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Abstract—Reliability evaluation and fault tolerance of an

interconnection network of some parallel and distributed systems

are discussed separately under various link-faulty hypotheses in

terms of different P-conditional edge-connectivity. With the help

of edge isoperimetric problem’s method in combinatorics, this

paper mainly offers a novel and unified view to investigate the

P-conditional edge-connectivities of hamming graph Kn
L with

satisfying the property that each minimum P-conditional edge-

cut separates the Kn
L just into two components, such as Lt-extra

edge-connectivity, t-embedded edge-connectivity, cyclic edge-

connectivity, (L − 1)t-super edge-connectivity, (L − 1)t-average

edge-connectivity and Lt-th isoperimetric edge-connectivity. They

share the same values in form of (L − 1)(n − t)Lt (except for

cyclic edge-connectivity), which equals to the minimum number

of links-faulty resulting in an L-ary-n-dimensional sub-layer from

Kn
L . Besides, we also obtain the exact values of h-extra edge-

connectivity and h-th isoperimetric edge-connectivity of hamming

graph Kn
L for each h ≤ L⌊n

2
⌋. For the case L = 2, Kn

2 = Qn is

n-dimensional hypercube. Our results can be applied to more

generalized class of networks, called n-dimensional bijective

connection networks, which contains hypercubes, twisted cubes,
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crossed cubes, Möbius cubes, locally twisted cubes and so on.

Our results improve several previous results on this topic.

Index Terms—Edge isoperimetric problem, Conditional con-

nectivity, Edge disjoint path, Reliability, Unified method, bipartite

I. INTRODUCTION

With the emergence of new topological architectures, par-

allel and distributed processing research is at the heart of

developing new systems in order to be able to take advantage

of the underlying interconnection network. A thorough under-

standing of various aspects of parallel and distributed systems

is necessary to be able to achieve the performance of the

new parallel computers and supercomputers. Fault tolerance

and reliability have to be optimized for some obvious reasons

when choosing good models for interconnection networks. It

is well known that the topological interconnection network of

parallel and distributed system is usually modeled as a graph

G = (V,E), where the vertices and edges represent processors

and physical links between the processors.

There are many topological parameters of G to evaluate the

reliability of this interconnection network. It is known that

the problem of finding node or edge disjoint paths is closely

related to a well-known Menger’s theorem. Menger theorem

laid a solid foundation for the theory of fault tolerance and

reliability evaluation of interconnection network of parallel

processing systems. Let x and y be two any distinct vertices

of a graph G. The minimum size of an (x, y) edge-cut equals

the maximum number of edge disjoint (x, y)-paths. Menger’s

theorem is a characterization of the edge-connectivity in finite

graphs in terms of the maximum number of edge-disjoint paths

that can be found between any two distinct pair of vertices. As

http://arxiv.org/abs/2203.12916v1


the Menger’s theorem is often required to find a maximum of

edge-disjoint paths between two given vertices of G, motivated

by this, we want to go even further, and consider the cases on

many-to-many edge disjoint paths of a connected graph G
under additional condition.

Let P be some graph-theoretic property of a connected

graph G. We aim to find the maximum number of edge disjoint

paths connecting any two disjoint connected subgraphs with

just satisfying the property P in G. If P is containing a vertex,

then the corresponding version is the classical Menger edge-

connectivity. Conditional connectivity introduced by F. Harary

in 1983, generalized the theories of connectivity in both vertex

and edge versions. Not only does it meet the increasing need

of a more accurate measure of reliability of large-scale parallel

processing systems, but also theoretically enriches the theory

of network connectedness. This paper mainly studies six kinds

of conditional edge-connectivities under various link-faulty

hypotheses. The relationship between the vertex version and

various diagnosability has been investigated [3], [11], [15]–

[18], [20], [26].

Instead of focusing on studying the P-conditional edge-

connectivity of interconnection networks under various kinds

of links faulty hypotheses case by case, this paper mainly

offers a novel and unified edge isoperimetric methord to

investigated the P-conditional edge-connectivity of hamming

graph Kn
L under six kinds of link-faulty hypotheses. These

edge-connectivities shares a common bipartite property: each

minimum P-conditional edge-cut separates the Kn
L into two

components (or two parts). For L-ary-n-dimension ham-

ming graph, Lt-extra edge-connectivity, t-embedded edge-

connectivity, cyclic edge-connectivity, (L − 1)t-super edge-

connectivity, (L − 1)t-average edge-connectivity and Lt-th

isoperimetric edge-connectivity share the same values in form

of (L − 1)(n − t)Lt for L ≥ 2, n ≥ 1 and 0 ≤ t ≤ n − 1.

Our results are applied to general class of networks. Reliability

evaluation and fault tolerance of an interconnection network of

some parallel and distributed systems are discussed separately

under various link-faulty hypotheses in terms of different P-

conditional edge-connectivity.

The rest of this paper is organized as follows. In section II,

some preliminaries, terminologies, and six kinds of definitions

about P-conditional edge-connectivity will be given. In section

III, known results about isoperimetric problem, the exact

values of ξm(Kn
L) and its construction will be presented. In

section IV, some useful properties of the functions ξm(Kn
L)

and exm(Kn
L) will be proved. In section V, unified method

for P-conditional edge-connectivities of hamming graph Kn
L

will be introduced. Finally, the conclusion of this paper will

be given in section VI.

II. PRELIMINARIES

In a connected graph G, for any edge set F ⊆ E(G), the

notation G−F denotes the subgraph obtained after removing

the edges in F from G. Given a vertex set X ⊆ V (G), we

denote G[X ] the subgraph of G induced by X , and X =

V (G)\X is the complement of X. For two vertex sets X and

X , we denote [X,X] the set edges of G with one end in X
and the other end in X̄. A component of graph G is a maximal

subgraph in which each pair of vertices is connected with each

other via a path.

Definition II.1. [7] Let P be a property of G. The edge subset

F ⊂ E(G) is defined as a P-conditional edge-cut of G, if any,

G−F is disconnected, if any, and each component satisfies the

condition P . λ(P , G),P-conditional edge-connectivity of G,

is defined as the minimum cardinality P-conditional edge-cut

F of G.

Based on the different properties and the faulty-free

set, recently many researchers have investigated the various

kinds of P-conditional edge-connectivity of many classes

of networks, such as h-extra edge-connectivity, l-embedding

edge-connectivity, cyclic edge-connectivity, k-super edge-

connectivity, k-average edge-connectivity and h-isoperimetric

edge-connectivity. Let

Ph
1 = { containing at least h vertices},

P l
2 = { lying in an l-dimensional subnetwork of G},

Pc
3 = { containing at least one cycle of G},

Pk
4 = { having the minimum degree at least k},

Pk
5 = { satisfying the average degree at least k}.

Note that if P = Ph
1 , it gives the definition of h-extra edge-

connectivity of G first introduced by Fàbrega and Foil in 1996.

Definition II.2. [6] For a connected graph G, an edge subset

F ⊆ E(G) is called as an h-extra edge-cut of G, if exists,

G − F is disconnected and every component of G − F has

not less than h vertices. The h-extra edge-connectivity of G,

written as λh(G), is defined as the minimum cardinality among

all the h-extra edge-cuts.

And if P = P l
2, it is defined as the l-embedded edge-

connectivity of an n-dimensional recursive network Gn,

ηl(Gn) for 0 ≤ l ≤ n − 1, first introduced by Yang and

Wang in 2012 [28].

A graph G is cyclic edge connected if G can be separated

into at least two components with two of them containing a

cycle. The cyclic edge-connectivity of G, cλ(G), is minimum

number of edges whose removal disconnects the graph G
satisfying that at least two components with one cycle [22].

Similarly, if P = Pk
4 and P = Pk

5 , the k-super edge-

connectivity and k-average edge-connectivity of G can be

defined as the minimum cardinality of k-super edge-cut and

the minimum cardinality of k-average edge-cut , such that each

component of their removal from G has the minimum degree

at least k and the average degree at least k, respectively. The



h-th isoperimetric edge-connectivity γh(G) of G is defined as

γh(G) = min{|[U,U ]| : U ⊂ V (G), |U | > h, |U | > h},

where |[U,U ]| is the number of edges with one end in U and

the other end in U = V \U [25], [34]. Write

βh(G) = min{|[U,U ]| : U ⊂ V (G), |U | = m}.

A graph G with γj(G) = βj(G), j = 1, . . . , k is said to be

γh-optimal. Although the definition of h-th isoperimetric edge-

connectivity γh(G) of the graph G deletes the connectedness

of components from that of h-extra edge-connectivity λh(G),
and one does find the situation where two definitions are not

equivalent, for the networks involved hamming graph and its

related variants in this paper, they do share the same values.

Although the above six kinds of P-conditional edge-

connectivities contain its own properties, they share a fact that

removal their each minimum P-conditional edge-cut results in

exact two components (or two parts). The P-conditional edge-

connectivity is called bipartite, if each minimum P-conditional

edge-cut results in exact two components (or two parts).

Let B = {P | P-conditional edge-connectivity is bipartite}.

Theorem II.3. λ(Pk
1 , G), λ(Pk

2 , G), λ(Pk
3 , G), λ(Pk

4 , G),

λ(Pk
5 , G) and λ(Pk

6 , G)* are bipartite.

Proof. For i 6= 3, recall that λ(Pk
i , G) is the minimum number

of an edge set of the graph G whose removal disconnects the

graph G with all its components satisfying the condition Pk
i .

Suppose F is a Pk
i - conditional edge-cut, it can be deduced

that the optimal number is obtained only when there are

exactly two components produced in G− F . In fact, if there

exists a minimum Pk
i - conditional edge-cut F0, whose removal

disconnects the connected graph G with all its components

H1, H2, . . . , Hz, z > 2 satisfying the condition Pk
i , then there

exists an integer b, 1 ≤ b ≤ z, and [V (Hb), V (Hb)] is also an

Pk
i -conditional edge-cut of G, where the induced subgraphs by

V (Hb) and V (Hb) are connected. Because of F0∩E(Hb) 6= ∅

or F0 ∩E(G[V (Hb)]) 6= ∅, |[V (Hb), V (Hb)]|<|F0|, a contra-

diction. So for each i 6= 3, λ(Pk
i , G) is bipartite. If i = 3,

k = c, for convince, λ(Pc
3 , G) means that each component

contains one cycle. The similar proof can be done.

Given a connected graph, once above six conditional edge-

connectivities are well-defined, then set { Ph
1 , P l

2, Pc
3 , Pk

4 ,

*Strictly speaking, the removal of a minimum h-th isoperimetric edge-cut,
results in two parts rather than two components. The connectedness of these
two parts is not necessary.

Pk
5 , Ph

6 } ⊆ B. Their bipartite property is its essential feature

for them.

We borrow the conception of Mader’s atom [23] to study of

Pk
i -conditional edge-connectivities. A vertex set S is called a

λ(Pk
i )-fragment if [S, S̄] is a minimum Pk

i -conditional edge-

cut. Obviously, if S is a λ(Pk
i )-fragment, so is S̄. A minimum

λ(Pk
i )-fragment is a λ(Pk

i )-atom. Let A be called a λ(Pk
i )-

atom, then G[A] is connected. γk-fragment and λk-atom are

defined similarly without connected condition constrain. Write

α(Pk
i , G) the cardinality of a λ(Pk

i )-atom and

θPk
i
(G) = min{|X | |G[X ] satisfying the property Pk

i }.

It is easy to see that a graph G is λ(Pk
i )-optimal if and

only if α(Pk
i , G) = θPk

i
(G). The parameters α(Pk

i , G) and

θPk
i
(G) play an important role in obtaining the exact value of

λ(Pk
i , G) and determining its optimality.

This idea drives us to study the minimum possible

“boundary-size” of a set of a given “size”. The classical

isoperimetric problem is usually expressed in the form of an

inequality LM
2 ≥ 4πAM that relates the length LM of a

closed curve M and the area AM of the planar region that

it encloses in the Euclidean plane R2. Which closed curve

minimizes the length L of the curve with a fixed size of the

area A? The equality holds if and only if M is a circle. It was

“known” to the ancient Greeks, but it was not until the 19th

century that this was proved vigorously by Karl Weierstrass in

a series of lectures in 1870, in Berlin. Isoperimetric problems

are classical objects of the study in mathematics. In general,

they ask for the minimum possible “boundary-size” of a set

of a given “size”, where the exact meaning of these words

varies according to the problem. Making efforts to obtain the

exact value of the Pk
i -conditional edge-connectivity drives us

to study the minimum possible “edge boundary-size” of a set

of a given “size” in graph G.

For discrete case, a graph G = (V,E), the given “size”

is the “number of vertices”, while the “boundary-size” of

the graph is “the size of the edge boundary or the vertex

boundary”. Both edge and vertex versions are related to the P-

conditional edge-connectivity and P-conditional connectivity,

respectively. This paper mainly focuses on edge version. Let

G = (V,E) be a connected graph and A ⊆ V (G). Recall

that the definition of βm(G) = min
A⊆V,|A|=m

|[A,A]| in the h-th

isoperimetric edge-connectivity. For a given graph G, the edge

isoperimetric problem of G is to find a subset A∗ ⊆ V (G)
with |A∗| = m such that βm(G) = |[A∗, A∗]| for any

1 ≤ m ≤ |V (G)| (introduced by Harper in 1964) [8]. Even

if in Harper’s seminal paper of edge isoperimetric problem

on hypercube Qn = Kn
2 , the original definition G[A∗] is not

required to be connected, his example does satisfy that Kn
2 [A

∗]
is connected. Let ξem(G) = min{|[X,X]| : X ⊂ V (G) with

|X | = m ≤ ⌊|V (G)|/2⌋, and G[X ] is connected }. ξem(G) is

unilateral connected for each 1 ≤ m ≤ ⌊|V (G)|/2⌋.
In this paper we want to go further. Let ξm(G) =

min{|[X,X]| : X ⊂ V (G) with |X | = m ≤ ⌊|V (G)|/2⌋, and

both G[X ] and G[X ] are connected}. ξm(G) is bilateral con-

nected for each 1 ≤ m ≤ ⌊|V (G)|/2⌋. More coincidentally,



Harper’s seminal example meets the equations βm(Kn
2 ) =

ξem(Kn
2 ) = ξm(Kn

2 ) for each m ≤ 2n−1. However, it does

not always hold for general G. Even if we add the unilateral

and bilateral connected conditions, the result ξm(G) = ξem(G)
does not always hold for each 1 ≤ m ≤ ⌊|V (G)|/2⌋.

Fig. 1. Graph G∗ without satisfying condition ξ8(G∗) 6= ξe
8
(G∗).

For example, given a 3-regular graph G∗ as shown in Fig.1,

ξ8(G
∗) = λ8

1(G
∗) = 4 6= 2. If the red edge cut in graph G∗

is removed, G∗ is divided into three components instead of

two, and the number of vertices of the two components is less

than 8. If the green edge cut in graph G∗ is removed, G∗ is

divided into two components, the number of vertices is 8 and

10, respectively. So ξ8(G
∗) = 4 6= 2 = ξe8(G

∗).

Followed Harper’s idea, for r-regular graph G, |A| = m
by Handshaking Lemma, βm(G) = r|A| − exm(G), where

exm(G) is the densest degree sum among all the m vertices

induced subgraphs. For each m ≤ ⌊|V (G)|/2⌋, if one can

find a subset X∗
m ⊆ V (G) satisfying that βm(G) = ξem(G) =

ξm(G) = |[X∗
m, X∗

m]|, |X∗
m| = m, and both G[X∗] and G[X∗]

are connected, with 2|E(G[X∗
m])| = exm(G), then these three

definitions are equivalent. Such subsets X∗
m are called optimal

for edge isoperimetric problem of G. We say that optimal

subsets are nested X∗
m ⊆ X∗

m+1 if there exists a total order O
on the set V (G) such that for any m ≤ |V (G)| the collection

of the first m vertices on the order is an optimal subset X∗
m =

{v1, v2, v3, · · · , vi},

v1<v2<v3< · · ·<vi|<vi+1< · · ·<vp−2<vp−1<vp.

For the networks involved hamming graph Kn
L and its related

variants in this paper, they do satisfy this property. So in

the following discussion, conventionally, we use the notation

ξm(Kn
L). It is quite convenient for us to study bipartite P-

conditional edge-connectivity of Kn
L. In particular, for the h-

extra edge-connectivity, in 2018, Zhang et al. obtained that

[32], for each 1 ≤ h ≤ ⌊|V (G)|/2⌋,

λh(G) = min{ξm(G) : h ≤ m ≤ ⌊|V (G)|/2⌋}.

where ξm(G) = min{|[X,X]| : X ⊂ V (G), |X | = m ≤
⌊|V (G)|/2⌋, and both G[X ] and G[X ] is connected}. While

for general cases, in 2017, L. P. Montejano and I. Sau proved

that the problem of determining the exact value of λh(G) is

NP-complete [21].

Given two graphs G and H , the Cartesian product of G and

H H × G is defined as V (H × G) = {uv | v ∈ V (G), u ∈
V (H)}, E(H×G) = {ux, vy | (u = v, x, y ∈ E(G)) or (x =
y, u, v ∈ E(H))}.

The Cartesian product of graphs G3 and G2×G1 is defined

as G3 × G2 × G1. Similarly, one can define the Cartesian

product of graphs Gn and Gn−1× · · ·×G2×G1 inductively.

Each vertex Gn×Gn−1×· · ·×G2×G1 can be denoted by

xnxn−1 · · ·x2x1, 0 ≤ xi<|V (Gi)|, 1 ≤ i ≤ n. If Gk = G,

for each 1 ≤ k ≤ n, then Gn × Gn−1 × · · · × G2 × G1 =
G×G× · · · ×G×G
︸ ︷︷ ︸

n

, denoted by Gn, and it is n-th cartesian

product power graph of G. If G = KL, the n-th cartesian

product power graph of KL is called L-ary n-dimensional

hamming graph, denoted by Kn
L.The vertex set of Kn

L can

be denoted by XnXn−1 · · ·X2X1 = {xnxn−1 · · ·x2x1 |xi ∈
{0, 1}, 0 ≤ i ≤ 1}, 0 ≤ xi ≤ L − 1, 1 ≤ i ≤ n. For any

two vertices u = unun−1 · · ·u2u1 and v = vnvn−1 · · · v2v1
in the graph Kn

L, there is an edge between u and v if and only

if exactly one integer j satisfies ui 6= vi if i = j; ui = vi if

i = j, j ∈ {1, 2, · · · , n}. By the definition of the Kn
L, for given

integers 0 ≤ k ≤ L − 1, the subgraph Kn
L[kXn−1 · · ·X2X1]

induced by kXn−1 · · ·X2X1 is an L-ary (n− 1)-dimensional

sub-layer of Kn
L. Let znzn−1 · · · za+2za+1Xa · · ·X2X1 be the

set {znzn−1 · · · za+2za+1xa · · ·x2x1 : xi ∈ {0, 1, 2, · · · , L −
1}, i ≤ 1, 2, · · · , a, zj is fixed for each j = a + 1, a +
2, · · · , n}. By the definition of the Kn

L, similarly, one can

write Kn
L[znzn−1 · · · za+2za+1Xa · · ·X2X1] the subgraph in-

duced by the vertex set znzn−1 · · · za+2za+1Xa · · ·X2X1.

It is an L-ary a-dimensional sub-layer of Kn
L. Thus we

also use znzn−1 · · · za+1Xa · · ·X2X1 to denote this L-ary

a-dimensional sub-layer of Kn
L if no confusion arises. The

lexicographic ordering � on Πn
i=1[ki] is defined as follows:

x1x2 . . . xn precedes y1y2 . . . yn if for some i we have xi < yi
and xj = yj for j < i.

III. THE EXACT VALUES OF ξm(Kn
L) AND ITS

CONSTRUCTION

Recall that a string that contains only 0′s, 1′s, · · · , (L−1)′s
is called an L-base n-string. For a positivity integer x =
∑n

i=1 xiL
i−1, 0 ≤ i ≤ n, xi ∈ {0, 1, 2, · · · , L − 1}.

Let x = xnxn−1 · · ·x1 be the form of L-base n-string.

The L-base n-string denotes the L-base string of length n.

For any positive integer m, it has a L-base decomposition

m =
∑s

i=0 aiL
bi ≤ ⌊Ln/2⌋, ai ∈ {1, 2, · · · , L − 1},

b0>b1> · · ·>bs. Let Sm = {0, 1, · · · ,m− 1} (under decimal

representation), |Sm| = m, m ≤ ⌊Ln/2⌋, and the corre-

sponding set Ln
m be the corresponding set represented by L-

base n-string. In Table I, given a positive integer m as an

example, the calculation process of ξm(G) is explained more

concretely and vividly. At the same time, the corresponding

induced subgraphs and the functions of O(KL) = L⌊L
2 ⌋, for

graphs Q4, FQ4, AQ4, Kn
3 Kn

4 and Kn
10 are given. In the

expression of exm(Gn), the specific values of Ii and δi are

shown in the Table II.

Lemma III.1. [31] Given d-regular connected graph G,

the number of vertices is |V (G)| = L. If the lexicographic

order provides the optimal solution of the edge isoperimetric



TABLE I
THE EXACT VALUES OF ξm(Kn

L) AND exm(Kn
L) AND THEIR CONSTRUCTION

Gn Q4 FQ4 AQ4 K4
3 K4

4 K2
5 K2

10
m 5 5 5 8 10 7 12

Sm {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4, 5, 6, 7} {0, 1, 2, 3, 4, 5, 6, 7, 8,

9}
{0, 1, 2, 3, 4, 5, 6} {0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11}
Ln

m {0000, 0001,

0010, 0011,

0100}

{0000, 0001,

0010, 0011,

0100}

{0000, 0001,

0010, 0011,

0100}

{0000, 0001, 0002,

0010, 0011, 0012,

0020, 0021}

{0000, 0001, 0002,

0003, 0010, 0011, 0012,

0013, 0020, 0021}

{00, 01, 02, 03, 04,

10, 11}
{00, 01, 02, 03, 04, 05,

06, 07, 08, 09, 10, 11}

Decomposition

of m
5 = 22 + 20 5 = 22 + 20 5 = 22 + 20 8 = 2×31+2×30 10 = 2× 41 + 2× 40 7 = 51 + 2 × 50 12 = 101 + 2 × 100

exm(Gn) 2× 22 + 2×
20 = 10

2× 22 + 2×
20 = 10

3×22−20+
4× 20 +1 =
16

2(2×31+31+30)+
2 × 2 × 30 = 28

3× 2× 41 +2× 41 +
2 × 2 × 40 + 2 × 2 ×
2 × 40 = 42

4× 51 +2×41 +
2 × 50 + 2 × 2 ×
50 = 42

9×101+2×41+2×
1×100+2×2×100 =
96

ξm(Gn) 4× 5− 10 =
10

5× 5− 10 =
15

(2×4−1)×
5 − 16 = 19

2×4×8−28 = 36 3× 4× 10− 42 = 78 4× 2× 7− 42 =
14

9×2×12−96 = 120

Induced

graph

Gn[Ln
m]

O(KL) 2⌊
n
2

⌋ 2⌊
n
2

⌋ 2⌊
n
2

⌋ 3⌊
n
2

⌋ 4⌊
n
2

⌋ 5⌊
n
2

⌋ 10⌊
n
2

⌋

I(KL) I0 = 0, I1 =
0

I0 = 0, I1 =
0

I0 = 0, I1 =
0

I0 = 0, I1 = 0,

I2 = 1
I0 = 0, I1 = 0, I2 =
1, I3 = 3

I0 = 0, I1 = 0,

I2 = 1, I3 = 3,

I4 = 6

I0 = 0, I1 = 0, · · · ,

I9 = 36

δ(KL) δ1 = 0, δ2 =
1

δ1 = 0, δ2 =
1

δ1 = 0, δ2 =
1

δ1 = 0, δ2 = 1,

δ3 = 2
δ1 = 0, δ2 = 1, δ3 =
2, δ4 = 3

δ1 = 0, δ2 = 1,

δ3 = 2, δ4 = 3,

δ5 = 4

δ1 = 0, δ2 = 1, · · · ,

δ11 = 10

∗Strictly speaking, exm(AQn) does not conform to this regular pattern, exm(AQn) =
∑s

i=0
(2ti − 1)2ti +

∑s
i=0

4i2ti + δ, where if m is even, then
δ = 0; if m is odd, then δ = 1.

TABLE II
THE FUNCTIONS OF Ii AND δi CORRESPONDING TO KL .

I0 = 0 I1 = 0 I2 = 1 I3 = 3 I4 = 6 · · · Ii = i(i − 1)/2 · · · IL−1 = (L − 2)(L− 1)/2 IL = L(L− 1)/2
δ1 = 0 δ2 = 1 δ3 = 2 δ4 = 3 · · · δi = i − 1 · · · δL−1 = L− 2 δL = L− 1

problem on the power graph and I0(G) = 0, I1(G) = 0,

Im(G) = exm(G)/2, δ(G) = Im(G)−Im−1(G), 1 ≤ m ≤ L,

then for any 1 ≤ m =
∑s

i=0 aiL
bi ≤ Ln, b0>b1> · · ·>bs,

ai ∈ {1, 2, · · · , L − 1}, 0 ≤ i ≤ s, exm(Gn) =
∑s

i=0[δL(G)aibiL
bi + 2Iai

(G)Lbi ] +2
∑s−1

i=0

∑s
k=i+1

δai+1(G)akL
bk , and ξem(Gn) = δL(G)nm− exm(Gn).

Let m =
∑s

i=0 aiL
bi , ai ∈ {1, 2, · · · , L − 1}, n ≥

b0>b1> · · ·>bs ≥ 0. In 2018, Zhang [31] constructed (s+1)
L-ary sub-layer family whose vertex sets do not intersect each

other. For 0 ≤ i ≤ s, the i-th L-ary sub-layer family of Kn
L

is denoted by Ci, which contains ai L-ary bi-dimensional

sub-layers Ci,1, Ci,2, · · · , Ci,a0 of Kn
L. For 0 ≤ i ≤ s,

1 ≤ ji ≤ ai ≤ L − 1, the ji-th L-ary bi-dimensional sub-

layer of Kn
L is denoted by Ci,ji . Given C0, which contains

a0 L-ary b0-dimensional sub-layers, then the j0-th L-ary b0-

dimensional sub-layer of Kn
L is C0,j0 :

00...00j0 − 1Xb0Xb0−1...X2X1.

The induced subgraphs of each L-ary b0-dimensional sub-layer

are isomorphic to the power graph Gb0 of a graph G. They

do not intersect each other and are δL(G)× b0-regular. There

are Iai
(G)Lb0 edges in the 0-th L-ary sub-layer family.

The structure process is as follows:

C
0,j0 , 1 ≤ j0 ≤ a0 :

n
︷ ︸︸ ︷

00 · · · 00
︸ ︷︷ ︸

if any

j0 − 1Xb0
Xb0−1 · · ·X2X1

︸ ︷︷ ︸

b0

C
1,j1 , 1 ≤ j1 ≤ a1 :

n
︷ ︸︸ ︷

00 · · · 00
︸ ︷︷ ︸

if any

a0 00 · · · 00
︸ ︷︷ ︸

if any

j1 − 1 Xb1
Xb1−1 · · ·X2X1

︸ ︷︷ ︸

b1
︸ ︷︷ ︸

b0

C
2,j2 , 1 ≤ j2 ≤ a2 :

n
︷ ︸︸ ︷

00 · · · 00
︸ ︷︷ ︸

if any

a0 00 · · · 00
︸ ︷︷ ︸

if any

a1 00 · · · 00
︸ ︷︷ ︸

if any

j2 − 1 Xb2
Xb2−1 · · · X2X1

︸ ︷︷ ︸

b2
︸ ︷︷ ︸

b1
︸ ︷︷ ︸

b0

· · · .

For Ci,ji , i > 0, the (bi−1 + 1)-th coordinate (ji−1 − 1) of



Ci−1,ai−1 is changed to ai−1. Let the (bi + 1)-th coordinate

of Ci,ji be (ji − 1). And let the coordinate of the (bi + 2)-th
to the n-th be 0 expect for the (bi−1 + 1)-th, if any. Through

this construction method, Lm =
⋃

0≤i≤s,1≤ji≤ai

V
(
Ci,ji

)
is

obtained.

Let V
(
Ci
)
=:

⋃

1≤ji≤ai

V
(
Ci,ji

)
and G1∗

m =: Gn [Lm].

Each L-ary sub-layer Ci,ji has δL(G)biL
bi/2 edges. For

0 ≤ i ≤ s, 1 ≤ ji ≤ ai ≤ L − 1, given i, if ai = 1, Ci

contains only one L-ary bi-sub-layer; if ai = 2, then between

Ci,ai and Ci,ai−1 has a matching of size Lbi ; and if ai>2, ai
and at are adjacent in the graph G, at<ai, then between Ci,ai

and Ci,at has a matching of size Lbi . There are Iai
(G) groups

of such matches exist in Ci L-ary bi-dimensional sub-layer of

L-ary bi-dimensional sub-layer family.

For each 0 ≤ i ≤ k ≤ s, there are δai+1(G)akL
bk edges

between sub-layer family V (Ci) and sub-layer family V (Ck).
It can be counted that C1∗

m contains
∑s

i=0[0.5δL(G)biL
bi

+(Iai
(G))Lbi ] edges inside Ci. The number of edges

between Ci is
∑s−1

i=0

∑s
k=i+1 δai+1(G)akL

bk . Since

Gn is δL(G)n-regular, from the Handshaking lemma,

ξem(Gn) = δL(G)nm − exm(Gn). The number of edges

of Gn[Lm] is
∑s

i=0[0.5δL(G)aibiL
bi + Iai

(G)Lbi ] +
∑s−1

i=0

∑s
k=i+1 δai+1(G)akL

bk .

As G = KL is L−1-regular connected graph, the number of

vertices is |V (KL)| = L. The lexicographic order provides the

optimal solution of the edge isoperimetric problem on Kn
L and

I0(KL) = 0, I1(KL) = 0, 2Im(KL) = exm(G) = m(m−1),
δm(KL) = Im(KL)− Im−1(KL) = m−1, 1 ≤ m ≤ L. Note

that δL(KL)L− 1 = r.

Corollary III.2. [31] For any integers 1 ≤ m =
∑s

i=0 aiL
bi ≤ Ln, b0>b1> · · ·>bs, ai ∈ {1, 2, · · · , L − 1},

0 ≤ i ≤ s, exm(Kn
L) =

∑s
i=0[(L−1)aibiL

bi +(ai−1)aiL
bi ]

+2
∑s−1

i=0

∑s
k=i+1 aiakL

bk , and ξem(Kn
L) = (L − 1)nm −

exm(Kn
L).

Corollary III.3. (1) (Harper 1964 [8] and Li and Yang [19]

2013 ) ξm(Kn
2 ) = nm − exm(Kn

2 ) = nm − [
∑s

i=0 bi2
bi +

∑s
i=0 2 · i · 2

bi ], for m =
∑s

i=0 2
bi ≤ 2n, b0>b1> . . . >bs.

(2) ξm(Kn
3 ) = 2nm−exm(Kn

3 ) = 2nm−{
∑s

i=0[2aibi3
bi

+2(ai − 1)3bi ] + 2
∑s−1

i=0

∑s
j=i+1 aiaj3

bj}, for 1 ≤ m =
∑s

i=0 ai3
bi ≤ 3n, b0>b1> . . . >bs, ai ∈ {1, 2}, 0 ≤ i ≤ s.

The n-dimensional bijective connection networks Bn (also

called hypercube-like networks) are a class of cube-based

networks including several well known interconnection net-

works like hypercubes (denoted by Qn), twisted cubes [9]

(denoted by TQn), crossed cubes [5] (denoted by CQn),

spined cubes SQn, parity cubes PQn, Z-cubes ZQn [33],

varietal cubes V Qn, Möbius cubes [4] (denoted by MQn),

locally twisted cubes [27] (denoted by LTQn), restricted

hypercube-like networks RHLNn, generalized cubes GQn,

generalized twisted cubes [1] (denoted by GTQn) and Mcubes

[24] (denoted by MCQn) as members.

In 2013, Zhang et al. obtained that ξm(Bn) = ξm(Kn
2 ) [30].

Corollary III.4. ξm(Bn) = ξm(Kn
2 ) for each m ≤ 2n.

So our main results can be used for the n-dimensional

bijective connection networks.

IV. SOME USEFUL PROPERTIES OF THE FUNCTIONS

ξm(Kn
L) AND exm(Kn

L)

Before given our main results on Pk
i -conditional edge-

connectivity of Kn
L, we will give some interesting properties

of functions functions ξm(Kn
L) and exm(Kn

L). If there is no

specific explanation in the following, we assume that n is a

positive integer n ≥ 2.

Lemma IV.1. Let 1 ≤ h = h1 + h2 ≤ L⌊n
2 ⌋, where h1 =

∑t
i=0 aiL

bi , h2 =
∑s

i=0 a
′

iL
bi

′

, ai, a
′

i ∈ {1, 2, · · · , L − 1},

and b0>b1>...>bt>b
′

0>...>b
′

s. Then exh(K
n
L) = exh1(K

n
L)+

exh2(K
n
L) + 2(

∑t
i=0 ai)h2.

Proof. According to the expression of exm(Kn
L), we

have exh1(K
n
L) =

∑t
i=0[(L − 1)aibiL

bi + 2Iai
Lbi ]

+2
∑t−1

i=0

∑t
k=i+1 aiakL

bk and exh2(K
n
L) =

∑s
i=0[(L −

1)a
′

ib
′

iL
b
′

i+2Ia′
i
Lb

′

i ]+2
∑t+s

i=t+1

∑t+s+1
k=i+1 a

′

ia
′

kL
b
′

k . Let at+1 =

a′0, at+2 = a′1, · · · , at+s+1 = a′s, bt+1 = b′0, bt+2 =

b′1, · · · , bt+s+1 = b′s. Then h2 =
∑t+s+1

i=t+1 (a
′

iL
bi

′

)

and exh2(K
n
L) =

∑t+s+1
i=t+1 [(L − 1)a

′

ib
′

iL
b
′

i + 2Ia′
i
Lb

′

i ] +

2
∑t+s

i=t+1

∑t+s+1
k=i+1 a

′

ia
′

kL
b
′

k . Note that

exh(K
n
L)

= exh1+h2(K
n
L)

=
∑t

i=0[(L− 1)aibiL
bi + 2Iai

Lbi) +
∑t+s+1

i=t+1 [(L− 1)

×a
′

ib
′

iL
b
′

i + 2Ia′
i
Lb

′

i ] + 2
∑t−1

i=0

∑t
k=i+1 aiakL

bk

+2
∑t+s

i=t+1

∑t+s+1
k=i+1 a

′

ia
′

kL
b
′

k + 2
∑t

i=0 ai

×
∑t+s+1

i=t+1 a
′

iL
bi

′

=
∑t

i=0((L − 1)aibiL
bi + 2Iai

Lbi) + 2
∑t−1

i=0

∑t
k=i+1

(aiakL
bk) +

∑t+s+1
i=t+1 [(L− 1)a

′

ib
′

iL
b
′

i + 2Ia′
i
Lb

′

i ]

+2
∑t+s

i=t+1

∑t+s+1
k=i+1 a

′

ia
′

kL
b
′

k + 2
∑t

i=0 ai

×
∑t+s+1

i=t+1 a
′

iL
bi

′

= exh1(K
n
L) + exh2(K

n
L) + 2(

∑t
i=0 ai)h2.

Then, the proof is completed.

Lemma IV.2. ξm+1(K
n
L)− ξm(Kn

L) ≥ 0 for 1 ≤ m < L⌊n
2 ⌋.



Proof. Let m =
∑s

i=0 aiL
bi < L⌊n

2 ⌋, 1 ≤ ai ≤ L. So m =
∑s

i=0 ai < ⌊
n
2 ⌋. Then

ξm+1(K
n
L)− ξm(Kn

L)

= δL(K
n
L)n(m+ 1)− exm+1(K

n
L)− [δL(K

n
L)nm

−exm(Kn
L)]

= (L− 1)n(m+ 1)− exm+1(K
n
L)− [(L− 1)nm

−exm(Kn
L)]

= (L− 1)n− [exm+1(K
n
L)− exm(Kn

L)]

= (L− 1)n− 2
∑s

i=0 ai

≥ (L− 1)n− 2× ⌊n2 ⌋(L− 1)

= (L− 1)(n− 2× ⌊n2 ⌋) ≥ 0.

The proof is completed.

Lemma IV.3. For any 0 ≤ g ≤ L − 2, 0 ≤ t ≤ n − 2, then

ξ(g+1)Lt(Kn
L)− ξgLt(Kn

L) ≥ 0.

Proof. ξ(g+1)Lt(Kn
L)−ξgLt(Kn

L) = (L−1)nLt−(L−1)tLt−

2gLt = (L− 1)(n− t)Lt − 2gLt>(L− 1)(n− t− 2)Lt. The

last inequality holds because of g < L− 1 and n− t ≥ 2. So

the result holds.

Lemma IV.4. For any 0 ≤ g ≤ L−1, 0 ≤ t ≤ n−2, h0<Lt,

then ξgLt+h0
(Kn

L)− ξgLt(Kn
L) ≥ 0.

Proof. ξgLt+h0
(Kn

L) − ξgLt(Kn
L) = (L − 1)nh0 − 2gh0 −

exh0(K
n
L) ≥ (L−1)(n−2)h0−exh0(K

n−2
L ) = ξh0(K

n−2
L ) ≥

0.

Lemma IV.5. For any positive integers 0 ≤ t ≤ n − 2, then

ξLt+1(Kn
L)− ξLt(Kn

L) ≥ 0.

Proof. ξLt+1(Kn
L)− ξLt(Kn

L)

= (L− 1)n(L− 1)Lt − exLt+1(K
n
L) + exLt(Kn

L)

= (L− 1)2nLt − [(L− 1)(t+ 1)Lt+1 − (L− 1)tLt]

= (L− 1)Lt(nL− n− tL− L− t)

= (L− 1)[(n− t)(L− 1)− L]Lt

≥ (L− 1)[2(L− 1)− L]Lt

= (L− 1)(L− 2)Lt

≥ 0.

Lemma IV.6. For some integers L, m, n, g and t, n ≥ 2,

L ≥ 2, 1 ≤ g ≤ L−1 and gLt ≤ m ≤ Ln−1, then ξm(Kn
L) ≥

ξgLt(Kn
L).

Proof. Case 1: If g = 1, t = n − 1, then ξLn−1(Kn
L) ≥

ξm(Kn
L) = ξLn−1(Kn

L).

Case 2: For 1 ≤ g ≤ g0 ≤ L − 1, t = n − 2, by Lemma

IV.3, we have ξ(g0+1)Ln−2(Kn
L) ≥ ξg0Ln−2(Kn

L) for g0 ≤

L−2. And by Lemma IV.4, ξg0Ln−2+h0
(Kn

L) ≥ ξg0Ln−2(Kn
L)

for g0 ≤ L − 1 is be obtained. So we can have ξm(Kn
L) ≥

ξgLt(Kn
L) for any gLt ≤ m ≤ Ln−1.

Case 3: For 0 ≤ t<n− 2, we divide the gLt ≤ m ≤ Ln−1

into two parts m<Lt+1 and Lt+1 ≤ m ≤ Ln−1.

Subcase 3.1: By Lemma IV.5, we can obtain that

ξLt0+1(Kn
L) ≥ ξLt0 (Kn

L) for any integer t+ 1 ≤ t0 ≤ n− 2.

And by Lemma IV.3 and IV.4, we can obtain that ξm(Kn
L) ≥

ξLt+1(Kn
L) for any Lt+1 ≤ m ≤ Ln−1.

Subcase 3.2: For any gLt ≤ m<Lt+1, g ≤ g0 ≤ L − 1,

ξ(g0+1)Lt(Kn
L) ≥ ξg0Lt(Kn

L) is be obtained by Lemma IV.3

and ξg0Lt+h0
(Kn

L) ≥ ξg0Lt(Kn
L) for h0<Lt is be obtained by

Lemma IV.4. So one can have ξm(Kn
L) ≥ ξgLt(Kn

L) for any

gLt ≤ m<Lt+1.

Combined Subcase 3.1 and Subcase 3.2, we can deduce that

ξm(Kn
L) ≥ ξgLt(Kn

L) for any gLt ≤ m ≤ Ln−1.

In summary, ξm(Kn
L) ≥ ξgLt(Kn

L) for n ≥ 2, L ≥ 2,

1 ≤ g ≤ L− 1, gLt ≤ m ≤ Ln−1. The proof is done.

Lemma IV.7. For Ln−1 ≤ m ≤ ⌊Ln/2⌋, we have ξm(Kn
L) ≥

ξLn−1(Kn
L).

Proof. Since the function ξm(Kn
L) is highly relied on the

decomposition of the integer m and on the parity of L, we

give the decomposition of the integer ⌊Ln/2⌋ as follows:

⌊Ln/2⌋ =







L

2
Ln−1 for even L;

∑n−1

i=0
⌊
L

2
⌋Ln−1−i for odd L.

(1)

In order to obtain our result, three cases of decomposition of

m are discussed (if L is even, there are only Case 1 and Case

2).



Case 1: For any 1 ≤ g < ⌊L2 ⌋, one can obtain that

ξ(g+1)Ln−1(Kn
L)− ξgLn−1(Kn

L)

= (L− 1)nLn−1 − (L− 1)(n− 1)Ln−1 − 2gLn−1

≥ (L− 1)Ln−1 − 2(⌊L2 ⌋ − 1)Ln−1

= (⌈L2 ⌉ − ⌊
L
2 ⌋+ 1)Ln−1

≥ Ln−1

> 0.

Case 2: For any 1 ≤ g < ⌊L2 ⌋, h0<Ln−1, we have

ξgLn−1+h0
(Kn

L)− ξgLn−1(Kn
L)

= (L− 1)nh0 − 2gh0 − exh0(K
n
L)

≥ (L− 1)nh0 − 2(⌊L2 ⌋ − 1)h0 − exh0(K
n
L)

= (L− 1)n− (L− 1)h0 + (⌈L2 ⌉ − ⌊
L
2 ⌋+ 1)h0

−exh0(K
n
L)

= (L− 1)(n− 1)h0 − exh0(K
n
L) + (⌈L2 ⌉ − ⌊

L
2 ⌋+ 1)h0

= ξh0(K
n−1
L ) + (⌈L2 ⌉ − ⌊

L
2 ⌋+ 1)h0

≥ 0.

Actually, by the Case 1 and Case 2, one can already prove

that for Ln−1 ≤ m ≤ ⌊L2 ⌋L
n−1, ξm(Kn

L) ≥ ξLn−1(Kn
L). But

if L is odd, for ⌊L2 ⌋L
n−1 ≤ m ≤

∑n−1
i=0 ⌊

L
2 ⌋L

n−1−i, two

subcases are still needed to discuss.

Case 3:

Subcase 3.1: For odd L, h0 < 1
2L

n−2−j , then

ξ∑j
i=0⌊

L
2 ⌋Ln−1−j+h0

(Kn
L)− ξ∑j

i=0⌊
L
2 ⌋Ln−1−j (Kn

L)

= (L− 1)nh0 − 2
∑j

i=0⌊
L
2 ⌋h0 − exh0(K

n
L)

= (L− 1)nh0 − 2(⌊L2 ⌋ − 1)(j + 1)h0 − exh0(K
n
L)

= (L− 1)(n− j − 1)h0 − exh0(K
n
L)

= (L− 1)(n− j − 1)h0 − exh0(K
n−j−1
L )

= ξh0(K
n−j−1
L )

≥ 0.

Subcase 3.2:

ξ∑j+1
i=0⌊

L
2 ⌋Ln−1−j (Kn

L)− ξ∑j
i=0⌊

L
2 ⌋Ln−1−j (Kn

L)

= (L− 1)nL
2L

n−1−j−1 − 2
∑j

i=0⌊
L
2 ⌋L

n−2−j

−exL
2 Ln−2−j(Kn

L)

= (L− 1)n⌊L2 ⌋L
n−2−j − (L− 1)(j + 1)L2L

n−2−j

−exL
2 Ln−2−j(Kn

L)

= (L− 1)(n− j − 1)L2L
n−2−j − exL

2 Ln−2−j(K
n−1−j
L )

= ξL
2 Ln−2−j(K

n−j−1
L )

≥ 0.

If L is odd, for ⌊L2 ⌋L
n−1 ≤ m ≤

∑n−1
i=0 ⌊

L
2 ⌋L

n−1−i, based

on above two subcases, one can obtain that ξm(Kn−1
L ) ≥

ξ⌊L
2 ⌋L

n−1(Kn−1
L ) ≥ ξLn−1(Kn

L). All in all, the proof is done.

Lemma IV.8. For some nonnegative integer t ≤ n − 1, 1 ≤

g ≤ L− 1, gLt ≤ m ≤ ⌊Ln/2⌋, then ξm(Kn
L) ≥ ξgLt(Kn

L).

Proof. Case 1: For t<n − 1, by Lemma IV.7 and Lemma

IV.6, the inequality ξm(Kn
L) ≥ ξgLt(Kn

L) holds for any gLt ≤

m ≤ ⌊Ln/2⌋, 1 ≤ g ≤ t− 1.

Case 2: For t = n − 1, we need to prove that ξm(Kn
L) ≥

ξgLn−1(Kn
L) for any gLn−1 ≤ m ≤ ⌊Ln/2⌋, 1 ≤ g ≤ ⌊L/2⌋.

Although the integer satisfies 1 ≤ g ≤ L − 1, because of

gLn−1 ≤ ⌊Ln/2⌋, one can obtain that g ≤ ⌊L/2⌋. By the

proof of Case 1 and Case 2 in Lemma IV.7, ξm(Kn
L) ≥

ξgLn−1(Kn
L) for any gLn−1 ≤ m ≤ ⌊L/2⌋Ln−1. If L is

even , ⌊Ln/2⌋ = L
2L

n−1, we can obtain that ξm(Kn
L) ≥

gLn−1(Kn
L) for any gLn−1 ≤ m ≤ ⌊L/2⌋Ln−1 = ⌊Ln/2⌋,

our result holds. While for odd L, because of ⌊Ln/2⌋ =
∑n−1

i=0 ⌊L/2⌋L
n−1−i, by the proof of Subcase 3.1 and Subcase

3.2 in Lemma IV.7, we have ξm(Kn
L) ≥ ξ⌊L/2⌋Ln−1(Kn

L)

for any ⌊L/2⌋Ln−1 ≤ m ≤ ⌊Ln/2⌋. So for odd L,

ξm(Kn
L) ≥ ξgLn−1(Kn

L) for any gLn−1 ≤ m ≤ ⌊Ln/2⌋ and

1 ≤ g ≤ ⌊L/2⌋.

In summary, for any integers 0 ≤ t ≤ n−1, 1 ≤ g ≤ L−1,

gLt ≤ m ≤ ⌊Ln/2⌋, ξm(Kn
L) ≥ ξgLt(Kn

L). The proof is

completed.

Lemmas IV.3-IV.8 imply the complex layered-increasing

properties and self-similarity of the function ξm(Kn
L). It is

crucial to P-conditional edge-connectivities of hamming graph

Kn
L. Analysising the properties of the function ξm(Kn

L) might

be of interest in their own right.

V. UNIFIED METHOD FOR P -CONDITIONAL

EDGE-CONNECTIVITIES OF HAMMING GRAPH Kn
L

Theorem V.1. Let n, g, t, L be four integers, n ≥ 1, L ≥ 2,

0 ≤ t ≤ n − 1, 1 ≤ g ≤ L − 1 and gLt ≤ ⌊Ln/2⌋. If

P-conditional edge-connectivity is bipartite and θP(K
n
L) =

gLt. We obtain that λ(P ,Kn
L) = ξgLt(Kn

L) = δL(KL)ngL
t−

δL(Kp)gtL
t − g(g − 1)Lt = g[(L− 1)(n− t)− (g − 1)]Lt.



Fig. 2. The main results on λ(Pk
i ,K

n
L
) with θP (Kn

L
) = gLt and θP (Kn

L
) ≤ L⌊n

2
⌋, ξh(K

n
L
) and ξgLt (Kn

L
) for 2 ≤ L ≤ 10.

Proof. Lower bound: For any conditional P , let F be any

minimum P-conditional edge-cut of Kn
L, and Kn

L − F is dis-

connected. And its deletion from Kn
L results in p components

C1, C2 . . . Cp, p ≥ 2. Each component satisfies the condition

P . As P-conditional edge-connectivity of Kn
L is bipartite,

and the minimality of λ(P ,KL
n ) edge-cut of Kn

L, we have

p = 2. Let C∗ be the resulting minimum component. Because

of δP(K
n
L) = gLt, by the Lemma IV.8, we have |F | ≥

|[V (C∗), V (C∗)]| = ξgLt(Kn
L) = g[(L−1)(n−t)−(g−1)]Lt.

The above equality holds because of ξgLt(Kn
L) =

δL−1(K
n
L)ngL

t− (L− 1)gtLt− g(g− 1)Lt = g[(L− 1)(n−

t)− (g − 1)]Lt.

Upper bound: It is sufficient to show that, there exists

a P-conditional edge-cut of Kn
L with size ξgLt(Kn

L)

= g[(L− 1)(n− t)− (g − 1)]Lt, Kn
L[L

n
gLt ] =

n−t
︷ ︸︸ ︷

0 . . . 00Xt . . .

X2X1

⋃
n−t

︷ ︸︸ ︷

0 . . . 01Xt . . .X2X1

⋃
. . .

n−t
︷ ︸︸ ︷

0 . . . 0g − 1Xt . . .X2X1.

Each

n−t
︷ ︸︸ ︷

0 . . . 0f Xt . . .X2X1 for 0 ≤ f ≤ g − 1 is isomorphic

to L-ary t-dimensional sub-layers and (L − 1)t regular.

The minimum degree of them happens to be (L − 1)t.

By the definition of Kn
L, there exists at least one edge

between these L-ary t-dimensional sub-layers. So, the

induced subgraph Kn
L[L

n
gLt ] is connected with gLt vertices,

and contains a cycle (If L = 2, t ≥ 2; if L ≥ 3,

t ≥ 1). On the other hand, |Ln
gLt | = Ln − gLt =

(L−1)Ln−1+(L−1)Ln−2+ · · ·+(L−1)Lt+1+(L−g)Lt.

Kn
L[L

n
gLt ] =

⋃

t+1≤k≤n−1,1≤b≤L−1

n−k
︷ ︸︸ ︷

0 . . . 0bXk . . . X2X1

⋃

g≤o≤L−1

n−t
︷ ︸︸ ︷

0 . . . 0oXt . . .X2X1.

For t + 1 ≤ k ≤ n − 1, 1 ≤ b ≤ L − 1, each
n−k

︷ ︸︸ ︷

0 . . . 0bXk . . . X2X1 is L-ary k-dimensional sub-layer of

Kn
L, which is (L − 1)k regular and isomorphic to Kk

L.

There is at least one edge between different sub-layers. For

each g ≤ o ≤ L − 1,

n−t
︷ ︸︸ ︷

0 . . . 0oXt . . . X2X1 is L-ary t-

dimensional sub-layer of Kn
L, which is (L − 1)t regular and

isomorphic to Kt
L. Also there is at least one edge between

different sub-layers. And

n−t−1
︷ ︸︸ ︷

0 . . . 0l Xt+1 . . .X2X1 are connected

with

n−t
︷ ︸︸ ︷

0 . . . 0L− 1Xt . . . X2X1 by the definition of Kn
L. So

Kn
L[L

n
gLt ] is connected with Ln − gLt vertices (≥ gLt), and

contains at least a cycle. As P-conditional edge-connectivity



is bipartite and θP(K
n
L) = gLt. Thus, [Ln

gLt , Ln
gLt ] is a P-

conditional edge-cut of Kn
L. So |[Ln

gLt , Ln
gLt ]| = ξgLt(Kn

L) =

g[(L− 1)(n− t)− (g − 1)]Lt.

By Theorem V.1, the exact values of Lt-extra edge-

connectivity, t-embedded edge-connectivity, cyclic edge-

connectivity, (L − 1)t-super edge-connectivity, (L − 1)t-
average edge-connectivity and Lt-th isoperimetric edge-

connectivity of Kn
L share the same values in form of (L −

1)(n− t)Lt because they are all bipartite.

Based on the Theorem V.1 and the following Theorem

V.4, an algorithm can be designed to calculate bipartite P-

conditional edge-connectivity of Kn
L with θP(Kn

L
)(K

n
L) = gLt

or θP(Kn
L
)(K

n
L) ≤ L⌊n

2 ⌋ in the Algorithm.1. In this algorithm,

O(KL) = L⌊L
2 ⌋. The time complexity of the algorithm is

O(logL(N)), where N = Ln.

Corollary V.2. For any integers 0 ≤ t ≤ n − 1,

λ(PLt

1 ,Kn
L), λ(Pt

2,K
n
L), λ(P

(L−1)t
4 ,Kn

L), λ(P
(L−1)t
5 ,Kn

L)

and λ(PLt

6 ,Kn
L) share the same value ξLt(Kn

L) = (L−1)(n−

t)Lt. And λ(Pc
3 ,K

n
L) = g[(L− 1)(n− t)− (g − 1)]Lt.

Proof. As the hamming graph Kn
L is (L − 1)n regular, with

Ln vertices, for any integers 0 ≤ t ≤ n − 1, λ(PLt

1 ,Kn
L),

λ(Pt
2,K

n
L), λ(P

c
3 ,K

n
L), λ(P

(L−1)t
4 ,Kn

L), λ(P
(L−1)t
5 ,Kn

L) and

λ(PLt

6 ,Kn
L) are well-defined, and then the set {PLt

1 , Pt
2,

Pc
3 , P

(L−1)t
4 , P

(L−1)t
5 , PLt

6 } ⊆ B. By Theorem V.1, the

exact values of λ(PLt

1 ,Kn
L) λ(Pt

2,K
n
L), λ(P

(L−1)t
4 ,Kn

L),

λ(P
(L−1)t
5 ,Kn

L) and λ(PLt

6 ,Kn
L) share the same value

ξLt(Kn
L) = (L − 1)(n − t)Lt, which equal to the minimum

number of links-faulty resulting in an L-ary t-dimensional sub-

layer with Lt vertices from Kn
L. Note that the value of g is 1,

but for the case of cyclic edge-connectivity, we have g ≤ 3.

Actually, for Kn
2 , the shortest cycle is C4 with length L2 = 22

for g = 1, t = 2, and for Kn
3 , the shortest cycle is C3 with

length L1 = 31 for g = 1, t = 1, while for Kn
L, L ≥ 4, the

shortest cycle is C3 with length 3L0 = 3 × L0 for g = 3,

t = 0. So λ(Pc
3 ,K

n
L) = g[(L − 1)(n − t) − (g − 1)]Lt. The

proof is finished.

Corollary V.3. For any integers 0 ≤ t ≤ n− 1,

1). [29](2021)λ(Pt
2,K

n
3 ) = ηt(K

n
3 ) = ξ3t(K

n
3 ) = 2(n− t)3t;

Algorithm 1: P-conditional edge-connectivity of Kn
L

Result: Calculating the h-extra edge-connectivity of

Kn
L

Input : Given positive integers n, L, i, k and Kn
L,

θP(K
n
L),O(KL)

Output: The P conditional edge connectivity of Kn
L is

S

1 I0 ← 0; v ← 1; while v ≤ L do

2 Iv ←
v(v−1)

2 ; v ← v + 1; δv ← v − 1;

3 end

4 if θP(K
n
L) ≤ O(KL) then

5 m← θP(K
n
L);

6 end

7 if θP(K
n
L) == gLt then

8 m← gLt;

9 end

10 t← m;

11 s′ ← ⌊logL t⌋+ 1;

12 while s′ == s′ − 1 do

13 if t ≤ L then

14 c(s′)← t;break

15 else

16 c(s′)← mod (t, L); t← ⌊ tL⌋; s
′ ← s′ − 1;

17 end

18 end

19 k ← 1; z ← 1;

20 while k ≤ ⌊logLm⌋+ 1 do

21 if c(k) 6= 0 then

22 a(z)← c(k); b(z)← ⌊logLm⌋+ 1− k;

z ← z + 1;
23 else

24 k← k + 1;

25 end

26 end

27 q ← 1; S ← δLnm;

28 while q ≤ z do

29 if q ← 1 or q ← z then

30 S ← S − δLa(q)b(q)L
b(q) − Ia(q)L

b(q);

q ← q + 1;
31 else

32 S ← S − δLa(q)b(q)L
b(q) − Ia(q)L

b(q);

w ← q + 1;

33 while w ≤ z do

34 S ← S − 2δa(w)a(w)L
b(w); w ← w + 1;

35 end

36 q ← q + 1;

37 end

38 end

2). [13](2012)λ(Pt
2,K

n
2 ) = ηt(K

n
2 ) = ξ2t(K

n
2 ) = (n− t)2t;

3). [14](2013)λ(Pt
2,Bn) = ηt(P2) = ξ2t(Bn) = (n− t)2t.

For 2 ≤ L ≤ 10, the main results of Pk
i -conditional edge-

connectivity of Kn
L with θP(K

n
L) = gLt and θP(K

n
L) ≤



TABLE III
Pk
i -CONDITIONAL EDGE-CONNECTIVITY λ(Pk

i ,K
n
L).

λ(Pk
i ,Kn

L) t Kn
2 = Qn Kn

3 Kn
4 · · · Kn

L

λ(PLt

1 ,Kn
L) 0 ≤ t ≤ n − 1 (n − t)2t 2(n − t)3t 3(n − t)4t · · · (L − 1)(n − t)Lt

λ(Pt
2,K

n
L) 0 ≤ t ≤ n − 1 (n − t)2t 2(n − t)3t 3(n − t)4t · · · (L − 1)(n − t)Lt

λ(Pc
3 ,K

n
L) (n − 2)22 2(n − 1)31 3[(n − 0) − 2]40 · · · 3[(L− 1)(n − 0) − 2]L0

λ(P
(L−1)t
4 ,Kn

L) 0 ≤ t ≤ n − 1 (n − t)2t 2(n − t)3t 3(n − t)4t · · · (L − 1)(n − t)Lt

λ(P
(L−1)t
5 ,Kn

L) 0 ≤ t ≤ n − 1 (n − t)2t 2(n − t)3t 3(n − t)4t · · · (L − 1)(n − t)Lt

λ(PLt

6 ,Kn
L) 0 ≤ t ≤ n − 1 (n − t)2t 2(n − t)3t 3(n − t)4t · · · (L − 1)(n − t)Lt

L⌊n
2 ⌋, ξh(K

n
L) and ξgLt(Kn

L) are shown in the Fig.2,

where F.I.I represents the exact values of function ξh(K
n
L)

in the first increasing interval 1 ≤ h ≤ L⌊n
2 ⌋. Once

the P-conditional edge-connectivity of Kn
L is bipartite and

θP(K
n
L) = min{|X | |Kn

L[X ] satisfying the property P}
is less than L⌊n

2 ⌋, the exact value of P-conditional edge-

connectivity of Kn
L is ξθP(Kn

L
)
(Kn

L). We also investigate the

cases of bipartite P-conditional edge-connectivity of Kn
L with

θP(Kn
L
)(K

n
L) = gLt. The exact values of Pk

i -conditional edge-

connectivity of Kn
L, λ(Pk

i ,K
n
L), are shown in Table III.

Theorem V.4. Let n and L be two positive integers. If P-

conditional edge-connectivity of Kn
L is bipartite with h =

θP(K
n
L) ≤ L⌊n

2 ⌋. Then, one can obtain that λ(P ,Kn
L) =

ξθP(Kn
L
)(K

n
L) = ξh(K

n
L) = (L − 1)nh − exh(K

n
L) where

h =
∑s

i=0 aiL
bi , exh(K

n
L) =

∑s
i=0[(L − 1)aibiL

bi + (ai −

1)aiL
bi ] + 2

∑s−1
i=0

∑s
j=i+1 aiajL

bj .

Proof. As for each 1 ≤ m ≤ ⌊Ln/2⌋, one can find a

subset X∗
m = Ln

m ⊂ V (Kn
L) satisfying that ξm(Kn

L) =

|[Ln
m, Ln

m]|, |Ln
m| = m and both Kn

L[L
n
m] and Kn

L[L
n
m] are

connected with 2|E(Kn
L[L

n
m])| = exm(Kn

L). Because P-

conditional edge-connectivity is bipartite, for any minimum

P-conditional edge-cut of Kn
L with m∗ vertices for smaller

component for some m∗ ≤ ⌊Ln/2⌋. By Lemma IV.2,

Lemma IV.8 and θP(K
n
L) = h ≤ L⌊n

2 ⌋, we can de-

duce that λ(P ,Kn
L) ≥ ξθP(Kn

L
)(K

n
L) = ξh(K

n
L). Because

[Ln
θP(Kn

L
), L

n
θP(Kn

L
)] is a P-conditional edge-cut, λ(P ,Kn

L) ≤

|[Ln
θP(Kn

L
), L

n
θP(Kn

L
)]| = |[L

n
h, L

n
h]| = ξh(K

n
L) = (L − 1)nh−

exm(Kn
L). So λ(P ,Kn

L) = ξθP(Kn
L
)(K

n
L) = ξh(K

n
L) =

(L− 1)nh− exh(K
n
L). The result holds.

Corollary V.5. Let n, h and L be three positive inte-

gers, h ≤ L⌊n
2 ⌋. The h-extra edge-connectivity of Kn

L

is λh(K
n
L) = λh(K

n
L) = (L − 1)nh − exh(K

n
L) where

h =
∑s

i=0 aiL
bi , exh(K

n
L) =

∑s
i=0(L − 1)aibiL

bi + (ai −

1)aiL
bi + 2

∑s−1
i=0

∑s
j=i+1 aiajL

bj .

Our results improve the case for L = 2, 3, h ≤ 2⌊
n
2 ⌋.

Corollary V.6. For any integer 0 ≤ t ≤ n − 1, L = 2, 3,

h ≤ L⌊n
2 ⌋.

(1) [31](2018)λ(Ph
1 ,K

n
3 ) = λh(K

n
3 ) = ξh(K

n
3 );

(2) [19](2013)λ(Pt
1,K

n
2 ) = λh(K

n
2 ) = ξh(K

n
2 );

(3) [30](2014)λ(Ph
1 ,Bn) = λh(Bn) = ξh(Bn);

(4) [10](2013)λ(P4
1 ,Bn) = λ4(Bn) = ξ4(Bn) = 4n− 8.

VI. CONCLUSION

Reliability evaluation and fault tolerance of an intercon-

nection network of some parallel and distributed systems are

discussed separately under various link-faulty hypotheses in

terms of different P-conditional edge-connectivity, where P
is some graph-theoretic property of a connected graph G.

This paper deals with the P-conditional edge-connectivities

of hamming graph Kn
L with satisfying the property that each

minimum P-conditional edge-cut separates the Kn
L just into

two components. And these P-conditional edge-connectivity

is called bipartite. We show that for hamming graph Kn
L,

the Lt-extra edge-connectivity, t-embedded edge-connectivity,

(L − 1)t-super edge-connectivity, (L − 1)t-average edge-

connectivity and Lt-th isoperimetric edge-connectivity share

the same values in form of (L − 1)(n − t)Lt. Besides, we

also obtain the exact values of h-extra edge-connectivity and

h-th isoperimetric edge-connectivity of hamming graph Kn
L

for each h ≤ L⌊n
2 ⌋. Among these six kinds of connectiv-

ity, the solution of h-extra edge-connectivity is crucial for

solving the other five or even more general P-conditional

edge-connectivity. Because if any abstract P-conditional edge-

connectivity with bipartite property, the smallest cut must

be divided into two components, which is composed of a

component and its complement. The exact value of the P-

conditional edge-connectivity can be determined according

to the size of the λ(P)-atom. The value of h-extra edge-

connectivity is just a description of the number vertices in

the component. Our results improve several previous results

on this topic and can be applied to bijective connection



networks, which contain hypercubes, twisted cubes, crossed

cubes, Möbius cubes, locally twisted cubes and so on.
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