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Abstract—The Internet of Things (IoT) has increased the
connectivity of systems and fueled the digitalization. However,
IoT systems are prone to various security vulnerabilities that
may lead to serious incidents that can cause physical harm
and financial damage. The security of IoT systems is a major
challenge for the their success. If vulnerabilities remain unde-
tected, an attacker can exploit them remotely and thus, gain full
access to confidential data, control the connected IoT devices with
magnitudes of consequences.

This paper presents an approach that exploits information
on attacks detected and recorded at runtime to facilitate the
development of security patches and uses the information to de-
tect further vulnerabilities. This paper presents work in progress
from an ongoing research project.

Index Terms—Internet of Things, IoT, fuzzing, genetic algo-
rithms

I. INTRODUCTION

The global interconnectivity of the Internet of Things (IoT)
devices is steadily increasing, creating new, innovative prod-
ucts and applications such as predictive maintenance, asset
tracking and others. At the same time, increasing networking
raises the associated risks and complexity. With growing
complexity, however, bugs and vulnerabilities are almost in-
evitable. The research project ”Attack-based Automation of
Security Testing for IoT Applications”1 addresses this issue
with two goals:

• A complete automation of security testing from test de-
sign to test evaluation for efficient detection of unknown
vulnerabilities (0-day vulnerabilities) using genetic algo-
rithms, fuzzing, and data analysis techniques.

• Support developing effective security patches for vulner-
abilities that cannot be bypassed by small variations of

1funded by the German Federal Ministry for Economic Affairs and Energy

the original attack. For this, attack data from operations
will be used to increase the quality assurance of security
patches to effectively secure IoT applications.

Genetic algorithms (GA) are heuristic search and optimization
methods that are inspired by biological evolution. In particular,
the concepts of inheritance, selection, crossover and mutation
are used to find a solution for a given problem. There are
various research papers, books, implementations, and frame-
works to solve problems with GA. In order to use a GA
framework, the given problem has to be encoded in a generic
representation on which the GA framework applies its genetic
operators. For complex problems, finding an encoding that
provides a problem representation so that the GA efficiently
finds a solution can be a major challenge. Another approach
therefore is to bypass encoding with an existing framework and
to implement the necessary genetic operators for the problem
domain. This paper investigates both possibilities.

In addition to GA, the second topic examined is fuzzing.
Fuzzing has long been established as a topic in the field
of security testing, but unlike GA, it does usually not draw
conclusions from previous test cases about how to make the
next test cases more effective, in the sense of generating,
semi-invalid input data. How to improve the data generation
in fuzzers with the help of GA, and thus potentially find
vulnerabilities in a system faster and more effectively, is part
of this work.

The paper is organized as follows: It begins with an
introduction to the field of genetic algorithms including an
overview of the current state of the art. Afterwards, our
approach to employ GA for security testing is explained and
compared to other works. The presented approach is also
considered from the implementation point of view. A first
evaluation on a prototypical application is presented. The

martinschneider
Text Box
This publication has been published first by IEEE under 
https://doi.org/10.1109/QRS-C55045.2021.00023

martinschneider
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




paper closes with a conclusion and an outlook.

II. RELATED WORK

A. Genetic Algorithms

Genetic algorithms are heuristic optimization methods in-
spired by biological evolution. To find a solution for a problem,
they maintain a set of candidate solutions. These candidates
are evaluated with respect to their ability to solve the problem.
Based on this evaluation, the most suitable candidates are
selected, and their characteristics are recombined and mutated
to create a new set of solutions. This process is repeated in
an iterative manner. The goal is to generate better candidate
solutions with each iteration.

We briefly describe here the main terms of GA that are used
in the rest of this paper (therefore, the list is not complete):

• Individual: A single candidate solution for a given
problem. In security testing, a candidate could be a SQL
injection string.

• Gene: An atomic characteristic of an individual. An
individual usually consists of several genes. In the case
of a string, a gene may refer to one of its letters.

• Genotype: The data structure of an individual. In security
testing, the genotype refers to the test data and the series
of test steps to interact with the system under test.

• Chromosome: A genotype in the form of a fixed length
vector [11]; rarely also used as a synonym for gene.

• Generation: The current set of individuals during one
iteration. They are subject to a fitness assessment to
subsequently produce a new generation from the best
individuals. In testing, a generation may be the recently
generated test suite.

• Population: All the individuals from all generations.
• Selection: Describes the process of selecting suitable

individuals for the production of the next generation.
• Parent: Refers to those individuals that haven been

selected for the production of the next generation.
• Child: An individual of a new generation derived from

one or more parents through mutation or recombination.
• Fitness: A value which is calculated for the selection

of candidates for the next generation. The fitness makes
a statement about how well an individual or generation
solves a given problem. It is highly problem specific and
determines how efficiently a GA is able to find a solution.

B. Phases of Genetic Algorithms

Each GA is characterized by a loop that is exercised for
each generation. It comprises the following steps:

Selection of suitable individuals (fitness and selection):
During this step, the individuals of the current generation are
examined with regards to their suitability for solving the given
problem. In security testing, individuals often represent test
cases (e.g., a SQL injection string). To assess their suitability,
they are executed against the system under test (SUT). Based
on the observed behavior of the SUT, each test case is assigned
a fitness value (see Section II-A), which provides information

about the quality of the candidate and its ability to find a
vulnerability.

From the pool of individuals from the current generation,
suitable individuals are selected for the next phases (for
instance, the 10 % of individuals with the highest fitness).
The selected individuals are called parents.

Recombination: In this phase, the traits (genes) of the par-
ents are recombined to generate new individuals, see Section
II-B2. In recombination, only existing traits are recombined,
but no new traits are generated.

Mutation: Mutation alters one or more genes of an in-
dividual to change its characteristics. New traits are needed
to explore the search space beyond the initial generation.
Typically, the frequency and type of mutation are chosen
randomly within predefined thresholds, cf. Section VI.

Selection, recombination and mutation are so-called genetic
operators. Evolutionary optimization (i.e., GA) executes these
operators iteratively and uses the results of the final iteration
to find the solution for the investigated optimization problem.

Figure 1 shows an iteration step and the operators. The
step ”execution/measurement” takes a specific role: it is not
an operator in the sense of a genetic algorithm. However, it
belongs to each iteration and examines the individuals of the
current generation with respect to their suitability to solve the
given problem. This is done by determining their fitness.

Fig. 1. Cycle of optimization through the different phases of a genetic
algorithm

An important aspect when applying GA is the termination
criterion. This criterion determines when a found solution is
considered sufficient. Trivially, this is the case when we reach
an optimal solution or when we pass a predefined fitness
threshold. It is more complex if this fitness threshold cannot
be determined a priori. There are three basic approaches that
can be used as termination criterion:

• Terminate after a fixed number of generations.
• Terminate if the fitness value deteriorates in one genera-

tion compared to the previous generation(s).
• Terminate if the fitness value remains largely the same

over a number of generations.
The selection of one or several of these termination criteria is
problem-dependent and subject of current research.

We will now discuss the concepts of fitness, recombination
and mutation in more detail.

1) Fitness: The fitness of an individual is typically calcu-
lated with a dedicated function. This ”fitness function” is a
core concept of every genetic algorithm. The obtained fitness
values are used to select a set of individuals from which a



new generation is derived. Two basic approaches can be dis-
tinguished: single-objective and multi-objective optimization.
In single-objective optimization, we have one fitness value
per individual and thus, exactly one optimization goal. The
fitness values of all the individuals are calculated in the 4th

iteration step (execution/measurement). They may be based
on a comparison to an ideal solution or on measurements
(like time lags and resource consumption). A simple example
of single-objective optimization would be a normalized sum
of the different measurements. Other combinations are also
possible, e.g., by means of weighting. The aim is always to
generate a single, cumulative value from all measurements that
contribute to the fitness.

In multi-objective optimization, there is no single fitness
value per individual but rather several independent ones. A
simple example would be an algorithm that should calculate
as quickly as possible (fitness value 1) and as close as possible
to the optimal solution (fitness value 2) at the same time. Both
fitness values are independent in this example and presumably
hinder each other. Solutions can be found that are very fast, but
only sufficiently optimal. Or they can be close to the optimum,
but take long to calculate. Multi-objective optimization is
useful if not all goals can be reached at the same time and an
optimal trade-off is needed. Depending on the given problem,
there can be also more than two fitness values. A solution is
always considered better than the last one, if at least one value
is better than before, while the rest is not worse. This group
of solutions with optimal trade-offs is called Pareto-optimal.

2) Recombination: Recombination refers to the combina-
tion or exchange of traits (or genes) from two or more
individuals to generate new individuals. Usually, two parents
are merged to form one or more children. A common recom-
bination procedure is crossover. There are several crossover
types. In one-point crossover, the chromosomes of two parent
individuals are separated at a random location and one half
each is exchanged between the two, cf. Figure 2. This results
in two new individuals that have mixed traits from the parents.
Two-point crossover and multi-point crossover are working
analogously.

Fig. 2. Example of one-point-crossover for two parents comprising eight
genes

The goal of recombination is to create individuals with
even higher fitness values than those of the parents. During
recombination, only existing traits of one generation are
exchanged and no new traits are created. Besides simple
exchange recombination, there are also other recombination
methods. For example, line recombination and intermediate
recombination [11] are useful when individuals are represented
in a numerical encoding. Furthermore, Luke [11] shows that

it is possible to perform recombination in tree-like individuals
by exchanging subtrees between the individuals.

3) Mutation: Mutation is the process of randomly changing
one or several genes of an individual. While recombination
attempts to combine existing traits of two or more individuals
into a new, fitter individual, mutation attempts to introduce
new traits into the population. An important parameter is the
mutation rate. It controls how many genes are changed per
mutation operation.

If one were to dispense with mutation altogether, the genetic
algorithm would only ever recombine the properties of the
initial generation and would not be able to explore the search
space further to find local or global maxima. This would be
equal to a mutation rate of zero. However, is the mutation
rate set too high, the heuristic search becomes more of a
randomized search. Individuals would experience so many
differences from one generation to the next one that they would
rather skip one or more local optima rather than approaching
them. Choosing the mutation rate should consider both the
concrete implementation and the problem to be solved.

Several types of mutation operators have been proposed, e.g.
insert mutation swap mutation and flip mutation [14]. In [17],
[18] adaptive mutation is proposed. This refers to mutations
with rates that are not fixed, but change adaptively during the
course of an GA.

The selection of a suitable mutation type cannot be pre-
determined in a general way and is always problem-specific.
The mutation rate can also vary depending on the problem.
Mutation types continue to be the object of research. Suitable
mutation operators and mutation rates can lead to better results
faster when solving a search or optimization problem with GA.

C. Genetic Algorithms and Fuzzing

In order to apply genetic algorithms for the purpose of
security testing, some basics of testing and security testing
have to be considered. Whole test cases, single test messages
or test data can be subject of the optimization through a GA.

1) Fuzzing: Fuzzing is a software testing technique in
which a SUT is executed with unexpected, invalid test data
and the response is observed and evaluated. It is a highly-
automated approach to cover a high number of boundary cases
[12] to identify potential vulnerabilities, e.g., resulting from
missing or invalid input validation. Fuzzers can be categorized
in different ways. Schneider et al. [13] (and in a similar way
Knudsen [7]) propose a classification according to the degree
of adaptation of the fuzzer to the SUT and according to
how this adaptation is achieved. They distinguish for instance
between random fuzzers, template-based fuzzers, dynamic
fuzzers, and model-based fuzzers.

The adaption controls how the input data is generated. A
random fuzzer uses purely randomly generated data to test a
system. This is easy to implement but promises little chance
of success. A random fuzzer will usually fail already at the
input check of the generated test data and has no chance to
penetrate deeper into a system where the data of the message



is processed. This is contrasted by approaches like model-
based fuzzing. In this, fuzzers have full knowledge of the SUT.
Hence, they are also called specification-based fuzzers. Such
fuzzers are not only capable of fuzzing the message structure,
but also the communication flow [16].

Regardless of the type of fuzzer, classical fuzz testing is
about confronting the SUT with a large amount of invalid data
and evaluating its response. Originally, fuzzing is not a search
or optimization problem, where knowledge from previous fuzz
tests is used to improve the results.

The goal of the research project ”Attack-based automation
of security testing for IoT applications” is to combine the
fuzz testing approach with genetic optimization. An algorithm
for fuzz test case generation using a genetic algorithm from
existing test cases is to be designed and implemented.

D. Related Work

Evolutionary methods have already been studied and used
in the field of software testing.

For example, in ”Detection of Web Vulnerabilities via
Model Inference” [4], Duchene describes how EA can be used
to detect cross-site scripting (XSS) vulnerabilities. XSS is an
attack on a web application in which an attacker attempts
to inject code into the system being attacked, which is then
executed as part of the web page in the victim’s browser.

A key aspect of Duchene’s work in this regard is the
fitness function (cf. Section 3.1). Various metrics are proposed,
including the number of character classes injected successfully,
number of suspicious nodes, number of transitions between the
source and its reflection, to calculate a fitness value for XSS
detection.

For the generation of fuzz data, Duchene employs a
grammar-based fuzzer. For this, Duchene uses a grammar
designed specifically for XSS attacks to generate suitable
words, i.e., XSS attacks.

In ”Revolutionizing the Field of Grey-box Attack Surface
Testing with Evolutionary Fuzzing.”, DeMott et al. [3] propose
a grey-box fuzzing approach, which uses code coverage as
the primary source of information for the fitness function.
They show in their paper that such an evolutionary testing
tool is capable of actively learning the protocol under test and
yields better results than fuzzers which simply mutate captured
messages or derive them from specifications.

Today’s fuzzing tools like American Fuzzy Lop [6] and
libFuzzer [8] also employ genetic algorithms to perform gray-
box fuzzing while using code coverage as a fitness function.

III. OUR APPROACH

For our approach, we decided to pursue a hybrid approach
between using a framework for GA and developing an own
implementation and to evaluate it in the later work packages.
The selected approach can be summarized as such:

1) Use existing GAs and frameworks for simple user data.
2) Develop custom evolutionary algorithms for (more com-

plex) messages and test cases

For the second approach, it is necessary to implement the
genetic operators mutation and recombination and the repre-
sentation of individuals according to our needs. Grammars
have been chosen as the central component to generate inputs.
A grammar based, evolutionary fuzzer has already been im-
plemented in [4] for detecting XSS vulnerabilities (cf. Section
II-D). An approach based on grammars is generic and widely
applicable. It requires only a suitable grammar to generate
test inputs. The underlying fuzzing and GA routines can stay
generic and can thus be employed for many different protocols
or languages. Another advantage is that grammars are already
available for many communication protocols. Furthermore,
grammars can be used to represent the message sequence /
protocol. They are thus not only useful for describing the
content structure of inputs. However, in the following we will
use grammars only to represent the content structure of inputs.

An example of a simple grammar, including its production
tree can be found in Figure 3. Each word of a grammar can
be seen as a sequence of derivation decisions starting from
the start symbol. Grammars are very well suited for fuzz
testing. A suitable fuzz testing tool can randomly generate
any syntactically correct word of the language. It should be
noted that grammars generally only represent the syntax of
a language, but disregard many semantic requirements. This
directly leads to semi-invalid input data, because the inputs are
syntactically correct, but likely not semantically. Such inputs
are particularly valuable for fuzz testing.

To use grammar based fuzzing with GA, the operators
mutation and recombination need to be adapted to grammars.
In the following, we will describe our approach:

Mutation: In grammar based fuzzing, each word is the
result of a sequence of derivation decisions. Therefore, to
mutate a derived word, one of these derivation decisions has
to be mutated. This is exemplified in Figure 7. The derivation
decision for the OR operator (” | ”) is changed and the word is
thus mutated from the string ”a” to ”b”. Mutating a derivation
decision closer to the root of the derivation tree usually leads to
a far reaching mutation. The mutated word is therefore very
different from the original word. If a derivation decision is
mutated closer to a leaf or terminal, the difference between
the two words is typically smaller. This is relevant for genetic
search procedures: If a solution is already close to a local or
global maximum, rather small search steps are advisable to
remain in the vicinity of the maximum. If, on the other hand,
the solution is far away from a maximum, larger mutations
are more likely to be successful.

Furthermore, it should be noted that with ambiguous lan-
guages, the same word can be generated from different deriva-
tion paths. Thus, in the case of a mutation of word#1, it can
happen that the resulting word#2 is the same as word#1. Such
occurrences need not be a problem for the genetic algorithm
if they are rare, but should be avoided for efficiency.

Recombination: Analogous to mutation, recombination can
also be realized with the help of derivation decisions (or rather
their subtrees). To realize recombination, one can exchange
subtrees of decisions which start at matching grammar sym-



bols. This is illustrated in Figure 8. Two derivation trees are
formed from the given grammar S ->1*3 (”a” | ”b”). The
recombination or crossover then takes place at the derivation
decision from the OR operator (” | ”). The entire subtree
starting from the OR operator is copied from word#1 to the
corresponding position in word#2 and vice versa. The result
is two new words that are a mix of the two original words.
Essential for this type of crossover is that both original words
have the selected crossover root symbol in their derivation
trees. Otherwise, no crossover would be possible. This is
illustrated in Figure 5. You can see that a crossover on the
symbol “A” would be not possible as it has not been derived
in the other word (due to a different derivation decision
above). This problem is not trivial, because with more complex
grammars the effort increases greatly for the identification of
the derivation points at which a crossover is possible.

Similar to mutation, it can be assumed that also in recom-
bination, a crossover near the leaf of a derivation tree leads to
new words with only minor changes compared to the initial
values, while a crossover on higher tree layers leads to strong
changes. Knowing that can again be useful for approaching
local optima in the search space. Similarly, there is a chance
that the subtrees selected for crossover will be identical. This
should be avoided.

IV. IMPLEMENTATION

This section gives a deeper insight into how genetic opera-
tors for grammars have been implemented and illustrates the
theory described before. Practical implementation problems
are also discussed and solutions proposed.

A. The Implementation Approach

As discussed in Section III, we are using a hybrid approach
to employ genetic algorithms. This approach considers the
use of GA frameworks as well as own implementations. The
framework we chose is ECJ. Our own implementations have
been implemented by extending Fuzzino. In the following, we
will discuss both tools and our results with them.

B. ECJ

”ECJ is a mature and widely used evolutionary computa-
tion library with particular strengths in genetic programming,
massive distributed computation, and coevolution” [10]. ECJ
stands for Evolutionary Computation Toolkit in Java and is a
framework for GA. It was developed by Sean Luke, a computer
science professor at George Mason University, and offers
extensive features for solving optimization problems with
evolutionary algorithms. Information about it can be found
in [10], a paper about the history and planned extensions, the
ECJ Handbook [2] and of course on the project’s website [9].

ECJ is particularly suitable for optimization problems which
can be easily encoded with its standard representations (es-
pecially vectors). However, it tends to be more intricate for
problems which do not naturally lend themselves to such
representations (e.g., test cases consisting of an arbitrary

number of test steps). In this case you will likely have to
implement your own representation of individuals.

This is one of the reasons which informed our decision
to use GA frameworks mainly for simpler data types. By
doing this, we can especially benefit from their strengths. ECJ
has performed well in experiments with standard optimization
problems and also custom ones (i.e., SQL injection input
generation). Nonetheless, our focus mainly shifted towards the
development of our own tools, as it offers more flexibility. So
far, we can report that ECJ has shown promising capabilities
for the usage in GA-based fuzzing. However, deeper investi-
gations are still to come.

C. Fuzzino

Fuzzino is a fuzzing library which has been developed by
Fraunhofer FOKUS. It constitutes a smart fuzzer as it employs
knowledge about the input structure to generate test data. The
library has been implemented in Java and is available as open
source [5]. It provides several generators as well as mutation
routines for standard datatypes (e.g., dates, hostnames, SQL
injections). Furthermore, it is possible to extend Fuzzino with
custom heuristics2 for other datatypes, as demonstrated in [15].

In the following, we first discuss the grammar fuzzing
features of Fuzzino3. Next, we will describe what is necessary
to extend Fuzzino with GA capabilities. Finally, we present our
concrete implementations.

1) Grammer-based Fuzzino: Fuzzino does not only provide
generators and mutation routines for standard datatypes but
is also able to handle grammars in the Augmented Backus-
Naur Form (ANBF). It can thus derive syntactically correct
words for a given grammar. Moreover, it also able to generate
words which violate its structure. This is realized by fuzzing
the grammar itself and then deriving words from that modified
grammar.

Generating syntactically invalid words can be very impor-
tant. Consider for example buffer overflows. These can lead
to malicious code execution by going beyond the syntactic
max length of an input. Nevertheless, violating the grammar
can also drastically reduce the chance of passing initial checks
of the SUT. For instance, because the input requirements are
very restrictive. Therefore using syntactically invalid inputs
can decrease the probability of uncovering issues in deeper
code layers.

To deterministically generate each word of a grammar,
Fuzzino uses derivation decisions (in the following often sim-
ply referred to as decisions). These are predefined selections
for grammatical operators with degrees of freedom, e.g., an
alternation. For instance, it could specify which selection to
take in an alternation. Decisions can therefore be compared to
derivation steps, since derivation steps also resolve the non-
determinism of operators by making derivation choices. Figure
3 depicts an example of a word, its grammar, and the necessary
decisions to derive that word from the grammar. Nodes which

2We use the term heuristic to refer to generation and mutation routines.
3Please note, these capabilities are not available in the open source version.



have been used in the derivation are highlighted green. We use
blue boxes to indicate taken decisions. Our grammar notation
is based on the ABNF.

Fig. 3. Decisions in grammars

Each word can be defined by its unique combination of
derivation decisions. Fuzzino systematically generates differ-
ent permutations of decisions and uses them to derive the
respective words. In Fuzzino, each decision is associated with
its node4 in the production tree. Thus, each node can check
whether there is a predefined decision for it. The derivation
process is realized with a recursive top-down traversal of the
production-tree. Terminal strings are generated at the leaves
and passed back up. These strings are processed by the upper
nodes (mostly concatenated) which produces the final output
once traversal finishes.

To control the derivation procedure, a premade set of
decisions is passed initially and handed down in each descend.
Operator nodes can thus check whether there is a premade de-
cision for them or not. If so, they use that decision. Otherwise,
they make a random choice.

2) Tasks and Procedures for Extending Fuzzino with GA:
To use Fuzzino for evolutionary fuzzing we made some
extensions to the original source. A first issue was that we
could only set one decision per operator node. This is not
enough, as an operator node can be visited multiple times
in complex derivations. It is therefore necessary, to be able
to define multiple decisions per operator node. We illustrate
this with an example in Figure 4. The alternation here is
visited several times due to the repetition. On each visit a
new selection is made between the terminals a and b, overall,
three times. If we could only store one of those decisions for
the alternation, then we could not fully describe the word.

Another challenge was that derivations did not consider their
derivation path. This means that decisions had no information
about to the full derivation path at which they shall apply.
They so far only knew its last element, namely their operator
node. This can be problematic if we have different decisions
for the same operator node. In this case, the operator could not
decide which decision to take. This can also be illustrated with

4We use the term node to refer to one instance of an operator or non-
terminal in the production tree.

Fig. 4. Multiple decisions per non-terminal

Figure 4. As we have multiple decisions for the alternation,
we need to know when to take which. This can be realized
by associating each decision with its full derivation path. For
instance, a mapping of the path ”S →1*3→ |1” to the terminal
”a”. Moreover, we also needed to introduce completely new
routines to randomize the values of decisions for mutation or
to exchange groups of decisions for crossover.

These operations also raise some additional concerns, e.g.,
how to prevent mutation and crossover from taking place
disproportionately often close to the derivation tree leaves.
Intuitively, one could select the decisions for mutation and
crossover randomly over all available ones. However, many
decisions occur only towards the bottom of the tree. Consider
for instance repetitions of terminal selections, e.g., a repeated
selection of alphanumeric characters. This might for example
occur if you randomly generate the content of an html-tag.
Such repetitions occur immediately above the tree leaves, as
they deal with terminals. If we have many such selection
repetitions (which are furthermore quite long), they can easily
contribute the majority of decisions. Especially if the tree is
rather shallow and we thus only have few decisions in the
regions above. If we would thus randomly select decisions
uniformly over all available ones, the chance would be higher
to select ones near the leaves. At the same time, decisions
closer to the leaves are usually not as important for the overall
structure of the derivation tree. This is because they typically
only affect small subtrees. Consequently, they would be also
less interesting for mutation and crossover.

Another concern is to ensure that the operator or non-
terminal we crossover on is contained in both words. Oth-
erwise, we could not perform the crossover as we could not
exchange the subtrees (or rather the decisions belonging to
the subtrees)5. This situation is depicted in Figure 5. Here, a
crossover on the non-terminal A is impossible, as it has not
been derived in the second word.

5Please mind: We often speak about exchanging subtrees when performing
crossover. However, our implementation works like this that we only exchange
decisions. Namely, all decisions which belong to the corresponding subtrees
that we conceptually exchange. This has an equivalent effect to the exchange
of derivation trees.



Fig. 5. Example of a failed crossover

Finally, it is also important to prefer nodes for crossover
which would result in a change of the original words. Because
it could easily be the case that we have subtrees in two words
which are identical. If we would exchange those (or rather their
decisions), then we would have practically no effect from the
crossover. Thus, it is important to focus on decisions which
differ in their subtrees.

3) The implemented approach: The first issue we resolved
was that we could only store one decision per operator node.
We fixed it by storing a list of decisions for each operator
node (instead of one at max).

The next thing was that we needed to resolve the selection
ambiguity for decisions which appear at the same operator
node. To solve this, we now associate each decision with its
full derivation path and not only its operator node. For this we
introduced a tracking of the derivation path. This is realized
with a stack which pushes nodes on itself when visiting them.
Pushed nodes are removed once we recursively ascend out
of them. The current state of the stack thus represents the
current derivation path. We illustrate this in Figure 6. It shows
the relationship between the stack content and the derivation
path. Due to this relationship, we can use the stack to associate
decisions with the path at which they have been made (e.g., to
store this information for later usage). Conversely, the stack
can also be used by operator nodes to check whether a premade
decision fits to the current path. It is important to mention that
we also use indices for each node on the derivation path. This
is to distinguish different visits of the same operator node on
one subtree layer. An example of this is presented in Figure
4. You can see that we use indices to distinguish different
alternation-decisions occurring at one layer.

To implement the evolutionary operations mutation and
crossover, we have added methods which allow to adapt and
exchange derivation decisions. We have implemented mutation
such that we first select a random decision. The value of that
decision is then non-deterministically changed. Finally, a new
word is derived based on the now adapted set of decisions.
This adapted set is a copy of the original one so that we
can keep the original one intact for later operations. We have
provided an example of a simple mutation in Figure 7. In this

Fig. 6. The stack state during a derivation

example, the alternation-decision is set from “a” to “b” after
the mutation.

Fig. 7. Example of a mutation

The crossover implementation is more complex. For one, it
takes two words as input (since we are exchanging subtrees
between two words). Moreover, it also requires more process-
ing steps. First, we select two random but matching decisions
from these words. By matching we mean that they belong to
the same operator type or non-terminal (e.g., they both belong
to an alternation). The selected decisions serve as the roots of
the subtrees to be exchanged. Second, we identify all decisions
which depend on these roots. This refers to the decisions
which are made as a consequence of these root decisions.
Finally, these decisions are relocated to their new position in
the other word. We ensure to also update the derivation paths
of the decisions accordingly, as they are moved to a new tree
structure. Finally, we use these updated sets of decisions to
generate two new words. These words constitute the result of
the crossover. During the entire procedure we again only work
on copies to keep the original words intact and separate. We
have provided a simple example of a crossover in Figure 8.
You can see that we exchanged the second alternation decision
of the first word (b) with the second one of the second word
(a). This results in two new words where the corresponding
letters are exchanged at the respective places.

Root decisions for crossover are randomly and uniformly
selected over the tree levels. This means that we first randomly
select a tree level. We then use this level to select a random



Fig. 8. Example of a crossover

decision at that level. This decision serves as the first root
of the crossover. Both selection processes follow a uniform
distribution. By doing this, we can prevent selecting dispropor-
tionately often crossover-roots near the tree-leaves. We use an
analogous procedure for the selection of mutation decisions.
As mentioned before, it is important for crossover to select
root-decisions whose operators are present in both words. To
achieve this, we limit our candidates to those decisions which
fulfill that criterion during the selection.

Finally, we also optimize our chances of creating changed
words when performing a crossover. This is done by tweaking
the selection of the second crossover-root. If we have several
candidates at our disposal, we always favorite those which
have a different decision subtree compared to the first root.
This maximizes our chances of generating changed words after
performing the crossover.

V. PRELIMINARY EVALUATION

To evaluate the Fuzzino extensions towards a genetic
fuzzing tool, we used the Damn Vulnerable Web Application
(DVWA) [1] to search for XSS reflection vulnerabilities. We
use the attack grammar from Duchene [4] in a slightly adapted
form. To evaluate the fitness of the individual test data similar
to the approach in [4] the reflection is examined for the
following properties:

• The corresponding reflection was checked for certain
characters. The characters of interest were divided into
different classes C. If a reflection contains a character of
a class cj (e.g. c1={<, >}, c2={”, ’}, ...), the fitness is
increased by the value wj .

• In addition to the characters that appear, their arrange-
ment in the reflection is also crucial for the fitness value.
Thus, reflections containing an opening angle bracket
followed by a closing angle bracket have a higher fit-
ness value than reflections containing an opening but no
closing bracket or a closing bracket before the opening
bracket.

• The reflection is compared with the test data regarding
similarity. The more similar the test data and the reflec-

tion are, the fewer characters have been modified by the
system and the more reliable it is to find a potential XSS
vulnerability.

For the test execution, we randomly generate 1000 words.
These were then submitted to the DVWA and their fitness
values calculated. For the development of the next generation,
the 250 fittest individuals were selected. Using the mutation
and recombination operators described above, the next gener-
ation was created from this set, which was in turn submitted
to the DVWA to calculate their fitness values. These new
individuals (children) are then added to the previous set of
individuals, which was then reduced again to the 250 fittest.
By using this very simple algorithm, it was possible within
23 iterations to produce a test data which points to a XSS-
reflection vulnerability, cf. Table I, no. 1. The three words of
the last generation with the highest fitness can be found in
Table I.

No Test data Fitness
1 < div onload = ”alert(123)” > /div > 81.83
2 < svg onbeforeunload = alert(123) > /svg > 81.75
3 < svg onerror = alert(123)′ > /svg 78.88

TABLE I
THREE FITTEST TEST DATA AFTER 23 ITERATIONS

Figure 9 shows how the fitness values of the individuals
evolved from one generation to the next. Each generation
consists of 250 individuals. In the first five iterations, it is
noticeable that the individuals have a fitness below 65 and
that the individuals move closer and closer to this value. In
the generations eight and nine, we observe jumps in the fitness
values resulting from significantly fitter individuals generated
by the genetic algorithm. In the following generations, it can
be seen that the number of individuals with a fitness value
close to 82 is continuously increasing.

Fig. 9. Evaluation of Individuals

VI. SUMMARY AND OUTLOOK

This paper summarizes first results on genetic fuzzing on
grammars to identify vulnerabilities in IoT applications. In the
first part, we presented an introduction to genetic optimization
and search algorithms and adapted them to the field of software
testing. In the second part, we presented two tools and their
extension for genetic fuzzing using grammars. The main result



is the idea to follow a hybrid approach for the adaptation in
the area of security testing for IoT that uses a traditional
GA framework to evolve test data for simple data types
using a specific encoding and genetic operators specifically
implemented for grammars to evolve test data for complex
data types.

For the next steps, it is planned to refine parameters of
the genetic algorithm, e.g., the mutation rate, and to apply
our approach to a case study from the research project for
a realistic evaluation, targeting additional vulnerabilities than
XSS. We will combine the implementation in Fuzzino pre-
sented in this paper with the capabilities of ECJ according to
the hybrid approach. We will evaluate whether our approach
is able to find vulnerabilities more efficiently than traditional
fuzzing approaches and investigate how to adapt the fitness
function to cover more than XSS vulnerabilities.
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