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Abstract—This paper introduces a natural language-enabled
virtual assistant (VA), called Max, developed to enhance human-
robot interaction (HRI) with industrial robots. Regardless of
the numerous natural language interfaces already available for
commercial use and social robots, most VAs remain tightly bound
to a specific robotic system. Besides, they lack a natural and
efficient human-robot communication protocol to advance the
user experience and the required robustness for use on the
industrial floor. Therefore, the proposed framework is designed
based on three key elements. A Client-Server style architecture
that provides a centralised solution for managing and control-
ling various types of robots deployed on the shop floor. A
communication protocol inspired by human-human conversation
strategies, i.e., lexical-semantic strategy and general diversion
strategy, is used to guide Max’s response generation. These
conversation strategies are embedded in Max’s architecture to
improve the engagement of the operators during the execu-
tion of industrial tasks. Finally, the state-of-the-art pre-trained
model, Bidirectional Encoder Representations from Transformers
(BERT), is fine-tuned to support a highly accurate prediction of
requested intents from the operator and robot services. Multiple
experiments were conducted for validating Max’s performance
in a real industrial environment.

Keywords—Human-robot interaction; Natural language process-
ing; Interactive systems; Client-server systems

I. INTRODUCTION

Human-robot interaction (HRI) has been the focus of
groundbreaking research for decades [1]. Coupled with the
rapid development of Artificial Intelligence (AI), various ad-
vanced technologies such as real-time object detection [2],
deep reinforcement learning [3], and natural language pro-
cessing (NLP), are introduced to enhance HRI for industrial
robots [4]. However, as one of the latest articles of WEIRD
magazine mentioned, ”As Robots Fill the Workplace, They
Must Learn to Get Along” [5]. The presence of advanced
technologies alone, do not suffice for natural communication
and interaction with multiple types of robots that are designed
for different purposes and used by various operators [6].
For example, the Mobile Industrial Robot (MiR) focuses on
internal logistics technologies such as navigation and obstacle
avoidance. However, it only communicates with the user
based on light signals. At the same time, many industrial
robot manipulators are branded as collaborative, often due
to marketing reasons and primarily based on their control
and safety strategies. However, while they revolutionized the
industry enabling human-robot collaboration (HRC) outside
of safety fences, they barely incorporate ways to engage users

into a natural language dialogue to enhance the communication
and interaction with them [7]. Therefore, it is necessary to in-
troduce a flexible and scalable NLP-enabled interface for HRI
and HRC, which works with various industrial robots on the
shop floor based on a well-designed architecture that provides
a centralized way for robot management and maintenance.

There are many mature language-enabled VAs, e.g., Alexa
1, Google Assistant 2 and Siri 3 available commercially and
used by millions of users worldwide. Their key feature is their
impressive capacity for handling robust NLP and continuous
natural dialogues. Nevertheless, most of those products are
designed in the context of entertainment and remain unsuitable
for direct use in robotics, especially in an industrial context.

On the other hand, many research efforts utilize verbal cues
to enhance HRI in industrial environments [8]. Specifically,
Li et al. developed a language-enabled virtual assistant, Bot-
X, to control a production line composed of eight Festo CP
Factory and a KUKA robot for product assembly task [9].
Maksymova et al. proved that numerous models could be
used for voice control of an industrial robot such as logical,
semantic networks, and Petri Nets in the context of collabora-
tive assembly [10]. Li et al. proposed an end-to-end dialogue
system for HRI in four industrial tasks [11]. Additionally,
Bingol and Aydogmus evaluated the capabilities of deep neural
networks for the classification of a set of commands in a
natural speech recognition system for the interactive control
of an industrial manipulator in various industrial tasks [12].
González-Docasal et al. progressed even further and integrated
a semantic interpreter able to extract semantic information
from transcribed spoken content to enable an industrial robot
to understand the intention of the operator and execute a
collaborative task [13].

Naturally, since industrial robots mainly assist the users
with manufacturing tasks [14], task-completion experience is
usually set as the primary evaluation goal of robots’ perfor-
mance in most of the aforementioned scenarios [13]. However,
an operator remains the most flexible entity on the shop
floor which needs to handle a versatile range of tasks and
tools with robots’ cooperation where task-completion is not
the only requirement, e.g., collaborative products assembly,

1https://www.amazon.com/b?ie=UTF8&node=17934671011
2https://developers.google.com/assistant
3https://developer.apple.com/siri/



and resource management and logistics assisted by mobile
robots [15].

The proposed VA is based on our previous concept
work [16] and motivated by multiple studies from social,
service, and lately, industrial robotics, which have proven that
creating a pleasant and symbiotic human-robot collaboration
often improves the user’s engagement and leads to increased
productivity [17]. Key elements of such successful HRI usually
are the strong sense of commitment from the operator [18] and
the enhanced user experience [19].

As a result, we developed an intelligent VA to enable
these elements in industrial use cases. We call it Max, and it
utilizes a Client-Server (CS) style architecture and RESTful
APIs to provide a scalable and flexible NLP solution for
intuitive HRI. It supports various industrial robots on the shop
floor by maintaining industrial robot services on the server-
side alone while the robot control agent lies on the Max
client. Furthermore, powered by the state-of-the-art (SOTA)
model and inspired by human-human communication, Max
can understand the operator’s intent, track the dialogue history
and enhance the user experience by generating humanized
responses.

In Section II of this paper, we describe the proposed
intelligent VA presenting its system architecture and core
components. We present the experiments and evaluate Max’s
performance in Section III and Section IV respectively, and
we finalize the paper with reflections and concluding remarks
in Section V.

II. PROPOSED SYSTEM

The architecture of the natural language-enabled VA, Max,
is depicted in Fig. 1. Following the CS-style architecture,
language and robot services are hosted on the Max server side.
As language services, we use spoken language understanding,
dialogue state tracker, and response generator, while as robot
services, we use robot skills and scripts for robot control.
Max client is mainly composed of Microsoft cognitive speech
service and the robot control agent. RESTful HTTP requests
support the communication between Max server and client.
Max client provides a voice interface (i.e., microphone and
speaker) to interact with the human operator and leverages
the different protocols (e.g., OPC UA, RESTful APIs) to
communicate with the shop floor robots.

A. Spoken language understanding

In this module, we fine-tuned the pre-trained base BERT
model, which provides contextualised sentence representation
and can learn the meaning of the words in the given con-
text to predict the operator’s intent and key slots from the
operator’s utterance. The model is trained and validated on
a dialog dataset containing the task-related conversations of
two different industrial robots (i.e., MiR200, Franka Emika
Robot), and it achieves intent accuracy of 97.7% and slot F1
of 96.8%.

B. Dialogue state tracker

There could be a few stages involved in finishing a man-
ufacturing operation. As a result, a VA may need to engage
in several rounds or turns of dialogue in order to acquire all
of the information that is essential to complete the task. This
module includes a pre-defined JSON file that specifies all of
the slots for completing each job. Specifically, Max makes sure
that the state is correct and then changes it depending on the
slots that were requested. The conversation will go up to the
point when Max has filled all of the necessary slots.

C. Response Generator

To generate the response, a simple template-based strategy
is integrated to the Max. Max might start out from a semantic
representation confirming that the phone box will be delivered
to warehouse, where the gaps represented by #object and
#position respectively e.g., ”Sure, I will deliver the #object
to #position”.

One key contribution of our approach is the inclusion
of human-human conversation strategies to the interaction
with the industrial robots. inspired by [20], we borrowed
two dialogue strategies, lexical-semantic strategy and general
diversion strategy, to Max to provide a highly dynamic and
humanised conversation environment. The video 4 shows how
Max may prompt the operator with a request and get right into
manufacturing operations, provide alternatives if the desired
activity can’t be completed, and redirect the conversation when
it realizes it’s not connected to the task at hand. Since this is
the case, Max can carry out the desired actions and facilitate
dynamic conversations to enhance the user experience.

D. Industrial Robot Service

As discussed before, Max is not tightly bound with specific
industrial robots as it is implemented with a CS-style archi-
tecture. This module supports the available robot services and
skills registered on the server-side and the corresponding robot
control scripts. Therefore, operators only need to focus on
maintaining those registrations and scripts on the server-side
without investing much time and effort in the configuration of
the shop floor robots.

E. Voice Interface

For Max’s client, a voice-enabled interface is being devel-
oped in order to provide effective communication. To enable
Max’s client voice interface, the cognitive speech services
offered by Microsoft are integrated. These services are known
as Speech-to-Text and Text-to-Speech. After being wrapped
into an HTTP request formatted in a RESTful style, the
operator’s utterance transcripts are then transmitted to Max’s
server where the text response (which is a JSON string) is
generated. Therefore, the text-to-speech service is leveraged to
produce a natural human sounds based on the generated text
response. A voice interface of this kind frees up the operator’s
hands while also allowing for natural conversation on the shop
floor, which is essential for effective HRI.

4http://y2u.be/lYnh2cOeeE0



Figure 1. The architecture of the proposed natural language-enabled VA.

F. Robot Control Agent

in order to be agnostic of robotics platforms, two com-
ponents, robot service management (RSM) and the robot
service execution (RSE), are implemented on the Max client.
RSM regularly synchronizes the local robot services and skills
with the Max server on a monthly basis by default. This
allows RSM to update the robot services and skills that have
been registered on the local client-side as well as the robot
controlling scripts. RSE calls the associated robot control
script, which provides robot control functions (such as mark
position) and communication protocols (such as TCP/IP, OPC-
UA) for each robot type.

III. EXPERIMENTAL SETUP

We demonstrate the effectiveness of our approach with a set
of experiments performed in the AAU learning factory [21].
As the main robot, we use one of our autonomous industrial
mobile manipulators, namely Little Helper (LH) [22]. In this
iteration, LH combines a MiR 200 with a Franka Emika Robot,
as shown on the top side of Fig. 2. The 2D map of the AAU
learning factory is generated by LH as shown on the bottom
side of Fig. 2.

We tested Max in three different industrial scenarios i.e,
environment exploration, package delivery and embedded con-
versation strategy. These scenarios explore and test Max’s
capabilities to handle typical, everyday tasks from an industrial
shop floor.

In the environment exploration scenario, the operator nav-
igates LH inside the AAU learning factory to explore the
working environment. Updating and checking the position of
the robot on the map are identified as two major tasks (see
Tasks 1 and 2 in Table I).

In the package delivery scenario, LH needs to deliver a box
from one place to another according to the operator’s verbal
instruction (Task 3 in Table I). The box pickup place workshop
and destination warehouse are marked on the map (see Fig. 2)
and are generated already in Task 1. The intent DELIVERY is
tested here, and slot values recipient, to be delivered object,
object size, object color and destination.

In the last scenario, we evaluate Max’s performance in
utilising embedded conversation strategies (Tasks 4, 5, and 6).
These tasks test specifically whether the embedded human-
human conversation strategies can bootstrap the user experi-
ence by improving the user’s engagement. In Task 4, Max
can initialise activities (e.g., report the currently scheduled
tasks) to detect operators’ greetings. For Task 5, Max provides
task-related options to the operator when it cannot perform
the requested tasks. Task 6 tests if Max can provide different
responses for the same request.

The minimum, maximum, and average ambient noise levels
during our experiments were 44.6 dB(A), 80.5 dB(A), and
69.0 dB(A), respectively. Six users, a mix of developers and
everyday users of the system, were tasked to interact with Max
and control LH based on verbal commands. The performed
tasks and respective intents are presented in Table I.

TABLE I
SELECTED TASKS AND INTENTS FOR THE THREE SCENARIOS

Task ID Task description Intent

1 Update the location POSITIONUPDATE
2 Check the location POSITIONCHECK
3 Deliver a package DELIVERY
4 Initial activities GREETING
5 Switch a topic ASKHELP
6 Don’t repeat MISSIONCHECK

Each task was reproduced 30 times to verify Max’s accuracy
and validate its overall performance. The evaluation involves
two main levels; the language level, where we evaluate how
well Max can recognise the operator’s intent and the slot value
during the dialogue [23], and task level, where the task success
rate and dialogue time costs are evaluated [24]. Furthermore,
the ability to handle multiple tasks is also considered to
evaluate the scalability of the proposed architecture. Overall,
six metrics are used to evaluate the performance of Max in
these scenarios.

• Intent Error Rate (IER): refers to the rate where the
model cannot predict the requested intent of the user
correctly.



Figure 2. AAU learning factory and the corresponding 2D map generated by the robot (top). The locations of the robot (Little Helper), workshop and
warehouse, are marked on the map (bottom).

• Slot Error Rate (SER): is the rate of incorrect slot
values, i.e., the model selects an incorrect value for
the slot, and slot detection fails, i.e., the model cannot
recognise the slot.

• Task-Success Rate (TSR): corresponds to the rate of
Max’s ability to retrieve all the required information to
complete the task without encountering any intent or slot
error problem.

• Average Communication Time (ACT): the required
time for a task to be completed on average. The ACT
is equal to the meantime from the beginning of the
conversation to its end for 30 experiments of each task.
In general, high intent/slot error rate requires more com-
munication time.

• Parallel Requests Handling (PRH): CS-style architec-
ture brings flexibility and scalability to Max, but it also
suffers from traffic congestion. PRH is used to measure
Max’s parallel processing capacity.

• Average Service Updating Time (ASUT): measures the
average time cost for updating the local robot control
scripts. ASUT is equal to the meantime from sending a
synchronisation request to completing an update of the
local robot control scripts.

IV. SYSTEM EVALUATION

In the first scenario, Max failed to recognise the oper-
ator’s intent and slot values in eight experiments and five
experiments, respectively, for Task 1. For Task 2, the cor-
responding occurrences numbers are six and two separately.
Max completed the first two tasks with a TSR of 0.60 and
0.76, respectively, while requiring 24.70 sec and 15.28 sec on
average to perform the communication. Table II reports the
corresponding IER, SER, TSR, and ACT for all tasks.

In the second scenario, Max failed to recognise the op-
erator’s intent three times and the slot value 13 times. Due
to the complexity of the task and the ambient noise, Max
achieved a completion rate of only 0.50 and required the

highest communication time of 31.08 seconds on average (see
Table II).

In the last scenario, Max’s client remains in standby mode
until it receives confirmation from the operator. The intent
error rate varies depending on the complexity of the dialogue,
and the task completion rate is 0.80, 0.70, and 0.83 per task.
Similarly, the average communication time varies noticeably
from 27.07 to 25.04 and 11.12 seconds, respectively (see
Table II).

TABLE II
PERFORMANCE OF THE VA IN TERMS OF IER, SER, TSR AND ACT

METRICS

Task ID IER SER TSR ACT (in secs)

1 0.26 0.16 0.60 24.70
2 0.2 0.06 0.76 15.28
3 0.1 0.43 0.50 31.08
4 0.2 None 0.80 27.07
5 0.3 None 0.70 25.04
6 0.17 None 0.83 11.12

Additionally, to evaluate the overall parallel processing
capacity, we run stress tests on Max’s local server and the AAU
Cloud using Siege5, an HTTP load testing and benchmarking
utility. The tests focus on the total elapsed time for the
given number of transactions, the transaction rate, the actual
maximum concurrent number of the connections, and the
throughput. Table III shows the test results of the local server
and the AAU Cloud.

TABLE III
PRH OF MAX’S LOCAL SERVER AND AAU CLOUD.

Server type Transactions Elapsed time Transaction rate Concurrency Throughput

Local Server 2,000 10.09 sec 198.22 trans/sec 2.01 0.16 MB/sec
AAU Cloud 100,000 7.04 sec 14204.55 trans/sec 289.79 11.65 MB/sec

Finally, to evaluate the ASUT, another 30 experiments were
conducted on MiR robot. The tests focus on calling the

5https://www.joedog.org/siege-home/



functions which are not defined in the local robot control
script. For the 30 experiments, the minimum, maximum, and
average service updating times were 5.6, 6.3, and 5.7 seconds
respectively, measured on the local server.

V. DISCUSSION & CONCLUSIONS

The proposed natural language-enabled VA, Max, benefits
from the CS-style architecture, RESTful style APIs, and cen-
tralised management, enabling high efficiency in multiple HRI
scenarios in industrial robots. The addition of the industrial
robot service and the robot control agent can also interact
efficiently with various industrial robots.

Our proposed VA still has room for improvement as it
requires significant processing power for handling many paral-
lel requests and a well-designed security strategy to maintain
the privacy of the interaction environment. Furthermore, other
factors, e.g., the operator’s accent and voice volume, are also
influential aspects of the intent/slot error rate. Future work
will focus on ways to suppress the ambient noise and enhance
speech so as the VA and, consequently the robot system, can
communicate with the workers with fewer interruptions and
errors.

The encouraging results based on the two embedded con-
versation strategies prove the Max can support an active
interaction during various manufacturing tasks. It provides
task-related suggestions, attracts the operator’s attention suc-
cessfully, and forms a diverse and thoughtful dialogue to
improve user engagement in HRI for industrial robots. An
extensive HRI usability study was postponed due to COVID-
19 restrictions; however, it remains a central part of our future
work to collect feedback on the naturalness and coherence of
Max’s generated dialogue and responses.
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[18] M. Székely, H. Powell, F. Vannucci, F. Rea, A. Sciutti, and J. Michael,
“The perception of a robot partner’s effort elicits a sense of commitment
to human-robot interaction,” Interaction Studies, vol. 20, no. 2, pp.
234–255, 2019. [Online]. Available: https://doi.org/10.1075/is.18001.sze

[19] E. Prati, M. Peruzzini, M. Pellicciari, and R. Raffaeli, “How to include
user experience in the design of human-robot interaction,” Robotics
and Computer-Integrated Manufacturing, vol. 68, p. 102072, 2021.
[Online]. Available: https://doi.org/10.1016/j.rcim.2020.102072

[20] Z. Yu, Z. Xu, A. W. Black, and A. Rudnicky, “Strategy and policy
learning for non-task-oriented conversational systems,” in Proceedings

https://doi.org/10.1007/978-3-030-42307-0
https://doi.org/10.1016/j.promfg.2020.01.043
https://doi.org/10.1016/j.promfg.2020.01.136
https://doi.org/10.1016/j.promfg.2020.01.136
https://doi.org/10.1016/j.cie.2019.02.005
https://www.wired.com/story/robots-fill-workplace-must-learn-get-along/
https://www.wired.com/story/robots-fill-workplace-must-learn-get-along/
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.rcim.2021.102208
https://doi.org/10.1016/j.robot.2014.09.031
https://doi.org/10.1016/j.robot.2014.09.031
https://doi.org/10.3233/MGS-210340
https://doi.org/10.4236/jcc.2017.511001
https://doi.org/10.1016/j.engappai.2020.103903
https://doi.org/10.1016/j.engappai.2020.103903
https://doi.org/10.1007/978-981-15-8395-7_18
https://doi.org/10.1109/TSMC.2020.3041231
https://doi.org/10.1109/COMST.2019.2938259
https://doi.org/10.1145/3434074.3447163
https://doi.org/10.1007/s00170-019-04638-6
https://doi.org/10.1075/is.18001.sze
https://doi.org/10.1016/j.rcim.2020.102072


of the 17th annual meeting of the special interest group on discourse and
dialogue. Association for Computational Linguistics, 2016, pp. 404–
412. [Online]. Available: https://www.aclweb.org/anthology/W16-3649

[21] M. Nardello, O. Madsen, and C. Møller, “The smart production labora-
tory: A learning factory for industry 4.0 concepts,” in CEUR Workshop
Proceedings, vol. 1898. CEUR Workshop Proceedings, 2017.

[22] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh, and
O. Madsen, “Skill-based instruction of collaborative robots in
industrial settings,” Robotics and Computer-Integrated Manufacturing,
vol. 53, no. June 2016, pp. 72–80, 2018. [Online]. Available:
https://doi.org/10.1016/j.rcim.2018.03.008

[23] J. Schatzmann, B. Thomson, and S. Young, “Error simulation for training
statistical dialogue systems,” in 2007 IEEE Workshop on Automatic
Speech Recognition & Understanding (ASRU). IEEE, 2007, pp. 526–
531. [Online]. Available: https://doi.org/10.1109/ASRU.2007.4430167

[24] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and
M. Cieliebak, “Survey on evaluation methods for dialogue systems,”
Artificial Intelligence Review, vol. 54, no. 1, pp. 755–810, 2021.
[Online]. Available: https://doi.org/10.1007/s10462-020-09866-x

https://www.aclweb.org/anthology/W16-3649
https://doi.org/10.1016/j.rcim.2018.03.008
https://doi.org/10.1109/ASRU.2007.4430167
https://doi.org/10.1007/s10462-020-09866-x

	Introduction
	Proposed System
	Spoken language understanding
	Dialogue state tracker
	Response Generator
	Industrial Robot Service
	Voice Interface
	Robot Control Agent

	Experimental Setup
	System Evaluation
	Discussion & Conclusions
	References

