser.

The proposed approach uses Web-Driver part for
integration and automation. Web-Driver containing generic
java test scripts performs test execution for test sequences
generated from PQ-RanTest.

VII. RESULTS AND DISCUSSION

This paper uses “Special” module of ISELTA to validate
the proposed approach. To evaluate effectiveness, we address
fault coverage, length of generated test sequences, time for
test generation and time for test execution metrics. TABLE 3
shows results based on these metrics on “Special” module of
ISELTA.

As a first step, we construct the FSM model of “Special”
module of ISELTA that will automatically converted into a
corresponding RE. Our specific technique, PQ-Analysis
acquires the context table by analyzing the RE. We generate
test sequences from the context table using PQ-RanTest. We
give details in Section 5.

We carry out an experiment on the mutants of the of
“Special” module of ISELTA, by executing test sequences
generated by PQ-RanTest. The mutants model functional and
sequencing faults. We measure effectiveness of PQ-RanTest
for revealing modeled functional and sequencing faults.

TABLE 3: TEST RESULTS FOR THE RANDOM TEST
GENERATION AND TEST EXECUTION

Symbol Coverage
100% 60%
Fault Coverage (%) 100 87.5
Length of Test 3056 608
Sequences (Symbols)
Time for Test 2.8 0.7
Generation (secs)
Time for Test Execution 857 235
(secs)

Results in TABLE 3 show that PQ-RanTest achieves
100% fault coverage in 2.8 seconds for test generation, 857
seconds for test execution and total length of test suite are

175

3056 symbols. While setting the symbols coverage to 60%
results in 87.5% fault coverage in 0.7 seconds for test
generation, 235 seconds for test execution and total length of
test suite are 608 symbols.

The above summarized results of the case study show
that the proposed approach is effective to reveal functional
and sequencing the faults. We have modeled eight functional
and four sequencing faults by utilizing mutation operators
that are applied on source code of GUT. We observe that a
decrease in the symbol coverage reduces the fault coverage
ratio. Thus, the symbol coverage and the fault detection ratio
correlate.

VIII. CONCLUSION

This paper proposes a context-driven random test
generation approach for testing GUI wusing regular-
expression-based techniques. We demonstrated the proposed
approach using a case study. Results show that the proposed
approach is effective to reveal functional and sequencing
faults. Coverage-oriented random test generation enables to
control the test process by setting desired coverage ratio. The
context-driven test generation from RE model offers a new
perspective to model-based test generation area.

As a future work and for evaluation and improvement of
the proposed approach we plan further experiments with
other model-based random test generation approaches such
as AutoTest [13] and GraphWalker [14]. Moreover, we
intent to conduct more experiments using different fault
models to evaluate effectiveness of PQ-RanTest and thus
improve our techniques and tools.

REFERENCES
1. Chen, T. Y., Kuo, F. C,, Merkel, R. G., & Tse, T. H. (2010).
Adaptive  random  testing: The art of test case
diversity. Journal of Systems and Software, 83(1), 60-66.
Salomaa, A., Two Complete Axiom Systems for the Algebra
of Regular Events, Journal of the ACM 13(1):158-169, DOI:
10.1145/321312.321326 (1966).
Banerjee, Ishan, Bao Nguyen, Vahid Garousi, and Atif
Memon. "Graphical user interface (GUI) testing: Systematic
mapping and repository." Information and Software
Technology 55, no. 10 (2013): 1679-1694.
R.K. Shehady, D.P. Siewiorek, A method to automate user
interface testing using variable finite state machines, in:
Proceedings of the 27th Annual International Symposium on
Fault-Tolerant Computing (FTCS 1997), IEEE Computer
Society, Washington, DC, 24-27 June, 1997, pp. 80—88.
Belli, F., Finite state testing and analysis of graphical user
interfaces. Software Reliability Engineering, 2001. ISSRE
2001. Proceedings. 12th International Symposium on. IEEE,
(2001).
Belli, F., Budnik, C. J., Hollmann, A., Tuglular, T.,Wong, W.
E., Model-based mutation testing approach and case
studies. Science of Computer Programming, /20, 25-48,
(2016).
AM. Memon, M.E. Pollack, M.L. Soffa, Hierarchical GUI
test case generation using automated planning, IEEE Trans.
Software Eng. 27 (2) (2001) 144-155.
Memon, Atif M. "An event-flow model of GUI-based
applications for testing." Software testing, verification and
reliability 17.3 (2007): 137-157.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.



20.

21.

22.

23.

24.

25.

26.

27.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 08,2022 at 13:04:21 UTC from IEEE Xplore. Restrictions apply.

. PQ-Analysis

. Chow, T. S. (1978). Testing software design modeled by

finite-state machines. IEEE transactions software

engineering, (3), 178-187.

on

. Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,

Grieskamp, W., ... & Li, J. J. (2013). An orchestrated survey
of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8), 1978-2001.

. Chen, T. Y., Kuo, F. C., Merkel, R. G., & Tse, T. H. (2010).

Adaptive random testing: The art of test case diversity.
Journal of Systems and Software, 83(1), 60-66.

. Godefroid, P., Klarlund, N., & Sen, K. (2005, June). DART:

directed automated random testing. In ACM Sigplan Notices
(Vol. 40, No. 6, pp. 213-223). ACM.

. Ciupa, L., Leitner, A.: Automatic testing based on design by

contract. In: Proceedings of Net. ObjectDays 2005, pp. 545—
557 (2005).

. Olsson, N., and K. Karl. "Graphwalker: The open source

model-based testing tool." (2015).

. Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman.

"Automata theory, languages, and computation." International
Edition 24.2.2 (2006).

. F. Belli, Extending Regular Languages for Self-Detection and

Self-Correction of Syntactical Faults (PhD Thesis in German;
Technical Univ. Berlin), Bericht 119 der Gesellschaft fiir
Mathematik und Datenverarbeitung, , Oldenburg Verlag,
1978.

Tool, Available online:

http://download.ivknet.de/, (last access: May 2019).

. ISELTA website, Available online: http://iselta.ivknet.de/,

(last access: May 2019).

. JFLAP Tool, Available online: http://www.jflap.org/, (last

access: May 2019).

Selenium Test Automation Tool, Available online:
https://www.seleniumhq.org/, (last access: May 2019).
ISELTA Mutants, Available online:

http://iseltamutants.ivknet.de/, (last access: May 2019).
Kilincceker, Onur, and Fevzi Belli. "Regular Expression based
Coverage Criteria for Graphical User Interface”, CEUR
Workshop Proceedings, (in Turkish), 2017.

Ravi, Srivaths, Ganesh Lakshminarayana, and Niraj K. Jha.
"TAO: Regular expression-based register-transfer level
testability analysis and optimization." IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9.6 (2001): 824-
832.

Kilincceker, O., Turk, E., Challenger, M., & Belli, F. (2018,
July). Regular Expression Based Test Sequence Generation
for HDL Program Validation. In 2018 IEEE International
Conference on Software Quality, Reliability and Security
Companion (QRS-C) (pp. 585-592). IEEE.

Kilincceker, O., Turk, E., Challenger, M., & Belli, F. (2018,
April). Applying the Ideal Testing Framework to HDL
Programs. In ARCS Workshop 2018; 31th International
Conference on Architecture of Computing Systems (pp. 1-6).
VDE.

Arcaini, Paolo, Angelo Gargantini, and Elvinia Riccobene.
"Fault-based test generation for regular expressions by
mutation." Software Testing, Verification and Reliability
29.1-2 (2019): e1664.

Mercan, G., Akgiindiiz, E., Kilinggeker, O., Challenger, M., &

Belli, F.. “Preliminary work on ideal testing of android
application”, (2018), (in Turkish), CEUR Workshop
Proceedings.

176

28.

29.

DeMillo, Richard A., Richard J. Lipton, and Frederick G.
Sayward. "Hints on test data selection: Help for the practicing
programmer." Computer 11.4 (1978): 34-41.

Belli, Fevzi, Christof J. Budnik, and W. Eric Wong. "Basic
operations for generating behavioral mutants." Second
Workshop on Mutation Analysis (Mutation 2006-I1SSRE
Workshops 2006). IEEE, 2006.



