
Towards a Model of Testers' Cognitive Processes: Software Testing as a
Problem Solving Approach

Downloaded from: https://research.chalmers.se, 2024-04-24 16:50 UTC

Citation for the original published paper (version of record):
Enoiu, E., Tukseferi, G., Feldt, R. (2020). Towards a Model of Testers' Cognitive Processes:
Software Testing as a Problem Solving Approach. Proceedings - Companion of the 2020 IEEE 20th
International Conference on Software Quality, Reliability, and Security, QRS-C 2020: 272-279.
http://dx.doi.org/10.1109/QRS-C51114.2020.00053

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

Towards a Model of Testers’ Cognitive Processes:
Software Testing as a Problem Solving Approach

Eduard Enoiu1, Gerald Tukseferi1, Robert Feldt2

1Software Testing Laboratory, Mälardalen University, Västerås, Sweden
2Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract—Software testing is a complex, intellectual activity
based (at least) on analysis, reasoning, decision making, ab-
straction and collaboration performed in a highly demanding
environment. Naturally, it uses and allocates multiple cognitive
resources in software testers. However, while a cognitive psy-
chology perspective is increasingly used in the general software
engineering literature, it has yet to find its place in software
testing. To the best of our knowledge, no theory of software
testers’ cognitive processes exists. Here, we take the first step
towards such a theory by presenting a cognitive model of
software testing based on how problem solving is conceptualized
in cognitive psychology. Our approach is to instantiate a general
problem solving process for the specific problem of creating test
cases. We then propose an experiment for testing our cognitive
test design model. The experiment makes use of verbal protocol
analysis to understand the mechanisms by which human testers
choose, design, implement and evaluate test cases. An initial
evaluation was then performed with five software engineering
master students as subjects. The results support a problem
solving-based model of test design for capturing testers’ cognitive
processes.

I. INTRODUCTION

For many years, researchers have tried to create new

techniques for effectively testing software. This research has

answered numerous questions, but still many of them remain

unanswered. For example, not that much research has focused

on discovering how humans perform testing [1]. The purpose

herein is to develop a model of the cognitive processes

involved in software testing.

A traditional approach to software testing is to manually

create test cases or scripts that guide test execution and

how the software’s results are checked for correctness. When

these test cases are not a priori created and used during test

execution, the approach is called exploratory testing [2]. In

both approaches, humans are using their cognitive abilities

to create or explore different scenarios for finding bugs and

check if the software meets its requirements. A significant

portion of the software testing effort involves the design of test

cases, test plans, and strategies based on a variety of test goals.

Ammann and Offutt [3] classified the process of test design

in two general approaches: criteria-based test design satisfying

certain engineering goals and human-based test design based

on domain and human knowledge of testing. However, in

practice, this is an artificial distinction, since these are com-

plementary and in many cases, human testers are using both

to fully test software. Itkonen et al. [4] observed the testing

sessions of eleven software professionals performing system

level functional testing. They identified several practices for

test session and execution strategies including exploratory

testing, systematic comparison of different software versions

and input partitioning. It is obvious that in a domain like

software testing, test goals and strategies for creating test cases

seem to be less well defined as problems in other areas like

physics and math. Research in software testing has identified

several variables that influence the quality and performance

of software testing [5], [6]. Among these are knowledge and

strategies for testing, as well as external factors.

In response to this need to better understand the test design

process, this work explores the cognitive processes used by

testers engaged in software testing. In this paper, we presume

software testing as a problem solving process and map the

steps and sequence by which testers perform test activities.

As a first step towards investigating if there is value in our

approach, we present an experimental design and the results

of testing it in a pilot study. We hypothesize that a cognitive

model of test design can be represented as a cyclical problem

solving process. Empirically evaluating this model requires

studying the process used by testers and programmers to test

software programs. We are proposing an experiment during

which subjects are asked to test a program to the best of

their abilities based on a program specification while thinking

aloud. The resulting verbal protocols are transcribed, coded

and content analysis is then used to validate the hypothesized

process steps. We performed an initial pilot study using

five students to verify that the participants utilize a pattern

of cognitive process steps as well as knowledge acquisition

strategies to derive test cases. If our model would be further

empirically validated and improved, we argue it can help

enhance the test design process as well to better align testing

tools with the cognitive needs of testers. Finally, we outline

different methods that can be used to research and refine the

proposed cognitive model of software testing.

II. BACKGROUND

The software testing process can be divided into four

steps [3]: test design, test automation, test execution, and

test evaluation. These activities occur within an organizational

environment and one or more persons are assigned to perform

them. Many factors influence these activities such as orga-

nizational structure, training, experience, testing knowledge,

automation environment, and testing standards. All too often,

researchers focus on different technical aspects of software

272

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00053

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

testing without taking into account the human aspects of

different test activities. Humans involved in the creation of test

cases are basically trying to solve certain problems that have

been posed to them (e.g., assignments from test managers)

or recognized on their own (e.g., the need for additional

confidence in releasing a certain feature). Despite the diversity

of these testing problems and goals, the ways people go

about solving them show a number of common characteristics

to general problem solving [7]. Problem solving is a very

important topic of research in cognitive science but also in

applied fields such as artificial intelligence. Over the years

many researchers [8] have delved into this topic and have

discovered a great deal of knowledge about how humans solve

problems. We recognize here the need for examining and

classifying the underlying characteristics of problem solving

models when applied to software testing.

III. RELATED WORK

Behavioral Software Engineering (BSE) is defined as the

study of cognitive, behavioral, and social aspects of soft-

ware engineering as performed by individuals, groups, or

organizations [1]. During the last couple of decades, many

researchers have studied different cognitive aspects of quality

assurance. For example, Hale et al. [9] proposed a model of a

programmer’s cognitive skills during software maintenance.

This cognitive process model for debugging is based on

structural learning theory, which integrates both declarative

models, such as a program comprehension model and problem-

solving models. In a later study, Hale et al. [10] evaluated the

proposed model through the use of verbal protocol analysis,

which is accomplished through a controlled experiment, where

the subjects are required to debug a program that contained

an unknown error.

Robillard et al. [11] (in a multidisciplinary team composed

of software engineers and cognitive psychologists) also studied

the cognitive activities of software engineers. This study aimed

to derive good practices based on observations and analyses

of the processes that are typically used by software engineers.

The experiment was captured on video, it was then transcribed,

coded, and then further defined in categories, which helped

in defining the cognitive behaviors. The results of this study

shows that software review is composed of three types of

cognitive activities: review, synchronization, and elaboration

of alternative solutions.

Letovsky [12] studied the cognitive processes underlying

program understanding, by focusing on events that occur in

the order of seconds and minutes, such as identifying the

intent behind a line of code. During analysis, a taxonomy for

questions and conjectures was developed as well as a theory

of the mental representations and processes that produced

them. The questions were explained in terms of processes

that evaluate the consistency and completeness of the human’s

developing mental model and the conjectures as a planning

process operating on a variety of types of knowledge.

Also related to program comprehension, Duraes et al. [13]

studied the functional patterns activity in mapped brain regions

associated with finding bugs. This study has been performed

by using functional magnetic resonance imaging (fMRI). Their

results confirmed that brain areas associated with language

processing and mathematics are highly active during coding

inspection and that there are specific brain activity patterns

that can be related to decision-making during bug detection or

suspicion. It seems that the right anterior insula may serve as

a quality indicator of programmers’ capacity to identify bugs

when faced with a challenging piece of code.

Overall, there is a lack of studies concerning the behavioral,

cognitive, and social aspects of software testing. Hale’s model

[9] seems to be the closest cognitive model related to software

testing, but it is focusing on debugging tasks. There is a need

to handle the issues involved in studying the behavioral aspects

of human-based software testing. The aim of this paper is to

touch on some of the cognitive aspects of software testing by

investigating testing practices as problem solving.

IV. FOUNDATIONS FOR A COGNITIVE MODEL OF

SOFTWARE TESTING

Many models representing the problem solving processes

are devised principally from Polya’s phases in solving math-

ematical problems [14]. Several psychologists have also de-

scribed the problem solving process as a cycle [15]–[17].

Problem solving occurs throughout life. A young child may

be trying to figure out what a word means or how to solve

a mathematical problem. An architect may be designing an

apartment building, or a software tester is attempting to find

certain effective test inputs using boundary value analysis. De-

spite the diversity of problems, examining these as a problem

solving process, their commonalities and what they tell us

about human thought and intelligence is important. Depending

on the testing problem and how we mentally represent a test

goal, different cognitive processes are used, some conscious

and some unconscious.

Traditionally, problem solving has been viewed in psy-

chology and artificial intelligence research as determined by

representation and search processes [7], [18]. In this way,

a problem is represented as a problem space, consisting of

states and operators. A human or a program solves a problem

when it finds a path from the initial goal to the goal state. In

search-based software testing [19]–[22], much of the work has

focused on understanding different search strategies that might

be used for guiding the search towards specific test goals.

More recently, problem representation has become an area

of high interest in problem solving research [17]. The repre-

sentation seems to be at least as crucial in determining whether

a problem is solved as to how the search is performed. Given

these foundations on problem solving, we consider in the next

section a cognitive model of software testing performed by

human testers based on problem solving activities.

Overall, this is quite a traditional view of problem solving

consisting of fairly well-defined classical steps performed

cyclically in a sequence. Other modern cognitive theories and

models are more complex [23] since they handle different

issues involved in studying the psychology of human problem

273

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

��������	
�
������
��
	����

�������	��
����
��	

�
	�

�
��
�

��
�	
��
���������
�����

��
��
�

��
��

�
��
�
�

��
�������
	�����

�

��
��
	���

��

��
��
��

��
�
�

��

�
��
���
���

��

 ������

���������

���!��

"

	��!
	

#
�
��
��$
�
��

	
	

%&���
��

Fig. 1: The software testing process viewed as a cyclical problem solving model.

solving such as developing expertise and skills [24], insight,

creativity and the neuroscience of problem solving [8]. To get

a handle of all these issues in the software testing context,

we first need a way of defining our terms and classifying

testing problems. In the next section, we outline a software

testing process devised from a classical problem solving model

as a starting point for framing such investigations. Future

enhancements can, possibly, benefit from considering more

recent and holistic models proposed by later cognitive theorists

and experimentalists.

V. A COGNITIVE MODEL OF SOFTWARE TESTING

To get a handle on the issues involved in studying the (cog-

nitive) psychology of software testing performed by humans,

we need a way of defining and classifying the process of

human-based software testing. In response to the need for a

better understanding of the test creation process, this work

explores the cognitive underpinnings used by testers in the test

design phase. The model shown in Figure 1 is centered around

our observation that test design and execution can be viewed as

a problem solving process. In order to precisely describe this

process, we need to better understand the cognitive processes

associated with test design. While viewing it as a problem

solving process is not the only psychological lens we could

use, we argue it is a natural and fruitful one.

There are many models of problem solving (e.g., Schoen-

feld’s model [25], Nunokawa’s model [26], Jonassen’s model

[27], Hayes’ model [16]) developed on the basis of the four

problem solving phases devised by Polya [14] for mathemat-

ical problem solving. In order to solve testing problems one

would need to use a number of cognitive processes that are

not directly covered by Polya’s phases. In short, knowledge,

skills, creativity and the cognitive resources needed to exploit

them are involved in software testing. As a starting point, the

software testing cycle viewed as a classical problem solving

process consists of the following stages (mirrored in Figure 1)

in which the human tester must:

• Identify the Test Goal: Recognize and identify the test

goal as a problem that needs to be solved. According

to Getzels [28], there are three main kinds of problems

one can identify: those that are presented, those that are

discovered, and those that are created. A presented test

goal is one that is given to the tester directly and it is

stated clearly (i.e., predefined criteria-based test goal). A

discovered and/or created test goal, however, is one that

first has to be recognized. In such cases, testers might be

using exploratory testing strategies and/or seek out new

test goals by using their intuition and experience.

• Define the Test Goal: Define and understand the test goal

274

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

mentally and what the associated test cases must and

should do. The test goal definition is the aspect of testing

in which the scope and the test goals are clearly stated

and described. A test goal provides the tester with a set

of givens. Faced with these givens, a tester applies some

kind of operations to reach the goal state (e.g., creation

of a test case fulfilling the test goal). A test goal may be

represented in a variety of ways, for example, visually

or verbally. For instance, in achieving pairwise coverage

[3], one would need to define and represent the goal as

the task to create all possible pairs of parameter values

that can be covered by at least one test case.

• Analyze Knowledge: Organize his or her testing knowl-

edge about the test goal. Everyone approaches a problem

situation with a unique knowledge base. For somebody

with knowledge in test design techniques, analyzing its

prior knowledge involves using different kinds of opera-

tors depending on the test goal type and how we mentally

represent it (e.g., mathematical operators). In order to

create test cases, we would need to use general skills

such as inferencing, case-based reasoning, abstraction

and generalization for organizing the information from

different steps. At an even more general level, there are

metacognitive skills related to motivation and allocating

cognitive resources such as attention and effort that one

needs to use. In addition, one would need to use domain

knowledge, which may include: electrical, mathematical

and computer science concepts as well as programming

concepts, rules and principles.

• Form Strategy: Develop a solution strategy for creating

the necessary test cases using certain operators. These

operators are mental representations of the actions a

tester can perform on the givens. For example certain

calculations need to be done using mental operators. The

set of operations you perform to get to the goal state

constitutes the set of operations needed to create test cases

fulfilling a certain test goal. In many cases, the operators

are not specified in the test goal, but we can infer them

from our prior knowledge (e.g., mathematical operators

like division and multiplication, mental operators like

calculations).

• Organize Information and Allocate Resources: Organize

information, allocate mental and physical resources for

creating and executing test cases. For example, testers can

use test automation for embedding the test values in ex-

ecutable scripts and allocate certain computing resources

for executing test cases. If tests are run by hand, testers

will allocate physical resources and record the results.

• Monitor Progress: Monitor his or her progress toward the

test goal. This step monitors the results of test creation

and execution. For test execution one will use test oracles

embedded into scripts or manually monitor when the

correct output cannot be easily encoded.

• Evaluate. Evaluate the test cases for accuracy. When

finding that the test goal is not met, we analyze the test

goal and then make corrections. We follow the set of

operations to see if the test cases really do not check the

test goal.

The testers begin the testing process by analyzing the test

goal, breaking it into manageable pieces, and developing a

general solution for each piece called a test case. The solutions

to the pieces are collected together to form a test suite that

solves the original problem (i.e., the identified test goal). The

testing cycle is descriptive and does not imply that all test

case creation proceeds sequentially through all these steps in

this order. In practice, experienced testers are those who are

flexible. In many cases, once the cycle is completed, the steps

are usually giving rise to a new test goal, and then the steps

need to be repeated.

VI. WHAT IS A TESTING GOAL?

Before discussing how one would investigate how people

design test cases, we define what is meant by a test problem.

For our purposes, a tester has a problem to solve when she

wants to attain some test goal. We consider a test problem to

have four aspects: test goals, assumptions, means to attain the

goal and obstacles. The test goal is some state for which some

criteria can be applied to assess whether the test problem has

been solved. To give an example, the goal might be to check

if a certain requirement has been implemented correctly or to

find a way to crash the user interface.

Even if different test goals have common aspects, figuring

out how to find test inputs to cover all branches in a program

seems very different from figuring out how to find interface

bugs in the same program. Clearly, these two test goals have

many differences. A crucial activity in understanding problem

solving is to analyze which test goal differences are important

and which are not.

There are two classes of test goals that map directly on the

generic problems solved by humans:

• Well defined test goals (e.g., coverage criteria, boundary-

value analysis, category partitioning) have completely

specified initial conditions, goals and means of attaining

the goal. Many coverage criteria are well defined. For

example, creating tests for covering program branches

is usually well defined. The goal is some well specified

coverage score. Thus, you will know when you have

attained your goal. Finally, the means of attaining the goal

are by exercising the different branches in the program.

• Ill defined test goals (e.g., stress test goals, fault-based

testing) have some aspects that are not completely spec-

ified. The problem of finding faults is clearly ill defined.

Even if you know how to tell whether a fault is discov-

ered, you wouldn’t know exactly what to do to try to

achieve this goal in every specific situation.

Test problems differ on how well defined they are and

we can consider that this categorization is a continuum of

problems rather than a dichotomy.

275

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

VII. INVESTIGATING SOFTWARE TESTING PRACTICES AS

PROBLEM SOLVING

In order to build knowledge on how testers are solving

test problems by creating test cases, it is useful to consider

the methods used in problem-solving research in cognitive

science. Three methods are often used in problem-solving

research [17]: intermediate products, verbal protocols, and

software simulations.

A. Intermediate Products

Getting intermediate products [7] means that instead of

recording and analyzing only the created test cases, we observe

some of the work the subject does in getting these test cases.

If we are interested in how people create test cases for finding

logical bugs, we collect information about the various steps

they make in getting to the goal. If we are interested in testing

for requirement coverage, we collect and analyze the models,

equations and other information the subject writes down in the

course of problem solving. The resulting intermediate products

provide finer constraints and possible explanations.

B. Verbal Protocols

The second method often used in problem solving research

is a verbal protocol [29]. The most common way to collect

such data is to ask the subjects to think aloud as they go

about solving the problem. The idea behind this measure is to

provide information about the course of the problem solving.

Verbal protocols can be used in software testing research as

direct evidence for some hypothesis or to generate new ideas

that can be tested by other methods.

C. Simulations and Search-Based Testing

A common goal of problem solving research is to build a

simulation that is meant to mimic the problem-solving process

as revealed by the intermediate steps [7]. In testing, automatic

search-based test generation [22] can be used to mimic how

testers solve testing problems, to the extent that problem

solving can be regarded as information processing.

VIII. EXPERIMENT DESIGN

To test our hypothesized problem solving model of test

design we propose an experiment in which we obtain data

using one of the methods outlined in Section VII (i.e., verbal

protocols [7]). The goal of the experiment is to verify the test

design cognitive model outlined in Section V by determining

whether the stages of this process cycle are shown during a

test design session. In addition, we will identify the patterns

of the cognitive processes that are used by classifying the

series of the cognitive actions that the subjects will undertake

during the problem-solving process. It is also important to

identify the comprehension strategies used in the experiment

by verifying whether specific comprehension strategies, such

as the usage of prior knowledge or questioning is used during

the experiment.

A. Experiment Material
The experiment materials used for the conduct of the

experiment are the informed consent, the survey used for the

selection of the participants, the software programs used for

test design as well as the software specification documents.
The informed consent gives the participants the basic idea

of the experiment and what their participation involves. The

form contains the purpose of this research. In this study, we

use the information that the participants provide to map the

steps and sequence by which testers perform test activities and

evaluate whether these steps correspond to existing models.

In addition, to be recruited for this study, the participants

should be comfortable talking about their daily routine in

creating test cases, technology usage, and thoughts about

all aspects influencing their test creation process. We need

them to provide detailed information about their thought

process during testing. Their anonymity needs to be strictly

maintained. The data that will be collected will be labeled

with an anonymous participant ID. Participants will remain

anonymous, but researchers will refer to participants (if at all)

by an ID in all subsequent analysis artifacts. Any identifying

piece of information will be erased. The risks of participation

are intended to be none or minimal. However, because they

will provide detailed information about their work, there are

concerns about privacy. To mitigate this risk, the subjects can

choose what information they are comfortable revealing. No

one except the researchers will be allowed to see any of

the information they provide. All electronic data and data

collected as part of the study will be kept on an external

hard drive and stored in a locked cabinet. It is expected to

issue papers and presentations describing this research. Public

presentations of the results will essentially present the results

in an aggregate form. In cases where the individual participant

data is disclosed, such as comments or quotes, we will ensure

that the selected data does not suggest participant identities.

B. Tasks of the participants

1) Participants will read the specification document contain-

ing the necessary information of the program under test.

2) Participants will test the program under test to the best

of their abilities. They will need to create test cases

and systematically test the program to increase their

confidence that the software works and to find bugs.

We are specifically interested in their thinking process

and experiences in creating new test cases. It is essential

for us to understand what the participants are thinking

about as they work on the test creation task, starting with

identification and understanding the test goal or purpose

until they execute the created test case.

3) Participants will complete both tasks 1 and 2 based on

the Verbal Protocol Analysis (VPA) method.

• While executing task 1, subjects will articulate all

their thoughts and opinions that they might have

while reading the document.

• While executing task 2, subjects will express every-

thing that they are doing, e.g., why they are creating

276

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

Predicate Argument Notes
Identify Test Goal <knowledge> Explicit knowledge
Define Test Goal <knowledge> Explicit knowledge

Implicit knowledge
Analyze Knowledge <knowledge> Explicit knowledge

Implicit knowledge
Form Strategy <strategy> Document and code inspection/search

Examination of the program output
Simulation of program execution

Organize Information <knowledge> Explicit knowledge
Implicit knowledge

Allocate Resources <action> Writing of test data
Writing of expected outputs

Monitor Progress <action> Execution of test cases
Evaluate <what> Verification of outputs

Program Representation
Silence <manner> Silence / prompts

No coding
Positive / Negative feelings <manner> Reactions

TABLE I: Test Design Encoding Scheme.

specific test cases or when they will stop testing a

particular program functionality.

• It is required from the participants to talk about

everything that they are thinking from the moment

they start the task until they have completed it; they

must continuously talk and clearly state the order of

their thinking and events.

C. Initial Procedure and Recording

The participants will enter the room one by one according to

a certain schedule, where the only individuals in the area of the

experiment will be the subject and one researcher. The subject

will be provided with a computer where she will create the test

cases and a specification document containing the program’s

information. A video camera will be installed near the subject

where the camera’s frame will capture the participant’s front

side and partly the researcher. The camera will also capture

the audio of the experiment. Nevertheless, an extra audio-

capturing device will be used in case any noise interference is

present.

D. Analysis Procedure

Data analysis will be based on the verbal protocol encoding

approach proposed by Ericsson et al. [29]. The behavior of the

participants will be captured on video and audio format, and

is followed by a transcription of their recordings. This data

will then be divided into segments (e.g., phrases, sentences,

clauses). These segments will then be encoded. The encoded

data will be analyzed via two different steps, the content and

pattern analysis. Content analysis provides an independent

assessment of whether the process steps articulated in the

test design cognitive model represent the problem-solving

activities exhibited by the participants. The pattern analysis

examines the existence of patterns and relationships via a

within-subject analysis and between-subject analysis based on

the information gathered by the content analysis. The within-

subject identifies for each subject process the series of steps

that may occur more often than others, while the between-

subject analysis identifies the process step series that often

occur between the participants.

The adopted coding scheme (shown in Table I) is based

on a predicate calculus notation in which predicates represent

the hypothesized test design process steps. Analysis will be

executed based on an encoding scheme shown in Table I. Each

of the segments will refer to a specific predicate, and after

all the segments have been encoded, the analysis can start.

Table I states each of the predicates used in the experiment.

Itkonen et al. [6] have reported the results of an experiment

identifying different types of knowledge that a tester may

use when designing a test case. Such knowledge can be

categorized into two types: explicit knowledge and implicit

knowledge. Explicit knowledge concerns with the systems

knowledge or the documentation (i.e., information used regard-

ing the software or documentation), while implicit knowledge

is focusing on the domain knowledge and the experience

that a tester has (e.g., practical or conceptual knowledge

of the subject matter and tools). Given that these types of

knowledge are being used, various predicates in the Encoding

Scheme have a <knowledge> argument. Identify Test Goal
is using the explicit knowledge of the testers in regards to

the documentation or the code. Define Test Goal is using

both the explicit and implicit knowledge of the testers. While

defining the test goal, the tester needs to understand the code

entirely based on prior experience as well. Analyze knowledge,

as the name suggests, assumes that a tester needs both types

of knowledge to analyze the necessary information to form a

strategy for the creation of test cases. Another predicate that

uses both types of knowledge is the Organizing Information,

as the tester needs to have all the possible information during

reasoning. Form Strategy contains the argument <strategy>,

which refers to searching through the code and test scripts

in order to find information or to support current findings.

Another way to create a strategy is through examining the

output of the program, to understand if a certain test case

277

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

Predicate Participants Demonstrating Step Average Mean % of Total Activities
Identify Test Goal 5/5 7.1 %
Define Test Goal 5/5 5.4%
Analyze Knowledge 5/5 13.1 %
Form Strategy 5/5 16.1 %
Organizing Information 5/5 10.3 %
Allocate Resources 5/5 5.1 %
Monitor Progress 5/5 2.6 %
Evaluate 5/5 6.3 %
Silence 5/5 27.6 %
Positive and Negative Feelings 4/5 1 %
N/A 5/5 5.3 %

TABLE II: Analysis of the Observed Process Steps

is fulfilling the test goal. In some other cases, test cases are

re-executed if the strategy needs to be fixed in some way.

The <action> argument mentioned in two different predicates

in the scheme refers to two different actions: the predicates

Allocate Resources and Monitor Progress. Evaluate contains

the <what> argument, which deals with verifying the output

of the program against a certain test case and checking if the

test goal has been fulfilled. The other two predicates we use

are Silence and Positive / Negative Feelings, both using the

<manner> argument. The Silence refers to periods of time

when no words are being spoken, while Positive / Negative
Feelings refers to the positive or negative reactions a tester

might express during the entire test design procedure.

IX. PILOT STUDY RESULTS

As the study setting available to use was limited to a non-

industrial environment and a physical space at Mälardalen

University in Sweden, we restricted the pilot experiment to

an academic environment. The behaviour of each subject was

captured on audio and video tape. These recordings were

transcribed by dividing the verbalizations into segments, each

representing an idea or an action and then the segments were

encoded.

A. Research Subjects and System-Under-Test

Five students, all trained in software testing at master level

at Mälardalen University, participated in the pilot study. Based

on the results of the survey, these participants had experience

in programming using Java and test creation using JUnit. The

subjects did not earned credits for participation or performed

this experiment as part of any course work.

The program used in this experiment is a bowling game

calculator. The code is written in Java, is 129 lines of code

long, and it calculates the score of the rounds of a normal

bowling game. The program has only one class which is

composed of several methods.

B. Content Analysis

In this pilot study, we focused on performing content analy-

sis and providing initial evidence of each of the hypothesised

test design process steps included in the a priori cognitive

model representation.

The content analysis, summarized in Table II, suggests that

each step derived from the cyclical problem solving model

is consistently performed by each of the five human subjects

when testing the bowling game program. Based on these initial

confirmatory results, we can assume that the individual testing

process steps adequately describe the actual testing activities

exhibited by these subjects.

For an average of 12% of the total testing time, the subjects

identified and defined the test goal by understanding this

problem and what a test case is supposed to perform. For 39%

of their time on average, the subjects attempted to analyze

their knowledge regarding the test goal and planned different

approaches on how to create test cases. Participants organized

information via inferencing and case-based reasoning. When

the necessary information had been gathered, the subjects

started to allocate resources to create test scripts (5.1% on

average of the total testing time). For 9% of their time on

average, participants monitored and evaluated their progress.

Out of all the five participants, four of them showed positive

or negative feelings and reactions about the process of creating

test cases. The N/A predicate in Table II refers to behaviours

that could not be coded. These were attempts to interact with

the researcher during the testing task or verbalizing a physical

activity which is not related to the actual testing process.

In this pilot study, we have not performed any systematic

analysis in which to check if the hypothesized sequence by

which the testing process steps are followed by all participants.

Some of these sequences are only partially supported by some

of the data collected in this experiment. More studies are

needed to confirm the specific sequence of steps used during

the testing process.

X. THREATS TO VALIDITY

We acknowledge here that we are employing content analy-

sis of verbal protocols that are used to test the problem solving

model of software testing. For this purpose, the encoding

scheme is formally defined before the experiment and this

context greatly constrains the range of possible interpretations

of the content. Since the data is gathered to test a model, there

is a risk of over-fitting the steps actually taken by participants.

To counter this, the data interpretation and encoding scheme

is based on a generic and simple process.

All of our subjects are students and have limited profes-

sional software development experience. This fact has been

shown to be of somehow minor importance in certain condi-

278

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

tions in a study by Höst et al. [30] with software engineering

students being good substitutes in experiments for software

professionals.
Our study has focused on one rather small Java program.

Nevertheless, we argue that this program is representative of

software which a testers might encounter in their career.

XI. CONCLUSIONS

We have shown that models of problem solving from

cognitive psychology can help in understanding the cognitive

processes of software testers. The software testing model

developed here is cyclical and can accommodate both simple

and complex test goals of different levels of clarity and

sophistication.
For the research community, the model proposed here pro-

vides a reference for future investigations. In general, more and

more specific questions concerning testers’ cognitive processes

in software testing can be posed. Specifically, the process by

which a tester identifies and defines a test goal is not fully

understood, nor is the process by which testers form strategies

for creating test cases. The selection of search strategies could

vary with testing experience, but little is known about this. Our

model could help designing relevant experiments and organize

observations in case studies. Likewise, how a tester switches

between selecting test goals, designing test cases and inputs,

and executes test cases has received little attention.
The model also provides a framework from which to inves-

tigate tester knowledge and expertise and it is the first step in

evaluating and refining a testers’ cognitive process model for

software testing.
The results of the pilot evaluation support the postulated

cognitive model in an academic setting in an Eclipse envi-

ronment with a Java program. Our results indicate that the

steps of this model were observed when subjects tested an

already developed program. More experimentation is needed

to investigate real testing situations in which testers use more

complex test goals and strategies. In addition, there is a need

to explore how they select and switch test goals, create test

cases and use different comprehension strategies.

ACKNOWLEDGMENT

This work is partially supported by the Software Center

Project 30 on Aspects of Automated Testing and by the

Swedish Innovation Agency (Vinnova) through the XIVT

project. The authors would also like to thank Per Erik Strand-

berg for his valuable comments on this work.

REFERENCES

[1] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineer-
ing: A definition and systematic literature review,” Journal of Systems
and software, vol. 107, pp. 15–37, 2015.

[2] J. A. Whittaker, Exploratory software testing: tips, tricks, tours, and
techniques to guide test design. Pearson Education, 2009.

[3] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[4] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it?
an exploratory study on manual testing practices,” in 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE, 2009, pp. 494–497.

[5] ——, “Defect detection efficiency: Test case based vs. exploratory
testing,” in First International Symposium on Empirical Software En-
gineering and Measurement (ESEM 2007). IEEE, 2007, pp. 61–70.

[6] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the tester’s
knowledge in exploratory software testing,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 707–724, 2012.

[7] D. L. Medin and B. H. Ross, Cognitive psychology. Harcourt Brace
Jovanovich, 1992.

[8] J. E. Davidson, R. J. Sternberg, R. J. Sternberg et al., The psychology
of problem solving. Cambridge university press, 2003.

[9] D. P. Hale and D. A. Haworth, “Towards a model of programmers’
cognitive processes in software maintenance: A structural learning
theory approach for debugging,” Journal of Software Maintenance:
Research and Practice, vol. 3, no. 2, pp. 85–106, 1991.

[10] J. E. Hale, S. Sharpe, and D. P. Hale, “An evaluation of the cognitive
processes of programmers engaged in software debugging,” Journal of
Software Maintenance: Research and Practice, vol. 11, no. 2, pp. 73–91,
1999.

[11] P. N. Robillard, P. d’Astous, F. Détienne, and W. Visser, “Measuring
cognitive activities in software engineering,” in Proceedings of the 20th
international conference on Software engineering. IEEE, 1998, pp.
292–300.

[12] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and software, vol. 7, no. 4, pp. 325–339, 1987.

[13] J. Duraes, H. Madeira, J. Castelhano, C. Duarte, and M. C. Branco,
“Wap: Understanding the brain at software debugging,” in 2016 IEEE
27th International Symposium on Software Reliability Engineering (IS-
SRE). IEEE, 2016, pp. 87–92.

[14] G. Polya, “How to solve it,” 1957.
[15] J. D. Bransford and B. S. Stein, “The ideal problem solver. new york:

W. h,” 1984.
[16] J. R. Hayes, “Cognitive processes in creativity,” in Handbook of creativ-

ity. Springer, 1989, pp. 135–145.
[17] J. E. Pretz, A. J. Naples, and R. J. Sternberg, “Recognizing, defining,

and representing problems,” The psychology of problem solving, vol. 30,
no. 3, 2003.

[18] A. Newel and H. A. Simon, “Human problem solving,” Englewood
Cliffs, NJ, 1972.

[19] R. Feldt, Biomimetic software engineering techniques for dependability.
Chalmers University of Technology, 2002.

[20] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[21] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[22] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 2011, pp. 153–163.

[23] M. Mustafić, J. Yu, M. Stadler, M.-P. Vainikainen, M. H. Bornstein, D. L.
Putnick, and S. Greiff, “Complex problem solving: Profiles and devel-
opmental paths revealed via latent transition analysis.” Developmental
psychology, 2019.

[24] P. J. Feltovich, M. J. Prietula, and K. A. Ericsson, “Studies of expertise
from psychological perspectives.” 2006.

[25] A. H. Schoenfeld and A. H. Sloane, Mathematical thinking and problem
solving. Routledge, 2016.

[26] K. Nunokawa, “Mathematical problem solving and learning mathemat-
ics: What we expect students to obtain,” The Journal of Mathematical
Behavior, vol. 24, no. 3-4, pp. 325–340, 2005.

[27] D. H. Jonassen, “Instructional design models for well-structured and iii-
structured problem-solving learning outcomes,” Educational technology
research and development, vol. 45, no. 1, pp. 65–94, 1997.

[28] J. W. Getzels, “The problem of the problem,” New directions for
methodology of social and behavioral science: Question framing and
response consistency, vol. 11, pp. 37–49, 1982.

[29] K. A. Ericsson and H. A. Simon, “Protocol analysis,” A companion to
cognitive science, vol. 14, pp. 425–432, 1998.

[30] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects— A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment,” in Empirical Software Engineering, vol. 5, no. 3. Springer,
(2000), pp. 201–214.

279

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 26,2021 at 13:19:31 UTC from IEEE Xplore. Restrictions apply.

