
Heterogeneous Modeling and Testing of Software
Product Lines

Fevzi Belli*
University of Paderborn
Paderborn, Germany

belli@upb.de

Tugkan Tuglular
Izmir Institute of Technology

Izmir, Turkey

tugkantuglular@iyte.edu.tr

Ekincan Ufuktepe
University of Missouri - Columbia

Columbia, MO, USA

euh46@missouri.edu

Abstract—Software product line (SPL) engineering is a widely
accepted approach to systematically realizing software reuse
in an industrial environment. Feature models, a centerpiece of
most SPL engineering techniques, are appropriate to model the
variability and the structure of SPLs, but not their behavior.
This paper uses the idea to link feature modeling to model-
based behavior modeling and to determine the test direction
(top-down or bottom-up) based on the variability binding. This
heterogeneous modeling enables a holistic system testing for
validating both desirable (positive) and undesirable (negative)
properties of the SPL and variants. The proposed approach is
validated by a non-trivial example and evaluated by comparison.

Index Terms—software product line engineering, model-based
testing, holistic testing

I. INTRODUCTION

A software product line (SPL) is a collection of software

products developed from a single architecture [1], [2]. A SPL

is used to produce a product family, i.e., products with similar

features. The objective of software product line engineering

(SPLE) is to systematically develop SPLs to enable the reusing

of components for production at lower costs, faster, and

increased quality than the developing them from scratch [3],

[4].
SPLE combines two development processes. Domain en-

gineering focuses on the identification of variable features

shared by the family of products from the SPL represented by

a feature model (FM). The counterpart of domain engineering,

application engineering, aims the generation of products from

the SPL with respect to the product configuration, where all the

variabilities are bound. Application engineering maps features

identified by the product configuration onto the final product.
When a product is generated from an SPL, how would

someone confirms that it contains all the features and the

features alone and together work as expected. To this end, one

approach would be model-based SPL testing. In such a case,

systematic, model-based SPL testing is required to confirm that

every product will meet its requirements for the features it is

composed of and will behave as its potential user anticipates.

To achieve this objective, a heterogeneous modeling approach

using relevant modeling techniques is necessary. Therefore,

the chosen heterogeneous modeling approach should be able

to cover both feature model and behavior model.

*Authors are ordered alphabetically

FM is the de facto standard for modeling the variability

and structural aspects of SPL. The behavioral aspect can be

handled, however, by models of many categories, for example,

by a variety of UML diagrams, but also formal models such

as finite state machines and Petri nets.

Weißleder and Lackner suggested linking FM to behavior

modeling to control the variability binding while deriving

product variants of the SPL [5]. This view enables also

systematizing the test process focusing on the architecture

of the SPL or the variant to be derived. The former DE-

centric view leads to a bottom-up test strategy while the latter

leads to a product- and AE-centric top-down test strategy. The

present paper refines and extends this heterogeneous modeling

approach of Weißleder and Lackner.

The novelty of this paper stems from that it enables system-

atic testing of the SPL and variants in a holistic way: Positive
testing to validate that the software under consideration does

everything it is supposed to do and negative testing to validate

that it does not do anything it is not supposed to. The idea

behind holistic testing is to complement the given model to

enable negative testing.

Weißleder and Lackner use Statecharts to model the behav-

ior of the SPL and variants. They suggest transition coverage

of Statechart for positive testing. The present paper suggests

event sequence graphs (ESGs) for modeling that can easily

be complemented to enable negative testing. The concept of

coverage of events and event sequences of increasing length

will be applied to positive and negative testing in order to

scale the test process.

The variability aspect will be discussed in the Section II,

along with a summary of the terms and notions used in

the paper, especially SPL modeling at different levels (150%

and 100% models) and event sequence graphs for behavior

modeling. The concept of linking both, variability modeling

and behavioral modeling, will be explained and illustrated on a

running example in Section II. Binding of the variability and

domain-centric and product-centric testing will be discussed

and illustrated on a running example in Section III. The

concept of event and event sequence coverage of the holistic

testing view will be discussed in Section III as well. A non-

trivial example will be used in Section IV for evaluation of

the approach, analyzing its characteristics, and its validation.

Moreover, the present approach will be compared with a

1079

2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C)

2693-9371/21/$31.00 ©2021 IEEE
DOI 10.1109/QRS-C55045.2021.00162

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Q
ua

lit
y,

 R
el

ia
bi

lit
y

an
d

Se
cu

rit
y

Co
m

pa
ni

on
 (Q

RS
-C

) |
 9

78
-1

-6
65

4-
78

36
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
RS

-C
55

04
5.

20
21

.0
01

62

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

similar approach based on the case study. A self-critical

discussion, covering also threats to the validity, concludes

Section IV. Section V continues and extends the discussion

of the related work started in Section II. The results of the

paper and planned follow-on research are briefly discussed in

Section VI.

II. BACKGROUND

For model-based testing, a SPL should have its structure and

behavior modeled and these two models should be molded. For

structure modeling, a feature model is used. A feature model

not only expresses features but also feature variability, i.e.,

variation points, within a product family. Grönniger et al. call

this model 150% [5]–[8]. A feature model becomes a product

configuration if it models a product variant of the product

family. Grönniger et al. call this model 100% [5]–[8]. Figure

1 shows the 150% feature model, whereas Figure 2 describes

the structure of a product, or variant, derived from the 150%

feature model given in Figure 1.

A behavioral model represents interactions with users and

other features. Two possible behavioral models are statecharts

and event sequence graphs (ESGs). In this paper, both are

used to model behavior of features and product variants. Like

feature model, a behavioral model is called 150% model if it

represents the whole SPL and 100% model if it represents a

product [6].

An ESG is, very briefly and informally explained, a directed

graph, of which nodes semantically represent events connected

by arcs that realize “follow” relation, whereby a double arrow

a loop between two nodes represents (see the example in

Figure 3). An ESG is actually a simplified form of a finite

state machine, where states and input/outputs are merged and

can be viewed as semantically enriched Myhill Graphs [9].

The definitions of even sequence graphs given below are

taken from [10] and [11].

Definition 1. An event sequence graph (ESG) is a directed

graph where V = ∅ is a finite set of nodes (vertices) and

E ⊆ V xV is a finite set of arcs (edges) and Ξ,Γ ⊆ V finite

sets of distinguished vertices with ξ ∈ Ξ, γ ∈ Γ called entry

nodes and exit nodes, respectively [10].

Definition 2. Let (V,E) be an ESG. Then a sequence of

vertices < v0, ..., vk > is called an event sequence (ES) if the

sequence is a walk on ESG [10].

Each edge of an ESG represents a legal event pair, or simply,

an event pair (EP). ES < vi, vk > of length 2 is an EP [10].

Definition 3. An ES < v0, ..., vk > is called a complete
event sequence (CES), if v0 = ξ ∈ Ξ is the entry and vk = γ
is the exit. A CES represents a test sequence [11].

Definition 4. A faulty ES is a complete (or, it is called a

complete faulty event sequence, CFES) it α(faulty ES) =
ξ ∈ Ξ is an entry. The ES as part of a CFES is called starter
[11].

Note that Definition 4 explicitly points out that a CFES

does not finish at an exit, unlike an CES that must finish at

an exit [11].

This lean modeling makes learning and using ESGs simple.

It prevents the designers make modelling errors. Moreover,

since an ESG is a directed graph, some algorithms of graph

theory can be used for test case generation and test optimiza-

tion ([11]–[14] for more details). In addition, ESG modeling

enables to perform the negative testing easily and efficiently

by completing the original ESG by adding missing edges

that represent illegal user-system interactions, likely leading

to unexpected or undefined system reactions. Negative testing

using ESG will be explained in Section III-A in more detail.

Figure 3 depicts the “online shop” behavior model corre-

sponding to the 150% model in Figure 1 as an event sequence

graph. The model in Figure 3 attempts to present all possible

behavioral alternatives of the SPL, represented as sequences of

events. Thus, it is a 150% model. Specific variants, as 100%

models, are to be derived from this model. Note, however,

this running example, strongly simplifies the reality, ignoring

many likely events, for example, the case the card is empty

after removing all the products, or the case to enter in an

infinite loop if there an invalid payment. On the other hand,

it is possible, even likely, that no variant makes sense or is

feasible to be implemented to realize the 150% model. Figure

4 illustrates the coupling of a feature model (Figure 3) and

an ESG. Here, where the feature “Credit Card” of the feature

model refers to the node “Select Credit Card” of the ESG to

signal the necessity of the high security.

III. HETEROGENEOUS SPL TESTING

An SPL can be tested either before or after the binding

of the variability. The next two subsections discuss these two

strategies using Lackner et al.’s approach [5], [15]–[17] (See

Figure 5). Domain-centric testing requires the binding of the

variability after generating a test suite for the SPL, while

product-centric testing requires the binding of the variability

before generating a test suite for each product [3]. Figure 5

outlines both strategies; each one consists of two subsequent

steps [3]:

• Domain-Centric Testing: PLCT1 (product line testing1)

is used to generate SPL test cases from the SPL test

model, whereas PLCT2 (product line testing2) is used

for variability binding and test generation for product

variants.

• Product-Centric Testing: PCT1 is used for the variability

binding and product test model generation, and PCT2 is

used for the generation of the product test cases from the

product test model.

A. Domain-Centric Bottom-Up Testing

Domain-centric testing of an SPL links the SPL’s 150%

feature model and 150% behavioral model to produce all

possible test cases [3]. We relate the behavioral model in

Figure 3 to the feature model in Figure 1 using the concept

presented in Section II. This linkage will guide test generation

for the product under consideration.

The ”search” feature is optional, meaning it can be included

or excluded. As a result, we’ll require a ”guard” that may

1080

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Example Feature Model as a 150% Model of Online Shop SPL [5]

Fig. 2: Deriving a Variant as a 100% Model out of the 150% Model of Online Shop SPL [3]

Fig. 3: Behavior Model as a 150% Model for the Example in

Figure 1 [3]

be selected when deriving variants with this feature. This

guard will be deselected for variations that do not include the

search feature. The guard mechanism will be used to handle

variability in product development.

Fig. 4: Linking FM with ESG [3]

The example ESG in Figure 3 can now be extended by

adding faulty event pairs (FEP) (dotted lines), that are illegal

sequences of events, leading to Figure 7 (The FEPs represent

user-system interactions that violate the specification, thus

modeling faults). Negative test cases start also at “[”, and

contain faulty event pairs (FEP), forming a complete faulty

ES (CFES). An CFES is supposed to never reach the exit,

symbolized by “]”, as it contains a faulty sequence of events.

Further, a CFES (as an already faulty sequence of events)

1081

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Domain-Centric vs. Product-Centric Testing [3]

cannot contain any faulty FES of the length more than 2 as

a fault cannot be “faultier”. Thus, we consider CFES having

only a single fault.

Fig. 6: Domain-Centric Testing of the Running Example,

150% ESG Model [3]

Test Suite Designer (TSD) [18] is utilized to gener-

ate test sequences for the ESG given in Figure 3 (re-

lating to Statecharts in Figure 6 and Figure 7) and they

can be accessed at (https://github.com/esg4aspl/SPL-ESG-

Examples/tree/main/OnlineShop) and consist of a test suite to

cover all EPs for positive testing and all FEPs for negative

testing.

Fig. 7: dto. as Completed ESG Model, extended by Faulty

Event Pairs (FEP) [3]

B. Product and Application-Centric Top-Down Testing

Product-centric testing of an SPL begins with the 150%

structural and behavioral models (Figure 3) and links it with

the 100% feature model (Figure 4). 100% models can be

generated for the running example using the ESG in Figure

3 and using the Statechart of the variant in Figure 4 by

deselecting some features (as discussed in sections II and

III-A; [19]).

An example of using the mapping function in Figure 4

for product-centric testing would be deselecting search and

low security features, which leaves only credit card payment

feature. Figure 8 and 9 represent both variants as sub-graphs

of the 150% model. Thus, covering both of the variants is

necessary to reach full coverage of events, event pairs, etc.

Test suites generated by the TSD for the ESG given

in Figure 8 and 9 (as augmented with FM in Figure 7)

can be accessed at (https://github.com/esg4aspl/SPL-ESG-

Examples/tree/main/OnlineShop).

C. Advantages of Holistic Testing

The symbiosis of positive and negative testing has many

advantages that will be demonstrated by following examples

(Figure 7).

• A positive test case, for example, pt1 given by the CES

[OpenProductCatalog SearchFor ProductDetailsFor To-
Cart ProceedToCheckOut SelectPaymentMethod Select-
CreditCard ProceedPayment Valid] checks a regular case

of buying a product variant and payment by credit card.

Any variant has to accomplish this task as a requirement.

1082

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Product-Centric Testing of the Running Example,

Variant 1 - Credit Card Payment Only [3]

Fig. 9: Product-Centric Testing of the Running Example,

Variant 2 – E-Coin and Bank Account Payment [3]

• A negative test case, for example, nt1 given by the FCES [
OpenProductCatalog SearchFor ProductDetailsFor Can-
celPayment forms an irregular, illegal case of canceling a

payment without having proceeded to check out, and then

selecting a payment method (FEP this CFES includes is

underscored).

• Another negative test case nt2 given by the FCES [
OpenProductCatalog SearchFor ProductDetailsFor To-
Cart ProceedToCheckOut SearchFor checks an inter-

esting case of attempting to continue buying after pro-

ceeding to check out (Again, its FEP is underscored).

The present model excludes this case, which might be,

however, not in the sense of the business that might rather

encourage to sell more products. Thus, Figure 7, as a

specification, needs to be corrected to comply with the

business policy, making ProceedToCheckOut SearchFor
a legal EP.

To sum up, the holistic testing can be used not only to vali-

date the implementation, but also to validate the requirements,

long before the implementation starts.

D. Test Suite Comparison

Weißleder and Lackner reported that using the Bottom-up

approach they manually created a single test case, 27 steps

in total [5]. However, with the Conformiq Designer [20] they

generated twelve test cases, with 59 event calls. The TSD

for ESGs generates six CESs with 60 events. In Table I,

we have reproduced the test cases from Weißleder et al. [5]

with Conformiq Designer and presented results with our ESG

approach results for Online Shop. Although results are close

for the event coverage, for event-pair coverage ESG approach

with the TSD tool outperforms Statechart approach with the

Conformiq Designer, because ESG approach optimizes the

test sequences with minimum number of events whereas the

Statechart approach prefers more test sequences with shorter

sequences. For detailed explanation, please refer to [3].

IV. VALIDATION AND DISCUSSION

In this section, we first introduce our Smart Home SPL case

study. Then, we share the results of the generated test cases for

both Statechart and ESG approaches using Bottom-Up Testing.

We used the Bottom-Up testing since Weißleder et al. [5] and

our running example results in Table I have shown the number

of generated test cases and events is less than the Top-down

Testing.

To generate the test cases from a Statechart diagram. We

used for the Statecharts the semantics model as introduced

in [21] that is similar to the UML Statechart 5.0.0 version

of Conformiq Designer [20] for generating test cases from

Statechart, using the All Transitions and Transition Pairs cov-

erage criterion. For event coverage, we have simply developed

an algorithm that finds the shortest path between the start

event (“[” node) to the target event and concatenates with

the path between the target and end event (“]” node). This

process is continued until all events are covered. The main

goal of the event coverage strategy is to generate smaller

path sizes of test cases. Finally, we perform a simple test

suite minimization to over the generated test cases. The test

suite minimization strategy checks every test case and removes

the test case if its covering events are covered by the entire

other cases. We have made source codes publicly available for

1083

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Online Shop test case and number of events

Test Type Positive/Negative Test Coverage Type Statechart Approach ESG Approach
#test cases #events #test cases #events

Bottom-Up Testing
Positive Test

Trans./Event Cov. 12 59 6 60
Trans./Event Pair Cov. 42 184 1 61

Negative Test - n/a n/a 205 858

Top-down Testing

Var. 1
Positive Test

Trans./Event Cov. 12 59 6 60
Trans. Pair/Event Pair Cov. 42 184 1 61

Negative Test - n/a n/a 205 858

Var. 2
Positive Test

Trans./Event Cov. 11 42 6 60
Trans. Pair/Event Pair Cov. 40 172 1 61

Negative Test - n/a n/a 177 731

event coverage and event pair coverage which can be found

at (https://github.com/esg4aspl/esg-engine).

In addition, we compare the Statechart and ESG approaches

based on the number of generated test cases, events, and

negative testing capability. Finally, we discuss the potential

threats to validity of our study.

A. Smart Home SPL

In this section, the proposed approach is evaluated on the

smart home SPL obtained from software product lines online

tools repository [22]. The chosen smart home SPL is modified

to possess the following features:

• mandatory features: User Interface (UI), Windows Man-

agement, Light Management

• optional features: Blinds Management, Alarm, Security,

Fire Control, Presence Simulation

The user interface feature has a mandatory touchscreen

and optional web, or mobile user interface accessed over

the Internet. All windows management, light management,

and blinds management features have a mandatory manual

operation as well as optional automatic operation. The Pres-

ence simulation feature has optional light, blinds, and audio-

video operations executed in presence of a person. The Alarm

feature provides light, siren, and bell types of alarms manually

and automatically. The Alarm feature is utilized by security

and fire control features. Security is implemented through an

authentication device, which can be a keypad, retina scanner,

or fingerprint reader, and optionally through an intrusion

detection device. Fire control feature provides calling the

fire department, running bell alarm as well as operating fire

sprinklers.

The feature model of smart home SPL is generated using

Feature IDE [23] and shown in Figure 10. The minimum

mandatory product configuration for smart homes is composed

of a touchscreen user interface, manual window management,

and manual light management and can be considered as the

base product. 150% smart home product configuration contains

all features. The Statechart of the 150% product configuration

is given in Figure 10, whereas the ESG of the 150% product

configuration is shown in Figure 11. Both Statechart and ESG

models are prepared in a way that enables modelers to easily

remove or add features using, for instance, guards.

The TSD tool that inputs smart home ESG generates neg-

ative test cases along with positive test cases. Ten interesting

examples of negative test cases for the smart home software

product under consideration are selected among 2767 test

cases generated by TSD tool and shown in Table II.

TABLE II: Examples of negative test cases for the smart home

product under consideration

Test Number Test Case

1
right after blinds are opened automatically,
fire sprinklers are turned on automatically

2 right after motion detector activated, fire detected

3
right after presence detected,

inhouse light is turned off automatically,

4
right after daylight is detected,

fire sprinklers are turned on automatically

5
right after smoke detector activated,

fire department is called,

6
right after a fire is detected,

windows are opened automatically

7
right after glass break sensor is activated,

windows are opened automatically

8
right after house intrusion detected,
blinkers are turned on automatically,

9
right after authentication is successful,

the siren is turned on automatically

10
right after presence at home detected,

fire sprinklers are turned on automatically

B. Results and Discussion

We present the generated test cases from the Statechart

and ESG approaches. Table III shows the number of gen-

erated test cases and the number of total events of the test

suite for both approaches. The first column represents the

testing type. The second column represents the performed

positive and negative test independent from each other for

the selected testing type. The third column represents the

coverage type for the corresponding testing type. There are two

coverage types Transition/Event Coverage and Transition/Even
Pair Coverage. Since that we mentioned Statecharts can be

projected to ESG, the Transitions in the Statechart corresponds

to the Events, both are shown in a single row. This also

applies for Transition Pairs and Event Pairs as well. The forth

column represents the generated test case information for the

Statechart Approach, which includes the number generated

test cases, and the total number events/transitions in the total

test suite. The fifth column represents the generated test case

information for the ESG Approach, which also includes the

total generated test cases and the number of events/transitions
in the test suite. The results are compared within three criteria:

1084

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

number of test cases, number of events, and generated negative

tests.

In terms of generated test cases based on 100% transition

coverage, or in other words 100% event coverage, the Stat-

echart approach has generated 42 test cases, and ESG has

generated fewer tests with 33 test cases. However, when the

cost of events of the test suites is compared, the ESG event

coverage is expensive than the Statechart approach. The total

number of events in the ESG approach has 249 events, while

the Statechart approach has only 164 events.

After evaluating the number of generated test cases and

events for Statechart and ESG approaches, we investigated

both of the approaches based on their transition pair coverage

or in other words event pair coverage. In this larger study, we

have observed that with the Statechart approach 767 test cases

are generated with 3980 events. On the other hand, with the

ESG approach, we were able to generate one test case, with

109 events, which has reduced the test generation cost on a

vast scale.

Nevertheless, we compared the negative tests for both

approaches. For the Statechart approach, negative test case

generation was not available, while we were able to generate

test cases for ESG. We recall that the transitions in an Stat-

echart are equivalent to the event nodes in the corresponding

ESG. Therefore, we can easily define and generate invalid

event relationships, by adding arcs between events to the ESG

for negative testing. With the ESG approach, we generated

2768 test cases with 11678 events.

C. Threats to Validity

A threat to validity is that our evaluations are only based on

a single large SPL, which is the Smart Home SPL. Therefore,

the evaluations outlined above may not be representative or

cannot be generalized. ESGs might behave differently on

different SPLs and designs. Even though there is a large

dataset of SPL [9] with feature models, there are very few

Statechart diagrams provided for the features of a feature

model. Therefore, to address this problem we tried to find

case studies that used Statechart and SPL together. Best to

our knowledge we were only able to find one [5], which we

included in our case study, and create an Statechart for a larger

SPL (Smart Home) to extend our case study.

The test case generation problem can be considered as an

optimization problem as mentioned in Section III-D. There-

fore, test generation with Statechart diagrams can be tackled as

a traveling salesman problem (NP-hard) for state coverage and

can be tackled as a Chinese postman problem (NP-complete)

for transition coverage. These optimization problems are well

studied, and there are various heuristic and meta-heuristic

approaches to solve these problems that at least find local

optimum solutions. Thereby, different automated model-based

testing tools might generate a different number of test cases

with a different number of events for the Statechart, which

could be another threat to this study. For instance, Weißleder

et al. [5] generated test cases both manually and with an

automated model-based testing tool for the same Statechart.

Their manually generated test cases and events were fewer

than the automated tool. However, it is important to recall that

manually generating test cases may not be feasible for larger

and complex systems. Thereby, we used state-of-the-art tool

(Conformiq) that has been used in literature for generating test

cases in for Statechart, and to show that it is not feasible on

a larger system, we ran Conformiq on our own Smart Home

Statechart diagram.

V. RELATED WORK

Different models are proposed for SPLs to enable explicit

mapping features to behavior. One proposal is featured tran-

sition systems [24], which are transition systems like a finite

state machine, where each transition is labeled with a feature

expression, commonly a Boolean expression based on the

FM of the SPL. This enables to specify the variants that

execute this transition. Sampath, Bryce, and Memon suggest to

combine multiple criteria into a hybrid, based on behavioral

modeling [25]. Apart from featured transition systems other

techniques based on modal transition systems with variabil-

ity/constraints [26], or featured-modal contract automata [27],

product lines process algebra [28] can be used for behavioral

modeling.

A method introduced by Lackner, Schmidt, and Weißleder

links feature models with Statecharts to consider the concept

of variability binding, and thus, to consider also the direction

of the test execution, that is, top-down or bottom-up [5], [15]–

[17]. None of these studies have been considered generating

negative tests, which models faults. This is one main point that

differentiates our study from those works. Another main point

of differentiation is that the focus in our approach is on events

rather than states since states’ controllability and observability

may be more complicated than events in behavior-based testing

of SPLs.

Model-based testing (MBT) of SPLs is not limited to

the 150% finite state machine models technique. ScenTED

(Scenario-based TEst case Derivations) [29] and CADeT

(Customizable Activity diagrams, Decision tables, and Test

specifications) [9], [30] are other behavior-based modeling

approaches with their test generation aiming only to positive

tests.

The above approaches do not consider feature-based spec-

ification. Feature-based analysis of SPLs including testing

is built on feature-based specification [31]. Feature-based

analysis can only detect issues within a certain feature, which

is very important in domain engineering. Since features are

only analyzed in isolation, feature-based analysis cannot rea-

son about issues across features [31], which is required in

application engineering. Several features work as expected in

isolation but lead to unexpected behavior in combination [32].

ESGs can be used to model features and generate tests for

them. Since ESGs are composable, feature ESGs can be put

together for product ESGs as exemplified in this paper as well

as in [33]. Their composability and their ability for holistic

testing, covering both positive and negative tests, make ESGs

favorable for MBT of SPLs.

1085

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Smart Home test case and number of events

Test Type Positive/Negative Test Coverage Type Statechart Approach ESG Approach
#test cases #events #test cases #events

Bottom-Up Testing
Positive Test

Trans./Event Cov. 42 164 33 249
Trans./Event Pair Cov. 767 3980 1 109

Negative Test - n/a n/a 2767 11677

VI. CONCLUSION

This paper suggests an approach for testing SPL and its

derivable variants by unifying variability and behavior model-

ing of the SPL under consideration.

The suggested model-based holistic testing combines posi-

tive testing to validate the requirements of how the system is

supposed to behave in regular situations and negative testing

how in irregular situations. Examples of the fault prototypes,

listed in Section IV-A, explain the importance of negative

testing for the practice.

The suggested strategy enables, based on variability binding

mechanism [5], a bottom-up test to validate the SPL, and a

top-down test to validate the variants and groups of variants.

The test adequacy will be ensured based on the coverage of

variability features and behavioral events and event sequences.

A simplified online shop was used as a running example

to explain and illuminate the approach. This example and a

larger, real-life-like smart home application were used for a

comparison with a similar SPL testing technique. Comparisons

confirm that bottom-up testing causes fewer costs, and the

holistic testing has the advantage of enabling negative testing.

The scalability by adjusting the length of event sequences

(dependent on the test budget) that are to be covered, and

efficiency are further advantages of the approach, ensured

by heuristic test generation algorithms borrowed from graph

theory and supported by a dedicated test tool. Higher costs

of the initial test step to cover event sequences, and costs to

learn the method and its tool are on the disadvantage side of

the approach.

To sum up, the paper answered the initial questions asked in

Section I: All variability points and events/event sequences that

form the structure and the behavior of the SPL can efficiently

be covered, considering also their interaction with the user and

environment.

Our future research includes developing a formal, stringent

model of the introduced heterogeneous modeling and the

related techniques, including the top-down and bottom-up

testing. Further work is necessary also to form a framework

for enabling real tests to validate SPL and its variants.

REFERENCES

[1] F. Belli, “Assuring dependability of software reuse: An industrial stan-
dard,” in International Conference on Software Technologies, 2013, pp.
72–83.

[2] “IEC/PAS 62814 Dependability of Software Products Containing
Reusable Components – Guidance for Functionality and Tests,” 2012.

[3] F. Belli and F. Quella, A Holistic View of Software and Hardware Reuse.
Springer Science and Business Media LLC, 2021.

[4] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line
engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[5] S. Weißleder and H. Lackner, “Top-down and bottom-up approach for
model-based testing of product lines,” arXiv preprint arXiv:1303.1011,
2013.

[6] H. Grönniger, H. Krahn, C. Pinkernell, and B. Rumpe, “Modeling vari-
ants of automotive systems using views,” Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen (MBEFF), Informatik Bericht,
vol. 1, pp. 76–89, 2008.

[7] C. Seidl, D. Wille, and I. Schaefer, “Software Reuse: From Cloned
Variants to Managed Software Product Lines,” in Automotive Systems
and Software Engineering. Springer, 2019, pp. 77–108.

[8] H. Cichos, S. Oster, M. Lochau, and A. Schürr, “Model-based coverage-
driven test suite generation for software product lines,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2011, pp. 425–439.

[9] J. Myhill, “Finite automata and the representation of events,” WADD
Technical Report, vol. 57, pp. 112–137, 1957.

[10] F. Belli, “Finite state testing and analysis of graphical user interfaces,”
in IEEE International Symposium on Software Reliability Engineering,
2001, pp. 34–43.

[11] F. Belli, C. J. Budnik, and L. White, “Event-based modelling, analysis
and testing of user interactions: approach and case study,” Software
Testing, Verification and Reliability, vol. 16, no. 1, pp. 3–32, 2006,
publisher: Wiley Online Library.

[12] F. Belli and C. J. Budnik, “Test minimization for human-computer
interaction,” Applied Intelligence, vol. 26, no. 2, pp. 161–174, 2007.

[13] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, “An optimization
technique for protocol conformance test generation based on UIO
sequences and rural Chinese postman tours,” IEEE Transactions on
Communications, vol. 39, no. 11, pp. 1604–1615, 1991.

[14] K. El-Fakih, R. M. Hierons, and U. c. Turker, “K-branching uio
sequences for partially specified observable non-deterministic fsms,”
IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[15] D.-I. H. Lackner, “Domain-Centered Product Line Testing,” 2016, pub-
lisher: Humboldt-Universität zu Berlin.

[16] H. Lackner and M. Schmidt, “Potential Errors and Test Assessment in
Software Product Line Engineering,” arXiv preprint arXiv:1504.02443,
2015.

[17] H. Lackner and B.-H. Schlingloff, “Advances in testing software product
lines,” in Advances in computers. Elsevier, 2017, vol. 107, pp. 157–217.

[18] ESG Test Suite Designer. [Online]. Available: http://download.ivknet.de/

[19] S. Weißleder, F. Wartenberg, and H. Lackner, “Automated test design
for boundaries of product line variants,” in International Conference on
Testing Software and Systems, 2015, pp. 86–101.

[20] “Conformiq Designer.” [Online]. Available:
https://www.conformiq.com/products/conformiq-designer/

[21] F. Belli and A. Hollmann, “Test generation and minimization with”
basic” statecharts,” in Proceedings of ACM Symposium on Applied
Computing, 2008, pp. 718–723.

[22] SPLOT Research. [Online]. Available: http://splot-research.org

[23] Feature IDE. [Online]. Available: https://featureide.github.io

[24] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and
J.-F. Raskin, “Featured transition systems: Foundations for verifying
variability-intensive systems and their application to ltl model checking,”
IEEE Transactions on Software Engineering, vol. 39, no. 8, pp. 1069–
1089, 2012.

[25] S. Sampath, R. Bryce, and A. M. Memon, “A uniform representation of
hybrid criteria for regression testing,” IEEE Transactions on Software
Engineering, vol. 39, no. 10, pp. 1326–1344, 2013.

[26] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “Modelling
and analysing variability in product families: model checking of modal
transition systems with variability constraints,” Journal of Logical and
Algebraic Methods in Programming, vol. 85, no. 2, pp. 287–315, 2016.

[27] D. Basile, M. H. ter Beek, P. Degano, A. Legay, G.-L. Ferrari, S. Gnesi,
and F. Di Giandomenico, “Controller synthesis of service contracts with

1086

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

variability,” Science of Computer Programming, vol. 187, p. 102344,
2020.

[28] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling and model
checking software product lines,” in International Conference on Formal
Methods for Open Object-Based Distributed Systems, 2008, pp. 113–
131.

[29] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-based system
testing of software product families,” in International Conference on
Advanced Information Systems Engineering, 2005, pp. 519–534.

[30] E. M. Olimpiew and H. Gomaa, “Reusable model-based testing,” in
International Conference on Software Reuse. Springer, 2009, pp. 76–
85.

[31] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification
and survey of analysis strategies for software product lines,” ACM
Computing Surveys, vol. 47, no. 1, pp. 1–45, 2014.

[32] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, pp. 115–141, 2003, publisher: Elsevier.

[33] T. Tuglular, M. Beyazıt, and D. Öztürk, “Featured event sequence graphs
for model-based incremental testing of software product lines,” in IEEE
Computer Software and Applications Conference, vol. 1, 2019, pp. 197–
202.

Fig. 10: Smart Home Feature Model

1087

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: ESG of Smart Home

Fig. 12: Statechart Diagram of Smart Home

1088

Heterogeneous Modeling and Testing of Software
Product Lines

Fevzi Belli*
University of Paderborn
Paderborn, Germany

belli@upb.de

Tugkan Tuglular
Izmir Institute of Technology

Izmir, Turkey

tugkantuglular@iyte.edu.tr

Ekincan Ufuktepe
University of Missouri - Columbia

Columbia, MO, USA

euh46@missouri.edu

Abstract—Software product line (SPL) engineering is a widely
accepted approach to systematically realizing software reuse
in an industrial environment. Feature models, a centerpiece of
most SPL engineering techniques, are appropriate to model the
variability and the structure of SPLs, but not their behavior.
This paper uses the idea to link feature modeling to model-
based behavior modeling and to determine the test direction
(top-down or bottom-up) based on the variability binding. This
heterogeneous modeling enables a holistic system testing for
validating both desirable (positive) and undesirable (negative)
properties of the SPL and variants. The proposed approach is
validated by a non-trivial example and evaluated by comparison.

Index Terms—software product line engineering, model-based

FM is the de facto standard for modeling the variability

and structural aspects of SPL. The behavioral aspect can be

handled, however, by models of many categories, for example,

by a variety of UML diagrams, but also formal models such

as finite state machines and Petri nets.

Weißleder and Lackner suggested linking FM to behavior

modeling to control the variability binding while deriving

product variants of the SPL [5]. This view enables also

systematizing the test process focusing on the architecture

of the SPL or the variant to be derived. The former DE-

centric view leads to a bottom-up test strategy while the latter

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 22,2022 at 13:10:43 UTC from IEEE Xplore. Restrictions apply.

