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Abstract—Reliability evaluation and fault tolerance of an
interconnection network of some parallel and distributed systems
are discussed separately under various link-faulty hypotheses in
terms of different P-conditional edge-connectivity. With the help
of edge isoperimetric problem’s method in combinatorics, this
paper mainly offers a novel and unified view to investigate the
‘P-conditional edge-connectivities of hamming graph K7} with
satisfying the property that each minimum P-conditional edge-
cut separates the K7 just into two components, such as L’-extra
edge-connectivity, ¢-embedded edge-connectivity, cyclic edge-
connectivity, (L — 1)t-super edge-connectivity, (L — 1)t-average
edge-connectivity and L’-th isoperimetric edge-connectivity. They
share the same values in form of (L — 1)(n — t)L" (except for
cyclic edge-connectivity), which equals to the minimum number
of links-faulty resulting in an L-ary-n-dimensional sub-layer from
K7. Besides, we also obtain the exact values of h-extra edge-
connectivity and /-th isoperimetric edge-connectivity of hamming
graph K7 for each h < L2, For the case L = 2, K} = Q. is
n-dimensional hypercube. Our results can be applied to more
generalized class of networks, called n-dimensional bijective

connection networks, which contains hypercubes, twisted cubes,
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crossed cubes, Mobius cubes, locally twisted cubes and so on.
Our results improve several previous results on this topic.
Index Terms—Edge isoperimetric problem, Conditional con-

nectivity, Edge disjoint path, Reliability, Unified method, bipartite

I. INTRODUCTION

With the emergence of new topological architectures, par-
allel and distributed processing research is at the heart of
developing new systems in order to be able to take advantage
of the underlying interconnection network. A thorough under-
standing of various aspects of parallel and distributed systems
is necessary to be able to achieve the performance of the
new parallel computers and supercomputers. Fault tolerance
and reliability have to be optimized for some obvious reasons
when choosing good models for interconnection networks. It
is well known that the topological interconnection network of
parallel and distributed system is usually modeled as a graph
G = (V, E), where the vertices and edges represent processors
and physical links between the processors.

There are many topological parameters of GG to evaluate the
reliability of this interconnection network. It is known that
the problem of finding node or edge disjoint paths is closely
related to a well-known Menger’s theorem. Menger theorem
laid a solid foundation for the theory of fault tolerance and
reliability evaluation of interconnection network of parallel
processing systems. Let « and y be two any distinct vertices
of a graph G. The minimum size of an (x,y) edge-cut equals
the maximum number of edge disjoint (z, y)-paths. Menger’s
theorem is a characterization of the edge-connectivity in finite
graphs in terms of the maximum number of edge-disjoint paths
that can be found between any two distinct pair of vertices. As
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the Menger’s theorem is often required to find a maximum of
edge-disjoint paths between two given vertices of GG, motivated
by this, we want to go even further, and consider the cases on
many-to-many edge disjoint paths of a connected graph G
under additional condition.

Let P be some graph-theoretic property of a connected
graph G. We aim to find the maximum number of edge disjoint
paths connecting any two disjoint connected subgraphs with
just satisfying the property P in G. If P is containing a vertex,
then the corresponding version is the classical Menger edge-
connectivity. Conditional connectivity introduced by F. Harary
in 1983, generalized the theories of connectivity in both vertex
and edge versions. Not only does it meet the increasing need
of a more accurate measure of reliability of large-scale parallel
processing systems, but also theoretically enriches the theory
of network connectedness. This paper mainly studies six kinds
of conditional edge-connectivities under various link-faulty
hypotheses. The relationship between the vertex version and
various diagnosability has been investigated [3[], [1L1], [1S]-
(L8]], [20], [26].

Instead of focusing on studying the P-conditional edge-
connectivity of interconnection networks under various kinds
of links faulty hypotheses case by case, this paper mainly
offers a novel and unified edge isoperimetric methord to
investigated the P-conditional edge-connectivity of hamming
graph K7 under six kinds of link-faulty hypotheses. These
edge-connectivities shares a common bipartite property: each
minimum P-conditional edge-cut separates the K7 into two
components (or two parts). For L-ary-n-dimension ham-
ming graph, L'-extra edge-connectivity, t-embedded edge-
connectivity, cyclic edge-connectivity, (L — 1)¢-super edge-
connectivity, (L — 1)t-average edge-connectivity and L!-th
isoperimetric edge-connectivity share the same values in form
of (L—1)(n—t)L* for L >2,n>1and 0 <t <n-—1.
Our results are applied to general class of networks. Reliability
evaluation and fault tolerance of an interconnection network of
some parallel and distributed systems are discussed separately
under various link-faulty hypotheses in terms of different P-
conditional edge-connectivity.

The rest of this paper is organized as follows. In section II,
some preliminaries, terminologies, and six kinds of definitions
about P-conditional edge-connectivity will be given. In section
II, known results about isoperimetric problem, the exact
values of &,,(K7}) and its construction will be presented. In
section IV, some useful properties of the functions &, (K7)
and ez, (K7}) will be proved. In section V, unified method
for P-conditional edge-connectivities of hamming graph K7
will be introduced. Finally, the conclusion of this paper will
be given in section VI.

II. PRELIMINARIES

In a connected graph G, for any edge set F' C E(G), the
notation G — F' denotes the subgraph obtained after removing
the edges in F from G. Given a vertex set X C V(G), we
denote G[X] the subgraph of G induced by X, and X =

V(G)\X is the complement of X. For two vertex sets X and
X, we denote [X, X| the set edges of G with one end in X
and the other end in X. A component of graph G is a maximal
subgraph in which each pair of vertices is connected with each

other via a path.

Definition I1.1. [[7]] Let P be a property of G. The edge subset
F C E(G) is defined as a P-conditional edge-cut of G, if any,
G —F is disconnected, if any, and each component satisfies the
condition P. \(P,G), P-conditional edge-connectivity of G,
is defined as the minimum cardinality P-conditional edge-cut

F of G.

Based on the different properties and the faulty-free
set, recently many researchers have investigated the various
kinds of P-conditional edge-connectivity of many classes
of networks, such as h-extra edge-connectivity, /-embedding
edge-connectivity, cyclic edge-connectivity, k-super edge-
connectivity, k-average edge-connectivity and h-isoperimetric
edge-connectivity. Let

Pl = { containing at least h vertices},

P} = { lying in an [-dimensional subnetwork of G},
PS$ = { containing at least one cycle of G},

Pk = { having the minimum degree at least k},

PE = { satisfying the average degree at least k}.

Note that if P = P}, it gives the definition of h-extra edge-
connectivity of G first introduced by Fabrega and Foil in 1996.

Definition IL.2. [6l] For a connected graph G, an edge subset
F C E(Q) is called as an h-extra edge-cut of G, if exists,
G — F is disconnected and every component of G — F has
not less than h vertices. The h-extra edge-connectivity of G,
written as A\, (G), is defined as the minimum cardinality among

all the h-extra edge-cuts.

And if P = P}, it is defined as the I[-embedded edge-
connectivity of an n-dimensional recursive network G,
m(Gy) for 0 < | < n — 1, first introduced by Yang and
Wang in 2012 [28].

A graph G is cyclic edge connected if G can be separated
into at least two components with two of them containing a
cycle. The cyclic edge-connectivity of G, ¢cA(G), is minimum
number of edges whose removal disconnects the graph G
satisfying that at least two components with one cycle [22].

Similarly, if P = P} and P = P¥F, the k-super edge-
connectivity and k-average edge-connectivity of G can be
defined as the minimum cardinality of k-super edge-cut and
the minimum cardinality of k-average edge-cut , such that each
component of their removal from G has the minimum degree
at least £ and the average degree at least k, respectively. The



h-th isoperimetric edge-connectivity v (G) of G is defined as
(G) = min{|[U,T]| : U C V(G),|U| > h,[U| > h},

where |[U, U]| is the number of edges with one end in U and
the other end in U = VAU [23], [34]. Write

An(G) = min{|[U, U]| : U C V(G),|[U| = m}.

A graph G with v,;(G) = 8;(G), j = 1,...,k is said to be
~p-optimal. Although the definition of h-th isoperimetric edge-
connectivity v, (G) of the graph G deletes the connectedness
of components from that of h-extra edge-connectivity A, (G),
and one does find the situation where two definitions are not
equivalent, for the networks involved hamming graph and its
related variants in this paper, they do share the same values.

Although the above six kinds of 7P-conditional edge-
connectivities contain its own properties, they share a fact that
removal their each minimum P-conditional edge-cut results in
exact two components (or two parts). The P-conditional edge-
connectivity is called bipartite, if each minimum 7P-conditional
edge-cut results in exact two components (or two parts).

Let B = {P | P-conditional edge-connectivity is bipartite}.

Theorem IL3. \(PF,G), \(P§,G), AP, G), \PF,G),
APE,G) and (P, G\ are bipartite.

Proof. For i # 3, recall that \(PF, G) is the minimum number
of an edge set of the graph G whose removal disconnects the
graph G with all its components satisfying the condition PF.
Suppose F is a PF- conditional edge-cut, it can be deduced
that the optimal number is obtained only when there are
exactly two components produced in G — F. In fact, if there
exists a minimum P?- conditional edge-cut Fyy, whose removal
disconnects the connected graph G with all its components
H,, Hy,..

exists an integer b, 1 < b < z, and [V (Hy), V (H,)] is also an

., H,,z > 2 satisfying the condition P, then there

731-]“ -conditional edge-cut of GG, where the induced subgraphs by

V' (Hp) and V' (Hy) are connected. Because of FyNE(Hy) # ()

or Fo N E(G[V (Hy)]) # 0, |[V(Hy), V (Hy)]|<|Fo|, a contra-
diction. So for each i # 3, A\(PF,G) is bipartite. If i = 3,
k = ¢, for convince, \(P§,G) means that each component
contains one cycle. The similar proof can be done. |

Given a connected graph, once above six conditional edge-
connectivities are well-defined, then set { 7’{‘, Pé, Ps, ’Pf,

*Strictly speaking, the removal of a minimum h-th isoperimetric edge-cut,
results in two parts rather than two components. The connectedness of these
two parts is not necessary.

Pk, Ph} C B. Their bipartite property is its essential feature
for them.

We borrow the conception of Mader’s atom [23]] to study of
PF-conditional edge-connectivities. A vertex set S is called a
A\(PF)-fragment if [S, S] is a minimum PF-conditional edge-
cut. Obviously, if S is a A\(PF)-fragment, so is S. A minimum
A(PF)-fragment is a \(PF)-atom. Let A be called a A\(PF)-
atom, then G[A] is connected. ~y,-fragment and Ag-atom are
defined similarly without connected condition constrain. Write

a(PF,G) the cardinality of a A\(PF)-atom and
0pr(G) = min{| X| | G[X] satisfying the property Pk

It is easy to see that a graph G is \(PF)-optimal if and
only if a(PF,G) = 0pr(G). The parameters o(PF,G) and
pr (G) play an importaﬁt role in obtaining the exact value of
A(PF,G) and determining its optimality.

This idea drives us to study the minimum possible
“boundary-size” of a set of a given “size”. The classical
isoperimetric problem is usually expressed in the form of an
inequality LM2 > 4mwA), that relates the length Ly, of a
closed curve M and the area A,; of the planar region that
it encloses in the Euclidean plane R?. Which closed curve
minimizes the length L of the curve with a fixed size of the
area A? The equality holds if and only if M is a circle. It was
“known” to the ancient Greeks, but it was not until the 19th
century that this was proved vigorously by Karl Weierstrass in
a series of lectures in 1870, in Berlin. Isoperimetric problems
are classical objects of the study in mathematics. In general,
they ask for the minimum possible “boundary-size” of a set
of a given “size”, where the exact meaning of these words
varies according to the problem. Making efforts to obtain the
exact value of the PF-conditional edge-connectivity drives us
to study the minimum possible “edge boundary-size” of a set
of a given “size” in graph G.

For discrete case, a graph G = (V, E), the given “size”
is the “number of vertices”, while the “boundary-size” of
the graph is “the size of the edge boundary or the vertex
boundary”. Both edge and vertex versions are related to the P-
conditional edge-connectivity and P-conditional connectivity,
respectively. This paper mainly focuses on edge version. Let
G = (V,E) be a connected graph and A C V(G). Recall

that the definition of 3,,(G) = ACXI/'n|ifIXl|7m I[A, A]| in the h-th
isoperimetric edge-connectivity. For a given graph G, the edge
isoperimetric problem of G is to find a subset A* C V(G)
with |A*| = m such that 3,,(G) = |[A*, A*]| for any
1 < m < |V(G)| (introduced by Harper in 1964) [8]. Even
if in Harper’s seminal paper of edge isoperimetric problem
on hypercube Q,, = K7, the original definition G[A*] is not
required to be connected, his example does satisfy that K3 [A*]
is connected. Let £¢,(G) = min{|[X, X]| : X C V(G) with
| X|=m < ||V(G)|/2], and G[X] is connected }. £5,(G) is
unilateral connected for each 1 < m < ||V (G)|/2].

In this paper we want to go further. Let &,(G) =
min{|[X, X]| : X € V(G) with | X|=m < [|V(G)|/2], and
both G[X] and G[X] are connected}. &,,(G) is bilateral con-
nected for each 1 < m < ||V(G)|/2]. More coincidentally,



Harper’s seminal example meets the equations f,,(K3) =
£ (KY) = &, (KY) for each m < 2"~1. However, it does
not always hold for general G. Even if we add the unilateral
and bilateral connected conditions, the result &,,, (G) = £5,(G)
does not always hold for each 1 < m < ||V(G)|/2].

PO~

Fig. 1. Graph G* without satisfying condition £g(G™) # £5(G™).

For example, given a 3-regular graph G* as shown in Fig.1,
&(G*) = A3(G*) = 4 # 2. If the red edge cut in graph G*
is removed, G* is divided into three components instead of
two, and the number of vertices of the two components is less
than 8. If the green edge cut in graph G* is removed, G* is
divided into two components, the number of vertices is 8 and
10, respectively. So &(G*) = 4 # 2 = £5(G™).

Followed Harper’s idea, for r-regular graph G, |A| = m
by Handshaking Lemma, 3,,(G) = r|A| — ex;,(G), where
exm (G) is the densest degree sum among all the m vertices
induced subgraphs. For each m < [|V(G)|/2], if one can
find a subset X, C V(G) satisfying that 3,,(G) = £5,(G) =
Em(G) = |[X5, X511, | X | = m, and both G[X*] and G[ X *]
are connected, with 2| E(G[X},])| = exm, (G), then these three
definitions are equivalent. Such subsets X, are called optimal
for edge isoperimetric problem of G. We say that optimal
subsets are nested X7 C X | if there exists a total order O
on the set V(G) such that for any m < |V(G)| the collection
of the first m vertices on the order is an optimal subset X} =
{01702703, T ,Uz‘},

V1<02<v3<::- <'Ui|<'Ui+1< s <Up—2<Up—1<Up.

For the networks involved hamming graph K7 and its related
variants in this paper, they do satisfy this property. So in
the following discussion, conventionally, we use the notation
Em(K7). Tt is quite convenient for us to study bipartite P-
conditional edge-connectivity of K. In particular, for the h-
extra edge-connectivity, in 2018, Zhang et al. obtained that
[32], for each 1 < h < [|V(G)|/2],

An(G) = min{&n(G) = h <m < [[V(G)|/2]}.

where &,,(G) = min{|[X,X]| : X C V(G),|X| = m <
||V (G)|/2], and both G[X] and G[X] is connected}. While
for general cases, in 2017, L. P. Montejano and I. Sau proved
that the problem of determining the exact value of A\, (G) is
NP-complete [21].

Given two graphs G and H, the Cartesian product of GG and
H H x G is defined as V(H x G) = {uwv|v € V(G),u €
V(H)}, E(HxG) = {uz,vy| (u=v,z,y € E(G)) or (x =
y,u,v € E(H))}.

The Cartesian product of graphs G'3 and G2 x GG1 is defined

as G3 x G2 x (1. Similarly, one can define the Cartesian
product of graphs G, and G,,—1 X --- X G2 X G1 inductively.

Each vertex G, X Gj,—1 X - -+ X G X (G can be denoted by
TnTp—1- Tox1, 0 < ;<|V(Gy)|, 1 < i < n. If Gy =G,
for each 1 < kK < n, then G,, X Gp_1 X -+ X Gy x G1 =
G x G x -+ x G x G, denoted by G™, and it is n-th cartesian

product poT\LJver graph of G. If G = K, the n-th cartesian
product power graph of K7 is called L-ary n-dimensional
hamming graph, denoted by K7 .The vertex set of K} can
be denoted by X, X,,_1--- XoX1 = {xpnxp_1-- - Tom1 |15 €
{0,1},0< i <1} 0< 2, <L-1,1<4i < n. For any
two vertices U = UpUp—1 - Uty and v = v, Vp—_1 - - - V201
in the graph K7, there is an edge between v and v if and only
if exactly one integer j satisfies u; # v; if i = j; u; = v; if
1=173,7€{1,2,--- ,n}. By the definition of the K7, for given
integers 0 < k < L — 1, the subgraph K7'[kX,_1--- X2 X1]
induced by kX,,_1 --- X2 X7 is an L-ary (n — 1)-dimensional
sub-layer of K7'. Let 2,,2p,—1 - - - 2q422a+1X, - - - X2X1 be the

set {znzn—1"" Zat2Zat+1%a - x2x1 : x; € {0,1,2,--- | L —
1}, 4 < 1,2,---,a, z; is fixed for each j = a+ 1,a +
2,---,n}. By the definition of the K7, similarly, one can

write K7'[zn2n—1" - Zat22a+1Xa - - - X2X1] the subgraph in-
duced by the vertex set z,2n—1---2q4+2%4+1Xq - X2X1.
It is an L-ary a-dimensional sub-layer of K. Thus we
also use zp2zn—1-::2q4+1Xq - X2X1 to denote this L-ary
a-dimensional sub-layer of K7 if no confusion arises. The
lexicographic ordering < on II" , [k;] is defined as follows:
T1T2 ... T, precedes y1ys . . .y, if for some ¢ we have x; < y;
and z; = y; for j <.

III. THE EXACT VALUES OF &, (K}) AND ITS

CONSTRUCTION

Recall that a string that contains only 0's, 1's, - - -, (L—1)'s
is called an L-base n-string. For a positivity integer x =
Sl 0 < i < onypoxo€ {0,1,2,--- L — 1},
Let x = x,z,—1---x1 be the form of L-base n-string.
The L-base n-string denotes the L-base string of length n.
For any positive integer m, it has a L-base decomposition
m = > _,a; L < |L"/2|, a; € {1,2,---,L — 1},
bo>by> -+ >bs. Let S, = {0,1,--- ,m — 1} (under decimal
representation), |S,,| = m, m < |L™/2], and the corre-
sponding set L be the corresponding set represented by L-
base n-string. In Table [, given a positive integer m as an
example, the calculation process of &, (G) is explained more
concretely and vividly. At the same time, the corresponding
induced subgraphs and the functions of O(Kp) = L'5), for
graphs Qu, F'Qu4, AQ4, KY K} and K7} are given. In the
expression of ex,,(G™), the specific values of I; and §; are
shown in the Table

Lemma IIL1. [31] Given d-regular connected graph G,

the number of vertices is |V(G)| = L. If the lexicographic

order provides the optimal solution of the edge isoperimetric



TABLE I

THE EXACT VALUES OF &, (K}) AND exm (K}') AND THEIR CONSTRUCTION

G" Q4 FQu AQ4 K3 K Kz K2,
m 5 5 5 8 10 7 12
Sm {0,1,2,3,4}  {0,1,2,3,4} {0,1,2,3,4} {0.1,2,3,4,56,7} {0,1,2,3,4,5.6,7,8, {0,1,2,3,4,56} {0,1,2,3,4,56,7,8,
9} 9,10, 11}
L {0000, 0001, {0000, 0001, {0000, 0001, {0000, 0001, 0002, {0000, 0001, 0002, {00, 01,02, 03,04, {00, 01, 02, 03, 04, 05,
0010, 0011, 0010, 0011, 0010, 0011, 0010, 0011, 0012, 0003, 0010, 0011, 0012, 10, 11} 06, 07, 08, 09, 10, 11}
0100} 0100} 0100} 0020, 0021} 0013, 0020, 0021}
Decomposition 5 = 22 +2°0  5=2242° 5=22420 g8=2x3'4+2x3° 10=2x4'+2x4° 7=5'4+2x5° 12 = 10' +2 x 10°
of m
exm(G™)  2x2242x  2x2242x  3x22-204  2(2x3'43'43%)4  3x2x4l42x4al4+  axs'42x4'4 9x10'4+2x42x
2° =10 2° =10 4x2°4+1= 2x2x3°=28 2x2x4%°4+2x2x  2x5°42x2x  1x10°42x2x10° =
16 2 x 4% =42 59 =42 96
Em(G™) 4x5-10= 5x5-10= (2x4—1)Xx 2x4x8-28=36 3x4x10-42=78 4x2xT7—42= 9x2x12—-96= 120
10 15 5—16 =19 14
/,"Q'\\
. 0000 0010 0000 N 0010 0020 MA .
0000 0010 _J--.. WAM‘W;V
\ 3 0100 0100 Plag} ~ "MV)?}}Q;#
Induced 010 o ‘ A?)\,’;p,"s?‘
wor p ot 002 /4’ 7200 \‘\\
gip[hL . & A varaala\
m 0001 0011 0001 0011 \ L}
Qi FQ1) AQUE — WQZ’/
QilLs ,
i Kl
O(KL) QL%J QL%J QL%J 3L%J 4L% 5L§J IOL%J
I(Kr) In=0I1= Io=0L1= Io=0L= 1Io =01 =0, Ip=01I=0I= 1Io=01 =0, 1Ipo=01; =0,-
0 0 0 Io=1 1,13=3 Io = 1,13 =3, Iy=36
I, =6
5(KL) 51:0,52: 51:0,52: 51:0,52: 51 :0, 52 = 1, 51—0,52:1,53— 51:0,52:1, 51:0,52:1,“-,
1 1 1 03 =2 2,64 = 83 = 2,84 =3, 611 =10
65 =4

*Strictly speaking, exm (AQn) does not conform to this regular pattern, ez, (AQn) =

0 = 0; if m is odd, then 6 = 1.

T_o(2t; — 1)2% +>°°_(442% + 5, where if m is even, then

TABLE I

THE FUNCTIONS OF I; AND §;

CORRESPONDING TO K7,.

T, =i(

I
o w

6
3

Iy
dq

w

Si=i—1

-1/2 Ir1=(L-2)(L-1)/2

op1=L—-2

T.=L(L-1)/2
o =L—1

problem on the power graph and In(G) = 0, [1(G) = 0,
In(G) = exm(G)/2,6(G) = In(G)=I;m—1(G), 1 <m < L,
then for any 1 < m = Y7, a;LP < L™ by>by> - >bs,
a; € {1,2,---,L — 1}, 0 < s, erm(G™) =
Yiolr(@aib Lt 4+ 20, (G)L] 423700 Vi
8a,11(G)ag LY, and £¢,(G™) = 61.(G)nm — ez, (G™).

i <

Let m = Y0 qa;L%, a; € {1,2,---,L — 1}, n >
bo>b1>--->bs > 0. In 2018, Zhang constructed (s + 1)
L-ary sub-layer family whose vertex sets do not intersect each
other. For 0 < ¢ < s, the ¢-th L-ary sub-layer family of K7
is denoted by C?, which contains a; L-ary b;-dimensional
sub-layers C%, C%2 ... C%% of K. For 0 < i < s,
1 <5 <a; <L—1, the j;-th L-ary b;-dimensional sub-
layer of K7 is denoted by C%Ji. Given C°, which contains
ag L-ary bp-dimensional sub-layers, then the jo-th L-ary bg-
dimensional sub-layer of K7 is C%J0:

00...00j0 — 1Xp, Xpy—1... X2 X7.

The induced subgraphs of each L-ary byo-dimensional sub-layer
are isomorphic to the power graph G% of a graph G. They
do not intersect each other and are 01,(G) x bo-regular. There
are I,,(G)L" edges in the 0-th L-ary sub-layer family.

The structure process is as follows:

n

c%90 1 < jg < ag:00---00jg — 1 Xy, Xp 1 XoX1
- 0 *bo
-
bo
n

if any

ctI1,1 < j; <ag:00---00ag00---00j1 — 1 Xp Xp. _q---XgX1
2 Beel B 1701

N
b1

if any if any

bo
n

2921 < jo

IN

ag :00---00ag00---00aj 00---004y —1Xp, Xp, 1 XoX1
_— M 2 " b2
—_—

if any
b2

if any if any

by

bo

For C%Ji i > 0, the (b;_1 + 1)-th coordinate (j;_1 — 1) of



Ci=hei=1 is changed to a;_1. Let the (b; + 1)-th coordinate
of C™Ji be (j; — 1). And let the coordinate of the (b; + 2)-th
to the n-th be 0 expect for the (b;_1 + 1)-th, if any. Through

this construction method, L,, = U V (CH7) is
0<i<s,1<j;<a;
obtained. ‘ N
Let V(C) = U V(C%) and G, =: G" [Ly,).

1<ji<a;

Each L-ary sub-layer C*Ji has &7 (G)b; L% /2 edges. For
0<i<s1<yj <a <L-—1,giveni, ifa; =1, C*
contains only one L-ary b;-sub-layer; if a; = 2, then between
C»% and C*»%~! has a matching of size L% and if a;>2, a;
and a, are adjacent in the graph G, a;<a;, then between Ol
and C'% has a matching of size L. There are I,,,(G) groups
of such matches exist in C* L-ary b;-dimensional sub-layer of
L-ary b;-dimensional sub-layer family.

For each 0 < i < k < s, there are &4, 1(G)ar L edges
between sub-layer family V' (C?) and sub-layer family V (C*).
It can be counted that C}, contains > 5 ,[0.507(G)b; LY
+(I,,(G))Lb] edges inside C°. The number of edges
between C? is S0 8a,41(G)axLP.  Since
G" is p(G)n-regular, from the Handshaking lemma,
&, (G™) = 6p(G)nm — exy,(G™). The number of edges
of G"[Ln] is >;_o[0.500(G)ab;Lb + I,,(G)Lb] +
Zf;(} Zi:iJrl Sa,+1(G)ax L%,

As G = K, is L—1-regular connected graph, the number of
vertices is |V (K)| = L. The lexicographic order provides the
optimal solution of the edge isoperimetric problem on K7 and
Io(KL) = O, Il (KL) = O, 2Im(KL) = ewm(G) = m(m— 1),
(Sm(KL) = Im(KL) _Im—l(KL) =m—1,1<m < L. Note
that (SL(KL)L —1=r.

Corollary IIL.2. [3]|] For any integers 1 < m =

Zf:o aiLbi < L™ bo>bi>--->bg, a; € {1, 2,---, L — 1},
0<i<s exn(K}) = Efzo[(L— aib; L% + (a; — 1)a; L)
230700 Shei @ikl and &,(K}) = (L — 1)nm -
exm(KT).

Corollary IIL3. (1) (Harper 1964 [8] and Li and Yang [19]

2013 ) &n(K3) = nm — exm(KY) = nm — [>5_, bi2% +
S0 2-i-2%] for m =37 2% <27 bo>by>... >b,.
(2) Em(KY) = 2nm — ex (K§) = 2nm —{}_;_[2a;b;3%

+2(a; — 1)3%] + 230000 Y5 ia3% ), for 1 < mo=

Zj:o a;3% < 3", bo>b1>...>b,, a; € {1,2}, 0<i <.

The n-dimensional bijective connection networks B,, (also
called hypercube-like networks) are a class of cube-based
networks including several well known interconnection net-
works like hypercubes (denoted by @Q,), twisted cubes [9]
(denoted by T'Q.,), crossed cubes [5] (denoted by CQ.,),
spined cubes SQ,, parity cubes PQ,, Z-cubes ZQ, [33],
varietal cubes V@Q,, Mdbius cubes [4] (denoted by M@,,),
locally twisted cubes [27] (denoted by LT'Q,), restricted

hypercube-like networks RH LN, generalized cubes GQ,,,
generalized twisted cubes [[1]] (denoted by GT'Q),,) and Mcubes
[24] (denoted by M C'Q,,) as members.

In 2013, Zhang et al. obtained that &, (B,,) = &, (K% [30].

Corollary IIL4. &, (B,) = &n(KY) for each m < 2™.

So our main results can be used for the m-dimensional
bijective connection networks.

IV. SOME USEFUL PROPERTIES OF THE FUNCTIONS
Em (K7) AND ez, (K7)

Before given our main results on PF-conditional edge-
connectivity of K7, we will give some interesting properties
of functions functions &,,(K7) and ex,,(K7}). If there is no
specific explanation in the following, we assume that n is a
positive integer n > 2.

Lemma IV.1. Let 1 < h = h1 + hy < LUEL, where hy =
S @il hy = 30 JaiLb, aja; € {1,2,--- L — 1},
and by>by>...>by;>by>...>b.. Then ex, (K1) = exp, (K7)+

ewny (K7) +2(3i_g ai)ha.

Proof. According to the expression of ex,,(K7}), we
have exy, (KP) = S0 (L — D)aib L% + 2I,,L"]
+2 ZE;(I) Z}lzm ajapLP and exp,(K7) = Y0 o[(L —

1)a;b;Lb;+2Ia;Lb;]+2 DD DA G;G;Lb;- Letaiy1 =
ags Q42 = A1, 0y Qppsyl = A, b = by, byo =
B, -+, biyspr = b, Then hy = Zjifjll(a;Lb/)
and ex, (K7) = S — DajbiLh + 21, L4] +
23 S a;-akLbk. Note that
exn(KL)
= eh,+h, (K7)

= Yt ol(L = Dagbi LY + 21, L¥) + S (L - 1)
xab LY + 20, L9 +2 120 Shyy asak L
+2 Z:thirl Z?S{E a;a kLb" +2) g a
x il aiL

= Yico((L = Dagbi L% + 214, L) + 23770 Yy

(@) + S (L — Db LY + 21, 1Y)

’

t+s t+s+1
+23 01 Dkmit Y %Lb" +23 0 ai
t4+s+1 7’ rp.”
XD ittt a; L%
= €Tp, (K ) + eTh, (Kn) + 2(21 =0 al)hQ

Then, the proof is completed. o

Lemma IV.2. &, 11 (K}) —&n(K}) >0 for 1 <m < LL31.



Proof. Let m = Y7 a; L% < L5/ 1 <a; <L Som =
Y@ < [%]. Then
Emt1(KL) — &m(KTL)
=0p(KE)n(m +1) —
—exm (K1)
=(L-1Dn(m+1) = exm1(KL) —
—exm(KT)]
= (L —1)n — [exm1(KL) — exm(KT)]
=(L-Dn-237 qa
(L—-1Dn—-2x[5](L-1)
=L-1mn-2x[5])=0

e (K7) — [0 (K )nm

[(L —1)nm

Y

The proof is completed. |

Lemma IV3. Forany 0 < g <L -2 0<t<n-—2, then
g+t (KT) — &g (KL) = 0.

Proof. &geyp (K3)—€ps (K7) = (L—1)nLt—(L—1)tL'~
2gL' = (L—1)(n—t)L' —2gL*>(L —1)(n —t — 2)L*. The
last inequality holds because of g < L —1 and n —t > 2. So
the result holds. (|

Lemma IV4. Forany0 < g < L—1,0<t <n—2, ho<Lt,
then &gretn(K7) — &gt (KT) = 0.

Proof. &gty (K}) — &grt(K}) = (L — 1)nhg — 2gho —
exn, (K1) > (L—1)(n—2)ho—exn, (K} %) = &, (K} 72) >
0. O

Lemma IV.5. For any positive integers 0 < t < n — 2, then

§Lt+1(K£) - §Lf(Kg) > 0.
Proof. & (K7) — &t (K7)

=(L- 1)n(L — 1)Lt — exr,  (K7)+expe(K7})

=(L—-1)2nL! —[(L—1)(t+ 1)L — (L - 1)tLY]
=(L-1)L{(nL—n—tL—L—t)
=(L-1)[(n—t)(L-1)-LIL
> (L—-1)]2(L—-1)- L)Lt
=(L-1)(L-2)L*

> 0. O

Lemma IV.6. For some integers L, m, n, g and t, n > 2,
L>21<g<L-landgL'<m <L"' then &, (K})>
§gLt (KZ)-
Proof. Case 1: If g =
Em(K) = Erer (K).
Case 2: For 1 <g<gyo<L-1,¢t=n—2, by Lemma
V.3l we have §(go+1)rn-2(KL) = gorn-2(KT) for go <
L—2. And by Lemma V4 & 1 n—2p, (K}) > &g pn—2(KT)
for go < L — 1 is be obtained. So we can have &,,(K7}) >
&t (K7 for any gLt <m < L1,

1, ¢t = n—1, then &rn—1(K}) >

Case 3: For 0 < t<n — 2, we divide the gL* < m < L"~!
into two parts m<L!*! and L't <m < L™~ 1

Subcase 3.1:
Ertor1 (KT) > Epto (K}) for any integer ¢t +1 < tg <n —2.
And by Lemma [[V3] and [V.4] we can obtain that &, (K7}) >

£ (KT for any LIt <m < L1

By Lemma [[V5] we can obtain that

Subcase 3.2: For any gL' < m<L't!, g < gy < L —1,
E(go+1)Lt (K7) > &gyt (K7) is be obtained by Lemma [V.3]
and &g, 1t ho (KT) > &gt (KT) for hg<L' is be obtained by
Lemma [[V4] So one can have &, (K}') > &, (K}) for any
gLt < m< Lt

Combined Subcase 3.1 and Subcase 3.2, we can deduce that
En(KY) > & (KT) for any gL' < m < L™ 1.

In summary, &, (K7) > &pe(K}) for n > 2, L > 2,
1<g<L-—1,gL'<m< L" ! The proof is done. O

Lemma IV.7. For L"~' < m < [L"/2], we have &, (K}) >
€0t (K).

Proof. Since the function &,,(K7}) is highly relied on the
decomposition of the integer m and on the parity of L, we

give the decomposition of the integer | L™ /2] as follows:

L . _
iy for even L;

[rj2=42 (1)
Z Bl =" for odd L.
In order to obtain our result, three cases of decomposition of

m are discussed (if L is even, there are only Case 1 and Case

2).



Case 1: For any 1 < g < L%J, one can obtain that
§g+1yzn-1(KL) = &grn—1(K7)
=(L-1nL" ' —(L-1)(n—1)L"1 —2gL""!
> (L- 1)Lt =2k~ )L
= (141 - &)+ 1)L
> Lt
> 0.
Case 2: Forany 1 < g < L%J, ho<L™ !, we have
Egn=14ho (KT) = §grn-1(KT)
= (L —1)nho — 2gho — exp, (K})
> (L —1)nho —2(| %] — Dho — exp, (K7})
=(L—1)n—(L—1ho+([L] = |&] + Dho
—exn, (K7)
= (L=1)(n = 1)ho — exn, (K7) + (5] = [£] + 1ho
= &no (KL + (151 = 15 + Dho
> 0.

Actually, by the Case 1 and Case 2, one can already prove
that for L"~! <m < [Z]L"71, €, (K}) > &pn-a (K7). But
if L is odd, for |[£]L""1 < m < S0 LD two
subcases are still needed to discuss.

Case 3:

Subcase 3.1: For odd L, hg < $L""%7J, then

fZgZOL%JLnflferho (Kf) - fzgzoLgJLnflfj (KZ)
= (L—1)nho— 237 | £]ho — exp, (KT)
= (L —1)nho —2(| 5] = 1)(j + 1)ho — exn,(K})
=(L—-1)n—j—1ho—exn, (K})
=(L—-1)(n—j—1)ho — exn, (K} 77
=& (K17 7)
> 0.
Subcase 3.2:
Stttk o= (KE) =&y 1 4ypn1-5 (KT)
= (L—DngLr=t77t =257 o[ §]L" 2
_engnf%j(Kf)
=(L—=1n[3]L" > (L -1)(j +1)5L" 7
_engnf%j(Kf)
L—1)(n—j— 150270 —exy oy (K )

(
€ gy (K071
0

Y

If L is odd, for | £ |L71 <m < S0 ' L2717, based
on above two subcases, one can obtain that §m(KZ_1) >
{L%JL"*(KZ%) > &£pn-1(K7). All in all, the proof is done.

O

Lemma IV.8. For some nonnegative integer t <n —1, 1 <

g<L—1,gL"<m < |L"/2|, then &, (K}) > &+ (K}).

Proof. Case 1: For t<n — 1, by Lemma [[V.7] and Lemma
the inequality &, (K}') > &, (K ') holds for any gL' <
m< [L"/2],1<g<t-1

Case 2: For t = n — 1, we need to prove that &, (K}) >
Eorn—1 (K7) forany gL" 1 <m < [L"/2],1< g < |L/2].
Although the integer satisfies 1 < g < L — 1, because of
gL™"=! < |L™/2], one can obtain that ¢ < |L/2|. By the
proof of Case 1 and Case 2 in Lemma [V &, (K}) >
Ern—1(K}) for any gL' < m < |[L/2]L" ' If L is
even , [L"/2] = LL"~1 we can obtain that &,(K}) >
gL""Y(K7) for any gL"~! < m < |L/2|L""! = |L"/2],
our result holds. While for odd L, because of |L"/2| =
S LL/2| L1, by the proof of Subcase 3.1 and Subcase
3.2 in Lemma [V7, we have &, (K}) > & 1/2)n1(K7)
for any |L/2]L"' < m < |L"/2]. So for odd L,
Em(KT) > Egpn-1 (K7) for any gL™™! < m < [L"/2] and
1<g<|[L/2].

In summary, for any integers 0 <t <n—1,1<g<L-1,
gLt < m < [L7/2), €n(K}) = €ue(K}). The proof is
completed. o

Lemmas IV.3-IV.8 imply the complex layered-increasing
properties and self-similarity of the function &, (K7). It is
crucial to P-conditional edge-connectivities of hamming graph
K 7. Analysising the properties of the function &, (K}') might
be of interest in their own right.

V. UNIFIED METHOD FOR P-CONDITIONAL

EDGE-CONNECTIVITIES OF HAMMING GRAPH K7

Theorem V.1. Let n, g, t, L be four integers, n > 1, L > 2,
0<t<n-11<g<L-1and gL' < |L"/2]. If
P-conditional edge-connectivity is bipartite and 0p(K}) =
gL*. We obtain that N(P, K}) = &,1+(K}') = 6 (Kr)ngL! —
or(Kp)gtLt — g(g — 1)L' = g[(L — 1)(n —t) — (9 — 1)]L".
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Fig. 2. The main results on \(PF, K7') with 0p(K7) = gL* and 0p(K}) < LL2J, ¢ (K7) and €, ¢ (K}) for 2 < L < 10.

Proof. Lower bound: For any conditional P, let I’ be any
minimum P-conditional edge-cut of K7, and K7 — I is dis-
connected. And its deletion from K7 results in p components
C1,Cy...Cy,, p > 2. Each component satisfies the condition
P. As P-conditional edge-connectivity of K7 is bipartite,
and the minimality of A\(P, KL) edge-cut of K%, we have
p = 2. Let C* be the resulting minimum component. Because
of ép(K7) = gL', by the Lemma [[V.8] we have |F| >
[V(C*), V@] = &ue (K1) = gl(L—1)(n—t)— (g—D)]L"

The above equality holds because of ,pt(K}) =
or—1(K7)ngL! — (L = 1)gtL' — g(g — 1) L' = g[(L —1)(n —
£) — (g — D]L.

Upper bound: It is sufficient to show that, there exists

a ‘P-conditional edge-cut of K7 with size &,1:(K7)
n—t

=glL=1)(n—t) = (¢ - DIL', KZ[L7,]=0...00X, ...

n—t n—t

—N— —_———
X2X1U0...01Xt...X2X1U...0...Og— 1Xt...X2X1.
n—t
—N—
Each 0...0f X;... X2X; for 0 < f < g — 1 is isomorphic
to L-ary t-dimensional sub-layers and (L — 1)t regular.
The minimum degree of them happens to be (L — 1)t.

By the definition of K7}, there exists at least one edge

between these L-ary t-dimensional sub-layers. So, the
induced subgraph K7'[L7;.] is connected with gL vertices,
and contains a cycle If L = 2, ¢t > 2; if L > 3,
t > 1). On the other hand, |@| = L" — gLt =

(L=1)L" '+ (L-1)L" 2+ - 4+ (L-1)L" +(L—g)L".
n—k

—N
0...00Xg...XoX4

n —
Kpllg] =
t+1<k<n—1,1<b<L-1
n—t
—
U OOOXtXQXl
g<o<L-1

Fort +1 < k£ <

n—k o

—
0...00Xy

n—11 < b < L —1, each

...X9X; is L-ary k-dimensional sub-layer of
K7, which is (L — 1)k regular and isomorphic to K&.

There is at least one edge between different sub-layers. For
n—t

Pt X
each g < o < L—-1,0...00X;...X0X; is L-ary t-
dimensional sub-layer of K7, which is (L — 1)t regular and

isomorphic to K. Also there is at least one edge between
n—t—1

—~
different sub-layers. And 0...0l Xy, ... XX are connected

n—t

. ’_/% . .
with 0...0L —1X;...X5X; by the definition of K7. So

KZ[L;LU] is connected with L™ — gL? vertices (> gL?), and

contains at least a cycle. As P-conditional edge-connectivity



is bipartite and 0p(K}) = gL'. Thus, [Ly;., L};.] is a P-

conditional edge-cut of K. So [[Ly; ., L7, .|| = &rt (KT) =
gl(L = 1)(n—1t) = (g — DIL". O

By Theorem the exact values of Lt-extra edge-
connectivity, t-embedded edge-connectivity, cyclic edge-
connectivity, (L — 1)¢-super edge-connectivity, (L — 1)t-
average edge-connectivity and LP-th isoperimetric edge-
connectivity of K} share the same values in form of (L —
1)(n — t)L! because they are all bipartite.

Based on the Theorem and the following Theorem
an algorithm can be designed to calculate bipartite P-
conditional edge-connectivity of K7 with Op(xn)(K7) = gLt
or Op(xpy (K1) < LL#) in the Algorithm.1. In this algorithm,

O(KL) = L5, The time complexity of the algorithm is
O(logr(N)), where N = L™.

Corollary V.2. For any integers 0 < t < n — 1,

t n n L-1 n L—1 n
P ). APSKE), APV ), AP K)
and )\(PGU,KE) share the same value {1+ (K}) = (L—1)(n—

£)Le. And A(P§, K72) = g[(L — 1)(n — £) — (g — 1)]L%.

Proof. As the hamming graph K7} is (L — 1)n regular, with
L™ vertices, for any integers 0 < t < n — 1, )\(Pft,Kf),
AP, K3, A(PS, K7), M(PSEV K, A(PSED* K7) and
APE K7 are well-defined, and then the set {Pf’, Pi,
Ps, PiL_l)t, 5(L_1)t, PGLt} C B. By Theorem the
exact values of A(PE',KT) A(PL KP), APV KD,
A(’PéLil)t,Kf) and )\(PGLt,Kf) share the same value
§oe(KT) =

number of links-faulty resulting in an L-ary ¢-dimensional sub-

(L — 1)(n — t)L!, which equal to the minimum

layer with Lt vertices from K 7. Note that the value of g is 1,
but for the case of cyclic edge-connectivity, we have g < 3.
Actually, for K%, the shortest cycle is Cy with length L? = 22
for g = 1, t = 2, and for K7, the shortest cycle is C3 with
length L' = 3! for g = 1, t = 1, while for K7, L > 4, the
shortest cycle is C3 with length 3L° = 3 x L? for g = 3,
t=0.S0 A\(P§,K?) = g[(L—1)(n—1t)— (g — 1)]L". The
proof is finished. |

Corollary V.3. For any integers 0 <t <n —1,
1). [290(2021)N(PL, K}) = ni(KY) = &3¢(K§) = 2(n—1t)3;

Algorithm 1: P-conditional edge-connectivity of K7

Result: Calculating the h-extra edge-connectivity of
K}

Input : Given positive integers n, L, i, k and K7,
0p(K7).0(KL)

Output: The P conditional edge connectivity of K7 is
S

1 Ip < 0; v+ 1; while v < L do

2 ‘ Ivkw;lu—v—i—l;(&(—v—l;

3 end

4 if HP(KZ) < O(KL) then

5 | m« 0p(K}):

¢ end

7 if Op(K}) == gL' then

8 | m<« gL

9 end

10 t < m;

u s« |logpt] +1;

12 while s’ == s’ — 1 do

13 if t < L then

14 | ¢(s)  tibreak

15 else

16 | ()« mod (t, L)t |£]: 8 s —1;

17 end

18 end

19 k<« 1; 2+ 1;

20 while k£ < |log; m| +1 do

21 if c¢(k) # 0 then

2 a(z) < c(k); b(z) « |logy m|+1—k;
z+ z+1;

23 else

2 | kek+1

25 end

26 end

27 ¢+ 1; S« dpnm;
28 while ¢ < z do

29 if ¢ < 1 or g < z then

30 S« S —dra(g)b(q) LD — I, LYD;
qg<—q+1;

31 else

32 S S5— 5La(q)b(q)Lb(q) — Ia(q)Lb(q);
w—q+1;

33 while w < z do

34 | 5 8= 204@wa(w) L™ w+ w+1;

35 end

36 qg+—qg+1;

37 end

38 end

2). [13)(2012)N(Ps, K3') = m(K3) = & (KY) = (n —t)2%;
3) []4](20]3)A(P578n) = nt(PZ) = §2t (Bn) = (n - t)2t'

For 2 < L < 10, the main results of Pf-conditional edge-
connectivity of K7 with 6p(K}) = gL' and 0p(K}) <



TABLE III
PE-CONDITIONAL EDGE-CONNECTIVITY A(PF, K7).

XPF, K7) t K3 = Qn Ky Ky K7

A(PL' K7 0<t<n-—1 (n —t)2* 2(n — )3 3(n — t)at (L —1)(n—t)L*

APL KT 0<t<n-1 (n —t)2° 2(n — t)3° 3(n — t)4* (L—1)(n—t)L*

A(PS, K7 (n — 2)22 2(n —1)3! 3[(n — 0) — 2]4° 3[(L — 1)(n — 0) — 2]L°
APV KT 0<t<n-—1 (n —t)2¢ 2(n — t)3? 3(n — t)4! (L—-1(n—t)L*
A(7><Lr Dt g 0<t<n-—1 (n —t)2! 2(n — t)3° 3(n — t)4t (L —1)(n —t)L*

APE LKD) 0<t<n-1 (n —t)2° 2(n —t)3° 3(n — t)4° (L—1)(n—t)L*

2l & (KP) and &,:(K7) are shown in the Fig.2,
where FLI represents the exact values of function &,(K7)
in the first increasing interval 1 < h < LLz!. Once
the P-conditional edge-connectivity of K7 is bipartite and
0p(K7) min{|X| | K}[X] satisfying the property P}
is less than LLlZ!, the exact value of P-conditional edge-
connectivity of K7} is §9P(K7£)(KZ). We also investigate the
cases of bipartite P-conditional edge-connectivity of K7 with
Op i) (KT) = gL'. The exact values of PF-conditional edge-
connectivity of K7, \(PF, K1), are shown in Table

Theorem V.4. Let n and L be two positive integers. If P-
conditional edge-connectivity of K7 is bipartite with h =
0p(K}) < LL31. Then, one can obtain that \(P,K7}) =
$op(rn)(K7) = En(KT) (L — 1)nh — exp(K}) where
h=3_gail exn(K}) =37 ol(L — DaibL" + (a; —
1)a; LY +25°7) > i1 aiag L.

Proof. As for each 1 < m < |L"™/2], one can find a
subset X L C V(K7}) satisfying that &, (K7) =
L2, Tl L] = m and both Kp[L2] and KP[T7] are
connected with 2|E(K}[LY])| = exm(K}). Because P-

conditional edge-connectivity is bipartite, for any minimum
‘P-conditional edge-cut of K7 with m* vertices for smaller
component for some m* < |L"/2|. By Lemma [V.2]
Lemma [VS8 and 0p(K}) = h < L3, we can de-
duce that N(P,K7) > &pp(rp)(KZ) = §n(K7). Because
[LOP(K”)’W] is a P-conditional edge-cut, A(P, K7) <
|[L97>(KZ)’TI(L")]| = (L}, Ly]| = &n(K}) = (L — 1)nh —
exm(KL). So MP,KL) = &opxp)(KL) = &n(KEL)
(L —1)nh — exp(K7}). The result holds.

O

Corollary V.5. Let n, h and L be three positive inte-
gers, h < Lzl
is An(KL) = An(KE)

The h-extra edge-connectivity of K7
(L — 1)nh — exp(K}) where

h=>0_ga;Lb, exp(K}) = Y5 (L — )ab L% +
Da; LY +2 3775 > i1 @ia LY

Our results improve the case for L = 2,3, h < 2Lz,

(ai —

Corollary V.6. For any integer 0 < t < n—1, L = 2,3,

h < L3,
(1) [BIV20I)N(PP, K}) = M (K = €,(K5);
(2) [19(2013)N(P1, K3') = An(K3) = & (KT),
(3) [30](2014)\(P}, B,) = M\n(Bn) = &n(By);
( )

(4) [10](2013)\

VI. CONCLUSION

Reliability evaluation and fault tolerance of an intercon-
nection network of some parallel and distributed systems are
discussed separately under various link-faulty hypotheses in
terms of different P-conditional edge-connectivity, where P
is some graph-theoretic property of a connected graph G.
This paper deals with the P-conditional edge-connectivities
of hamming graph K7 with satisfying the property that each
minimum P- condltlonal edge-cut separates the K7 just into
two components. And these P-conditional edge-connectivity
is called bipartite. We show that for hamming graph K7,
the L*-extra edge-connectivity, t-embedded edge-connectivity,
(L — 1)t-super edge-connectivity, (L — 1)t-average edge-
connectivity and L‘-th isoperimetric edge-connectivity share
the same values in form of (L — 1)(n — t)L!. Besides, we
also obtain the exact values of h-extra edge-connectivity and
h-th isoperimetric edge-connectivity of hamming graph K7
for each h < L'2). Among these six kinds of connectiv-
ity, the solution of h-extra edge-connectivity is crucial for
solving the other five or even more general P-conditional
edge-connectivity. Because if any abstract P-conditional edge-
connectivity with bipartite property, the smallest cut must
be divided into two components, which is composed of a
component and its complement. The exact value of the P-
conditional edge-connectivity can be determined according
to the size of the A\(P)-atom. The value of h-extra edge-
connectivity is just a description of the number vertices in
the component. Our results improve several previous results
on this topic and can be applied to bijective connection



networks, which contain hypercubes, twisted cubes, crossed
cubes, Mobius cubes, locally twisted cubes and so on.
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