arXiv:1610.01245v1 [cs.SE] 5 Oct 2016

A Model to Estimate First-Order Mutation
Coverage from Higher-Order Mutation Coverage

Ali Parsai, Alessandro Murgia, and Serge Demeyer
Faculty of Science
University of Antwerp
Middelheimlaan 1
2020 Antwerpen, Belgium
Email: {ali.parsai, alessandro.murgia, serge.demeyer} @uantwerpen.be

Abstract—The test suite is essential for fault detection during
software development. First-order mutation coverage is an accu-
rate metric to quantify the quality of the test suite. However, it
is computationally expensive. Hence, the adoption of this metric
is limited. In this study, we address this issue by proposing a
realistic model able to estimate first-order mutation coverage
using only higher-order mutation coverage. Our study shows
how the estimation evolves along with the order of mutation.
We validate the model with an empirical study based on 17
open-source projects.

Index Terms—Software Testing, Mutation Testing, Higher-
order Mutation Testing, Test Suite Quality, Model

I. INTRODUCTION

The advent of agile processes with their emphasis on test-
driven development [4] and continuous integration [8|]] implies
that developers want (and need) to test their newly changed
or modified classes or components early and often [19].
Therefore, the quality of the test suite is an important factor
during the evolution of the software. One of the extensively
studied methods to improve the quality of a test suite is
mutation testing [6]. Mutation testing provides a repeatable
and scientific approach to measure the quality of the test suite,
and it is demonstrated to simulate the faults realistically [2|
15]. This is because the faults introduced by each mutant
are modeled after the common mistakes developers often
make [|12]]. Although the idea of mutation testing has been in-
troduced in the late 1970s [6, |11], it has not found widespread
use in industry due to its computationally expensive nature.
Therefore, several approaches have been proposed in order
to make this technique feasible in industrial settings [24].
Exploiting higher-order mutants instead of first-order mutants
is one way used in literature to approach this problem [12].
Higher-order mutants can be created by partitioning the set of
first-order mutants randomly, and combining first-order mu-
tants in each partition into higher-order mutants. The benefits
of higher-order mutation are twofold. First, higher-order mu-
tants are less likely to generate false positives than first-order
mutants [[14}22]]. Equivalent mutants act as false positives [10],
and their detection is an undecidable problem [20]. However,
when an equivalent mutant is combined with a non-equivalent
mutant, the resulting higher-order mutant is non-equivalent as
well [[17]. This means that second-order mutants are less likely

to suffer from the equivalency problem [13]]. Second, by using
higher-order mutants, fewer mutants need to be evaluated [[13].
For instance, combining first-order mutants two-by-two into
second-order mutants would reduce the number of mutants
to 50%. As a consequence, it saves close to half of the
computational time and make more feasible the integration
of mutation testing in continuous integration systems.

Despite the benefits, the adoption of higher-order mutants
presents also drawbacks and limitations. When higher-order
mutants are constructed in the aforementioned manner, the
mutation coverage calculated using higher-order mutants is not
as precise as the one calculated using first-order mutants, with
the former often overestimating the capabilities of a test suite.
While using higher-order mutants allows us to evaluate less
mutants, it also means that we lose information regarding the
status of each underlying first-order mutant. This creates a
limitation on the order of mutation, as the value of the lost
information overcomes the value of the information at hand.

In this paper, we address these shortcomings. We propose a
model able to estimate first-order mutation coverage requiring
only the computation of higher-order mutation coverage and
yet with a smaller chance of equivalency problem. We are in-
terested in a realistic model, namely a model that explains in a
reasonable manner how the first-order mutants coverage affects
the higher-order mutant coverageﬂ Initially, we evaluate the
estimation of our model for the second-order mutants. Then,
we extend the analysis to find out whether our model can be
used with mutants of third or higher order. For each higher-
order mutant, we also verify whether our model correctly
describes their real behavior. More specifically, we look for
side effects (e.g.; fault shifting and fault masking [14]) due
to the combination of first-order mutants into higher-order
mutants.

This work follows the Goal-Question-Metric paradigm [3].
The goal of this study is to build a model based on higher-
order mutation coverage able to estimate the first-order mu-
tation coverage. The behavior of the empirical data must be
explained reasonably by such model. The focus is to explore
the accuracy and the limitations of the model according to the

ISeveral polynomial functions of order N can fit the empirical data. Yet,
the underlying model may not be suitable to explain the behavior of the data.

order of mutation. The viewpoint is that of the team leaders
and testing researchers, both interested in making mutation
testing applicable in real case scenarios. The environment of
this study consists of 17 open-source cases. For this reason,
we pursue the following research questions:

e RQI1. To what extent the second-order mutants can be
used in place of the first-order mutants for estimation
purposes?

« RQ2. How does incrementing the order of mutation affect
the accuracy of the estimation provided by the model?

The rest of the paper is structured as follows: Section
provides necessary background information about the subject
of the study. Section describes our proposed model. In
Section we explain the design of our case study. In
Section [V] we present the results of our experiment. Section
contains the threats to the validity of our study, and our
attempts to reduce them. Section discusses the related
studies, and their differences with ours. Finally, we conclude
the paper in Section [VIII]

II. BACKGROUND

In this section we present an overview of the background
information needed to understand our proposed model. First
we explain the mutation testing, then we discuss the equivalent
mutants, and finally, we take a closer look at the higher-order
mutants.

Mutation Testing

Mutation testing is the process of injecting faults into
software, and counting the number of these faults that make
at least one test fail. The idea of mutation testing was first
mentioned in a class paper by Lipton and later developed by
DeMillo, Lipton, and Sayward [6]. The first implementation of
a mutation testing tool was done by Timothy Budd in 1980 [5]].

The procedure for mutation testing is as follows: First, faulty
versions of the software are created by introducing a single
fault into the system (Mutation). This is done by applying a
known transformation on a certain part of the code (Mutation
Operator). After generating the faulty versions of the software
(Mutants), the test suite is executed on each one of these
mutants. If there is an error or failure during the execution of
the test suite, the mutant is regarded as killed (Killed Mutant).
On the other hand, if all tests pass, it means that the test suite
could not catch the fault and the mutant has survived (Survived
Mutant). The final result is calculated by dividing the number
of killed mutants by the number of all non-equivalent mutants.
This metric provides a detailed assessment of the quality of a
test suite, as it makes sure that the kind of faults simulated by
the mutation operators are covered by the tests and therefore
reduces the chance of missing such faults in the final product.
In addition of using mutation coverage, test developers can
target surviving mutants. This allows killing mutants to be
used as a test requirement.

boolean procl() boolean procz()
int i=9;
i=i

int
- L i=

i=2;
i-1;

if (i > 0)
return true;
else else
return false;
}

if (1> 0)
return true;

return false;

- -

A -

boolean procl() boolean proc2()
int i = 0;

! L int i
i=1i+ 1,4 i=1i

=2;
+1; &)
if (i > 0)
return true;
else else
return false;

if (1 > 0)
return true;

return false;

Fig. 1. Example for emergence of equivalence due to the context

Equivalent Mutants

If a mutant produces the same output as the original program
for all input values, it is called an equivalent mutant. The
creation of equivalent mutants is undesirable [10]], but they are
not easy to detect [18]]. The creation of such mutants depends
on the context of the program itself, for example, in Figure
the introduced change in procl will change the outcome, while
the same change in proc2 does not. The error introduced in
proc2 is, therefore, not detectable by any test. The existence
of equivalent mutants would create false positives, since there
is no way for a test suite to catch them.

First-Order Mutants and Higher-Order Mutants

First-order mutants are the mutants generated by applying a
mutation operator on the source code only once. By applying
mutation operators more than once we obtain higher-order
mutants. Higher-order mutants can also be described as a
combination of several first-order mutants. Jia et al. [13]
introduced the concept of higher-order mutation testing and
discussed the relation between higher-order mutants and first-
order mutants.

They divided the higher-order mutants into four categories
based on the observed coupling effect [14]]: Expected, Worst,
Fault Shift, and Fault Mask. However, this categorization
cannot be used to clarify the unexpected status of the higher-
order mutants, mainly because it does not consider how the
status of the higher-order mutant relates to the status of
the underlying first-order mutants. Therefore, we propose the
following categorization:

o Expected. The higher-order mutant is killed, and at least
one of the underlying first-order mutants is killed; or
the higher-order mutant has survived as well as all the
underlying first-order mutants.

o HK-FS. The higher-order mutant is killed, even though
all the underlying first-order mutants have survived.

o HS-FK. The higher-order mutant has survived, even
though at least one of the underlying first-order mutants
is killed.

When considering the overall percentage for each class,

the mutants in categories HK-FS and HS-FK compensate the

TABLE I
LITTLEDARWIN MUTATION OPERATORS

N Example

Operator Description Before ‘ After
AOR-B Replaces a binary arithmetic operator a+b a—b
AOR-S Replaces a shortcut arithmetic operator ++a ——a
AOR-U Replaces a unary arithmetic operator —a +a
LOR Replaces a logical operator a&b alb
SOR Replaces a shift operator a>>b | a<<b
ROR Replaces a relational operator a>=b a<b
COR Replaces a binary conditional operator a&&b allb
COD Removes a unary conditional operator la a
SAOR Replaces a shortcut assignment operator | ax=0b | a/=b

effects of each other. Therefore, if there are the same number
of mutants in each of these categories, it is not visible in the
final mutation coverage. The model must take into account
these interactions among categories to correctly describe the
real behavior of higher-order mutants.

LittleDarwin

To perform our analysis, we modified the LittleDarWilﬂ
mutation testing tool previously used by Parsai et al. [26H28]]
to generate higher-order mutants. LittleDarwin creates mutants
by manipulating source code, and keeps the information about
generated mutants and the results of the analysis in a local
database, allowing to perform further analysis of the results.

In its current version, LittleDarwin supports mutation testing
of Java programs with a total of 9 mutation operators. These
mutation operators are an adaptation of the minimal set intro-
duced by Offutt et al. [23]. The description of each mutation
operator along with an example can be found in Table [I|
LittleDarwin constructs higher-order mutants by combining
two (or more) first-order mutants randomly at class-level. The
information regarding the underlying first-order mutants are
provided inside each higher-order mutant.

III. PROPOSED MODEL

In order to estimate the first-order mutation coverage from
the higher-order mutation coverage (mutation coverage calcu-
lated using higher-order mutants) we follow these steps:

o« We define a higher-order mutant as a combination of
multiple first-order mutants:

h:mlam27"'7m’n (1)

o We assume that the higher-order mutant is killed if and

only if at least one of the underlying first-order mutants
are killed (Expected category).
The probability of a mutant (P(mutant)) being killed
is defined as the likelihood of choosing a random mutant
with a killed status out of all mutants. The probability of a
higher-order mutant being killed (P(h)) can be calculated
from the probability of underlying first-order mutants
(P(m;)) in the following manner:

Zhttp://littledarwin.parsai.net/

1=P(h) = (1-P(m)) 2)

X (1 — P(ma|my))

x (1 = P(my|my, ma,...,mp_1))

This simply means that the probability of a higher-order
mutant being killed can be evaluated by an ordered
evaluation of the probabilities of underlying first-order
mutants being killed.

o After calculating the higher-order mutation coverage, we
assume all higher-order mutants have the same probabil-
ity of being killed equal to this mutation coverag

o For the sake of estimation, we assume all first-order mu-
tants have the same equal probability of being killed, and
this probability is equal to first-order mutation coverage.
We assume these probabilities to be independent from
each other.

P(m1) = P(m2lm1) = ... = P(mn|m1,me2, ..., mp—1)

To ease the calculation of mutation coverage, we simplify
Equation |3| using the above assumptions:

1—P(h) = (1= P(m))" 3)

Using Equation [3] we assume P(h) equals to the higher-
order mutation coverage, i.e. any selected higher-order mutant
from a set containing n% killed higher-order mutants is a
killed one with the probability of n%. From this equation,
we derive the value for P(m), which is the probability of a
single first-order mutant being killed, and we use this value as
our estimation for first-order mutation coverage (Equation [4).

Pim)=1-3/1—P(h) “)

Figure 2| shows an example of this model; circles denote
first-order mutants and rectangles are second-order mutants
created by combining two first-order mutants. Out of 10 first-
order mutants, 4 are killed, therefore the mutation coverage for
this example is equal to 40%. However, 3 out of 5 higher-order
mutants are killed, resulting in 60% coverage calculated using
higher-order mutants. Considering our model, we estimate the
first-order mutation coverage using Equation [4] as 37%.

IV. CASE STUDY DESIGN

In order to evaluate our model, we performed first-, second-,
third-, fourth-, fifth-, sixth-, and eighth-order mutation testing
on 17 different Java projects. For these projects, 20849 first-
order mutants were generated for a total of 1022 classes. In
this section, we first describe our cases, and then we discuss
how the study was performed.

3For example, imagine a bag of colored balls, in which 30% are red, and
70% are blue. Now if a ball is picked at random, there is a 30% probability
that this ball is red.

http://littledarwin.parsai.net/

80000

M «illed
D Survived

Higher-order mutation coverage: 60%
First-order mutation coverage: 40%
Estimated first-order mutation coverage: 37%

Fig. 2. Example of the estimation provided by the model

Cases

We selected 17 open-source projects for our empirical study
(Table . These projects are Joda Timeﬂ Apache Com-
mons Lanﬂ Apache Commons Codecﬂ AddThis Coded’]
Apache Commons CLI®| Apache Commons FileUpload’]
JSQLParsef %} IDepend | IGraphT?| JTerminal™| VRaptor]
PITes{”] HTTP Reques{'®} jsoug'’| Ling4J™] ScribeJavd'’}
and jOpt SimpleEGl

The selected projects differ in size of their production code,
test code, number of commits, and team size to provide a
wide range of possible scenarios. Moreover, they also differ
in adequacy of the test suite. based on statement, branch, and
mutation coverage (Table [[I). All selected projects are written
in Java, which is a widely used programming language in
industry [9]].

Model Evaluation

The accuracy of the model is affected by the accuracy
of P(m). This in turn depends on the number of mutants
generated for the class in question (10 mutants would result
in a probability with 0.1 accuracy, while 100 mutants improves
this to 0.01). We define a threshold ¢ as the number of
minimum generated mutants for a class, and we filter out
the classes with less than ¢ generated mutants. The higher
the threshold, the fewer the classes considered. This can be
seen in Figure |3] where the x axis is the threshold, and the
y axis is the number of remaining classes after applying the
threshold. In our experiment, we decided to evaluate how the
model behaves with different values of ¢ in order to find a value

4http://www.joda.org/joda-time/
Shttp://commons.apache.org/proper/commons-lang/
Ohttp://commons.apache.org/proper/commons-codec/
"http://github.com/addthis/codec
8http://commons.apache.org/proper/commons-cli/
9http://commons.apache.org/proper/commons-fileupload/
10https://github.com/JSQLParser/JSqlParser
http://www.clarkware.com/software/JDepend.html
Zhttp://jgrapht.org/,
Bhttps://grahamedgecombe.com/projects/jterminal
http://www.vraptor.org/

http://pitest.org/
19http://kevinsawicki.github.io/http-request/
Thttp://jsoup.org/
18http://www.hydromatic.net/ling4j
19https://github.com/scribejava/scribejava
20http://pholser.github.io/jopt-simple/

TABLE 11
PROJECTS SORTED BY MUTATION COVERAGE
. Size (LoC)

Project Ver. Prod. Tost #C TS | SC BC MC #M
ScribeJava 1.3.0 2002 1530 525 69 | 43% | 66% | 94.9% 59
Apache Commons CLI 1.3.1 | 2665 3768 816 15 1 96% | 93% | 942% | 342
JSQLParser 0.9.4 7342 5909 576 19 | 81% | 73% | 93.6% 488

jOpt Simple 4.8 1982 6084 297 14 199% | 97% | 91.7% | 206
Apache Commons Lang 34 24289 | 41758 | 4398 | 30 | 94% | 90% | 90.7% | 6014
Joda Time 2.8.1 | 28479 | 54645 | 1909 | 42 | 90% | 81% | 81.7% | 4870
Apache Commons Codec 1.10 6485 10782 | 1461 10 | 96% | 92% | 81.6% | 1976
VRaptor 3.5.5 | 14111 15496 | 3417 | 65 | 87% | 81% | 81.2% 589

HTTP Request 6.0 1391 2721 446 15 | 94% | 75% | 78.4% 227
Apache Commons FileUpload | 1.3.1 2408 1892 846 19 | 76% | 74% | 71.1% 354
jsoup 1.8.3 | 10295 4538 888 43 | 82% | 72% | 76.1% | 1219
JGraphT 0.9.1 [13822 | 8I80 [1150 | 31 [79% [73% | 69.4% [1356
AddThis Codec 33.0 3675 1342 249 4 69% | 63% | 64.7% 450
PITest 1.1.7 | 17244 [19005 | 1044 [19 [79% [73% [62.9% | 1070
JTerminal 1.0.1 687 250 8 2 66% | 56% | 60.0% 160
JDepend 2.9.1 | 2460 1053 18 2 | 59% | 52% | 59.0% | 239
Ling4J 0.4 14307 | 3979 205 7 | 33% | 66% | 46.2% | 1230

Acronyms: Version (Ver.), Line of code (LoC), Production code (Prod.),
Number of commits (#C), Team size (TS), Statement coverage (SC),

Branch coverage (BC), Mutation coverage (MC), Number of Mutants (#M)

Number of Remaining Classes
202 ‘0.
2299w % BB v %%

’ l "I'""""""""“"m||||||H||IIIIHIIIIIIHII|||||H|||||m||||||m|

V0D D gy A0 A o B R G D AR D B PP PP

)

Threshold

Fig. 3. Number of remaining classes after applying threshold ¢

that still keeps as many classes as possible, while filtering out
less accurate data.

The first goal of our work is to find a model that estimates
—as best as possible— the first-order mutation coverage using
higher-order mutants coverage. The second one is to create a
model able to justify the obtained estimation. For the first goal,
a simple polynomial regression analysis is used in order to find
the best fitting curve of the empirical data. The order of the
polynomial function influences the quality of the fitting: the
higher the order, the higher the chance that the curve (over)fits
the all points. However, to satisfy the second goal, we also
need to find a curve that describes the real behavior of the
empirical data. For this reason, we cannot use a polynomial
fitting curve of third or higher order. A polynomial curve of
third order has 1 (3 —2) inflections, namely there exist a range
of values where an increment of the first-order coverage leads
to a decrement of the second-order coverage. The latter event
cannot happen since it would imply that the more first-order
mutants are killed, the less higher-order mutant are killed. In
our experiment, we compare the best second order fitting curve

http://www.joda.org/joda-time/
http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-codec/
http://github.com/addthis/codec
http://commons.apache.org/proper/commons-cli/
http://commons.apache.org/proper/commons-fileupload/
https://github.com/JSQLParser/JSqlParser
http://www.clarkware.com/software/JDepend.html
http://jgrapht.org/
https://grahamedgecombe.com/projects/jterminal
http://www.vraptor.org/
http://pitest.org/
http://kevinsawicki.github.io/http-request/
http://jsoup.org/
http://www.hydromatic.net/linq4j
https://github.com/scribejava/scribejava
http://pholser.github.io/jopt-simple/

with the one provide by our model. This allows us to assess
how far our model is from the optimal estimation.

V. RESULTS AND DISCUSSION

In this section, for each research question, we first discuss
the motivation, then we explain our approach, and finally we
present our findings.

RQI. To what extent the second-order mutants can be used in
place of the first-order mutants for estimation purposes?

Motivation. We are interested to verify whether the higher-
order mutants can be used in place of the first-order mutants —
with negligible drawbacks— for the estimation of the quality
of the test suite. For the sake of clarity, this RQ analyzes the
model based only on second-order mutants. If with this order
the model performs poorly, then there would be no reason to
extend the analysis to higher orders. We want to verify the
applicability of the model, and for this reason, we inspect two
aspects:

o Estimation Accuracy. The second-order mutation cov-
erage overestimates the capabilities of the test suite,
i.e. second-order mutants are easier to kill compared
to first-order mutants. We need to empirically evaluate
the accuracy of the estimations based on second-order
mutation coverage.

o Soundness of the Model. Our model is based on the
assumption that second-order mutants are killed if and
only if at least one of the underlying first-order mutants
is killed. We need to verify if this assumption holds with
the empirical data.

For this reason, we break the first research question in two
parts:

a) How accurately can our model estimate the first-order

mutation coverage?
Approach. We validate our model using 17 open-source
projects. For all projects, we perform both first-order and
second-order mutation testing. Then, we verify how the thresh-
old ¢ of the generated mutants affects the estimations. To
evaluate the accuracy of the estimations, we calculate the
coefficient of determination (R?) between the results estimated
by our model, and the empirical data [7, p. 78].

We compare the curve predicted by our model with the
best fitting second-order curve obtained by using polynomial
regression analysis on the empirical data. From this compari-
son, we can evaluate how close is the curve proposed by the
model from the best possible one.

Findings. Figure [] shows the value of R? between esti-
mated results and empirical data for various values of the
threshold ¢. The estimations achieve an R? value 0.85 with a
threshold ¢ as low as 10. Using such threshold, the model can
still be applicable to 38.7% of the classes which account for
89.8% of the mutants. For higher thresholds, the R? value is
always higher than 0.85. These results show that the model can
provide a good accuracy in estimating the first-order mutation

1.00

0.85

R Squared

0.70
|

0.65

T T T T T
0 20 40 60 80 100 120

Threshold

Fig. 4. R2 between estimated results and empirical data for different thresh-
olds for second-order mutation. The red line denotes the chosen threshold,
and the green line shows the level of R? that the chosen threshold guaranties.

TABLE III
PARAMETERS OF THE ESTIMATED CURVE
[Parameter [Estimated Value | Standard Error | p-value |
20 0.005342 0.010109 0.598
xt 1.999221 0.037831 <2x10716
x2 -1.008797 0.032452 <2x 10716

coverage from the second-order mutation coverage. Yet, it
halves the computation time required.

Figure [5] shows the empirical data for ¢ = 10 and the
estimated curve. The blue dots denote a class with an x value
of first-order mutation coverage and a y value of second-order
mutation coverage. The red curve is the one predicted by our
model: y = —x2+42z. The curve determined by the regression
analysis is y = —1.008797z% + 1.999221x + 0.005342.
Table shows the p-value for each estimated parameter.
Considering the very low p-values calculated for each param-
eter, we can safely say that the trend of the empirical data
is well represented by the best fitting curve. As we can see,
the curve predicted by our model, and the one provided by the
regression analysis are very close in terms of coefficients. This
highlights that our model provides (almost) the best possible
estimations. The accuracy of the estimation, however, changes
according to the mutation coverage value. This is observed
especially for classes with a very high second-order mutation
coverage, in which there is less information available for the
model. At its extreme, when all the higher-order mutants are
killed, the model always estimates a 100% first-order coverage,
even tough some of the underlying first-order mutants might
survive.

1.0

0.6
|

Second-Order Mutation Coverage
0.4

0.2

0.0
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

First-Order Mutation Coverage

Fig. 5. Empirical data and the estimated curve for ¢ = 10. The red curve is
the estimation provided by the model, and each blue dot represents a class.

b) Is the modeled behavior of second-order mutants consis-

tent with the empirical data?
Approach. We categorize the second-order mutants into three
categories: Expected, HK-FS, and HS-FK. Then we compute
how many mutants are in each category. The higher the num-
ber in the Expected category, the better the model describes
the behavior of the second-order mutants.

Findings. Table [IV| shows the number of higher-order mu-
tants in each category for each project. Out of 10153 second-
order mutants generated for all projects, 10069 (99.17%) are
in the Expected category. This means that overall only 84
(0.83%) mutants are of unexpected status, of which 13 (0.13%)
mutants belong to the HK-FS category, and 71 (0.70%) mu-
tants belong to the HS-FK category. In total, 764 (91.28%) out
of 837 classes do not contain any HS-FK or HK-FS mutants.
In almost all projects the number of mutants in the Expected
category is higher than 97%. The only exception is given by
the project ScribeJava. By manually checking this case, we
found that the unexpected second-order mutants were created
in very small classes where the underlying first-order mutants
directly interact with each other. Overall, we see that the
modeled behavior applies to the vast majority of the second-
order mutants.

f)
Our model provides a good accuracy in estimating
the first-order mutation coverage based on second-

order mutation coverage. Moreover, it provides a

curve which is close to the best one fitting the empir-

ical data. Finally, the behavior of the vast majority

of the second-order mutants is modeled correctly.
- J

1.0

0.8

4 T imamnun) M 2nd
T M 3rd

M 4th
nam 1 1 imuaE O sth

t HH M sth

R Squared
0.6

0.4

0.2

0.0

T T T
0 20 40 60 80 100 120

Threshold

Fig. 6. R? between estimated results and empirical data for different
thresholds.

RQ?2. How does incrementing the order of mutation affect the
accuracy of the estimation provided by the model?

Motivation. RQ1 provides evidence of the soundness of
the model and shows that second-order mutants can be used
by the model to provide good estimations. In this RQ, we
are interested in extending this analysis to verify how the
higher orders of mutation affects the estimations. Taking into
account the trade-off between accuracy of the estimation and
computational time required, this RQ helps testers to decide
which order of mutation better fits their needs.

Approach. For all projects, we perform third-, fourth-,
fifth-, sixth-, and eighth-order mutation testing. Then, we
observe how the order of mutation affects the accuracy of the
estimations for various thresholds. We also verify whether the
model describes the real behavior by computing the number
of mutants in the Expected category for the aforementioned
orders of mutation.

Findings. Figure E] shows the computed R? between esti-
mated results and empirical data for various thresholds ¢ for
second, third, fourth, fifth, sixth and eighth orders of mutation.
In this figure, we observe that with the increment of the order
of mutation, the R? values decrease for any threshold. This can
be attributed to the fact that the higher the order of the mutant
is, the higher is the chance that at least one of the underlying
first-order mutants is killed. This means that increasing the
order of mutation makes the model less accurate. From the
figure we notice that the values of R? remain similar for the
second-order and the third-order within 2 < ¢ < 12. Whereas,
the values of R? for fourth and higher orders are visibly lower,
highlighting the limitation of proposed model.

As seen in Table the percentage of the mutants in the
Expected category generally increases along with the order of
mutation. This is in accordance to the results of the previous

44
38
231
38
714
8
23
24
556
16
33
26
7
128
74
2217

5

0
0
0
0

HK-FS | HS-FK | Total

Eighth-Order

Exp. (%)
42 (95.45%)
38 (100.0%)
231 (100.0%)
38 (100.0%)

123 (99.19%)

g
e
o
£
=
8

23 (100.0%)
3 (100.0%)

2209 (99.64%)

65
52
309
960
37
33
185
189
24
179
117
3089

0
0
13

0
3

0

HK-FS | HS-FK | Total

Sixth-Order

Exp. (%)
64 (98.46%)
52 (100.0%)
309 (100.0%)
66 (100.0%)
960 (100.0%)
37 (100.0%)
28 (84.85%)
182 (98.38%)
759 (100.0%)
24 (100.0%)
176 (98.32%)
114 (97.44%)
48 (97.96%)
3073 (99.48%)

80
1164
45
226
21
64
29
223
154
3781

0
15

HK-FS | HS-FK | Total
6

Fifth-Order

1164 (100.0%)
45 (100.0%)
42 (100.0%)
223 (98.67%)

919 (99,78
147 (9545%)

5 (100.0%)
61 (9531%)

Exp. (%)
79 (98.75%)
56 (100.0%)
29 (100.0%)
220 (98.65%)

3760 (99.44%)

100
84
1470
56
52
296
1170
37
286
204
92
4831

2
0
2
1
1
16

TABLE IV
NUMBER OF HIGHER-ORDER MUTANTS IN EACH CATEGORY FOR EACH PROJECT (¢ = 0, ALL MUTANTS INCLUDED)
0
0

HK-FS | HS-FK | Total
5

Fourth-Order

Exp. (%)
98 (98.0%)
84 (100.0%)

1468 (99.86%)
56 (100.0%)

52 (100.0%)

290 (97.97%)
1169 (99.91%)
285 (99.65%)
198 (97.06%)

9 (100.0%)
91 (98.91%)

141
115

1967

74

a4

56

392

387

298

T4l
6590 | 4810 (99.57%)

1580

1
5
22

3
0

10

HK-FS | HS-FK | Total

Third-Order

Exp. (%)
135 (95.74%)
110 (100%)
642 (100%)
115 (100%)
1966 (99.95%)
75 (100%)
73 (98.65%)
13 (100%)
140 (99.29%)
6459 (99.51%)

410 (99.03%)

291 (97.65%)

217
165
978
174
2983
13
114
653
2404
91
600
79
602
485
251
10153

0

7

13
12
6
71

1
13

HK-FS | HS-FK | Total

Second-Order

215 (99.08%)
164 (99.39%)
978 (100%)
174 (100%)
2976 (99.77%)
113 (100%)
111 (97.37%)
638 (97.10%)
594 (98.67%)
475 (97.94%)
20 (76.92%)
245 (97.61%)
10069 (99.17%)

Project
HTTP-Request
JDepend
JGraphT
jsoup
JSQL Parser
JTerminal
Linq4J
PITest
ScribeJava
VRaptor
Total

AddThis Codec
Apache Commons CLI
Apache Commons Codec
Apache Commons FileUpload
Apache Commons Lang

research [22| [31]] on coupling effect, confirming the fact that
the higher the order of mutation, the lesser the chance of
unexpected behavior. The same effect can symmetrically be
seen focusing on the decreasing number of mutants in the
categories HS-FK and HK-FS. For HS-FK, there is lesser
chance of survival for the higher-order mutant as the order of
mutation increases. For HK-FS, there is lesser chance that all
the underlying first-order mutants have survived when creating
higher-order mutants randomly.

The estimations of the model have an accuracy that
decreases with the increment of the order of mutation.
This decay is prominent from the fourth order of
mutation onwards.

VI. THREATS TO VALIDITY

To describe the threats to validity we refer to the guidelines
reported by Yin [32].

Threats to internal validity focus on confounding factors
that can influence the obtained results. This threat stems from
potential bugs hidden inside the algorithms used for creating
higher-order mutants or in LittleDarwin. We consider this
chance —even if possible— limited. The results of the ex-
periments are available, and several iterations of post-analysis
were performed to make sure of the correctness of the original
algorithms. In addition, the code of LittleDarwin has been
already checked and tested in several case studies [26H28]].

Threats to external validity refers to the generalizability
of our results. In our analysis we use only 17 open-source
projects. We mitigate this threat by using projects which differ
for number of contributors, size and adequacy of the test suite.
Yet, it is desirable to replicate this study using more projects,
especially the ones belonging to industrial settings. Another
threat to external validity arises from the overfitting of the
model to the data. Since our model is developed independent
of the subjects of the study, we believe this threat does not
apply.

Threats to construct validity are concerned with how accu-
rately the observations describe the phenomena of interest. In
our case, the techniques adopted to evaluate the accuracy of the
estimations are: (i) calculation of coefficient of determination
(R?) between the estimated results and empirical data, and (ii)
polynomial regression analysis. Both of these techniques are
well known, and they have been used in literature numerous
times for similar purposes. Another threat to construct validity
stems from the fact that the process of creating higher-
order mutants requires to combine several first-order mutants
selected at random within a class. Therefore, multiple analysis
would be needed to reduce the random effect. However, this
is not possible, since mutation testing is a time-consuming
procedure, and it is not possible to perform all experiments
several times. Using R? for a data set of 837 extracted classes
alleviates this issue to a certain extent by reducing the random
effect over the whole dataset. We also use multiple cut-off
thresholds to remove outliers from the dataset.

The quality of the mutants affects the results of our study
in two ways: First, existence of equivalent first-order mutants
reduces the accuracy of the first-order mutation coverage.
However, we did not filter for the equivalent mutants, since
when combined with a non-equivalent mutant, they do not
affect the status of the created higher-order mutant. In other
words, the higher-order mutant created from the combination
of a killed first-order mutant and an equivalent one is still
killed. The chance of a higher-order mutant consisting only out
of equivalent mutants decreases exponentially by the order of
mutatior@ Second, Amman et al. [[1] show that large portions
of first-order mutants are redundant for all practical purposes.
This means that without adequate filtering of the first-order
mutants, the resulting mutation coverage does not measure
the quality of the test-suite accurately. Since this threat affects
both first-order and second-order mutants, the extent of the
problem for our empirical validation remains unknown, and
requires further investigation.

VII. RELATED WORKS

Reduction of the number of mutants has been investigated
in the literature to reduce the computational cost of mutation
testing. Higher-order mutation is first introduced by Offutt in
1992 [22]] to investigate the coupling effect empirically. Jia and
Harman provide a technique to create “hard to kill” higher-
order mutants [[14f]. Polo et al. [29] and Papadakis et al. [25]]
evaluated second-order mutation testing by combining first-
order mutants using different algorithms and concluded that
second-order mutation testing reduces the effort significantly
while also reducing the number of equivalent mutants.

Differently from these studies, our study focuses on the
accuracy to the estimation of mutation coverage rather than
on the creation of hard to kill mutants. In contrast to previous
studies where such mutants were desirable, in our case they
represent a problem since they make the estimation of first-
order mutation coverage less accurate in our model (we assume
the faults behave as expected by the coupling effect when
combined). In this sense, our work is more geared towards
development environments that require an accurate metric to
quantify the quality of their test suites.

Kintis et al. [16] shows that using only disjoint second-
order mutants creates a more robust measure of test suite
effectiveness than first-order mutation coverage. Our model
can be used in combination with their method of creating
second-order mutants, however, an empirical evaluation of
such combination remains as future work.

There are several studies that attempt to validate the cou-
pling effect hypothesis both theoretically and empirically.
Offutt provided experiments in support of the hypothesis
showing that the vast majority of the higher-order mutants
are coupled to the first-order mutants [21} 22]]. Wah designed
a mathematical model to describe the behavior of the faults in
a program consisting only of functions [30, |31]]. He showed

2l Ror example, if 10% of the first-order mutants are equivalent, the chance
of a second-order mutant created by the combination of two equivalent
mutants is close to 1%.

that by increasing the order of the mutation, the number
of de-coupled mutants decrease. Our study agrees with the
aforementioned studies, as we show that the number of higher-
order mutants with unexpected behavior is very small, and
decreases when the order of mutation increases.

VIII. CONCLUSION

First-order mutation coverage is an effective metric to
evaluate the quality of the test suite. However, its adoption is
hindered due to the high computational time consumption. On
one hand, the adoption of higher-order mutants to evaluate the
quality of the test suite is a viable solution. On the other hand,
this approach provides less realistic estimations than the ones
obtained with first-order mutants. As a solution, we propose a
realistic model able to estimate first-order mutation coverage
based on higher-order mutation coverage. The benefits of this
model are that (i) we achieve a good accuracy in estimating
the first-order mutation coverage based on second- and third-
order mutation coverage, (ii) we halve the computational time
that would be required by first-order mutation testing (at
minimum). Moreover, the chance of existence of equivalent
mutants is less than first-order analysis, even though the model
does not explicitly consider them in its estimation. Finally, the
model correctly describes the real behavior of vast majority of
higher-order mutants.

ACKNOWLEDGMENTS

This work is sponsored by the Institute for the Promotion
of Innovation through Science and Technology in Flanders
through a project entitled Change-centric Quality Assurance
(CHAQ) with number 120028.

REFERENCES

[1] P. Ammann, M. E. Delamaro, and J. Offutt. “Estab-
lishing Theoretical Minimal Sets of Mutants”. In: 2074
IEEE Seventh International Conference on Software
Testing, Verification and Validation. 2014, pp. 21-30.

[2] J. Andrews, L. Briand, and Y. Labiche. “Is mutation
an appropriate tool for testing experiments? [software
testing]”. In: Software Engineering, 2005. ICSE 2005.
Proceedings. 27" International Conference on. May
2005, pp. 402-411.

[3] V. Basili. “Applying the Goal/Question/Metric paradigm
in the experience factory”. In: Software Quality Assur-
ance: A Worldwide Perspective. 1993.

[4] K. Beck. Test Driven Development: By Example.
Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[5] T. Budd. “Mutation Analysis of Program Test Data”.
AAI8025191. PhD thesis. New Haven, CT, USA: Yale
University, 1980.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints
on Test Data Selection: Help for the Practicing Pro-
grammer”. In: Computer 11.4 (Apr. 1978), pp. 34-41.

[7]1 B. Everitt. The Cambridge dictionary of statistics. 2. ed.
Cambridge [u.a.]: Cambridge Univ. Press, 2002, IX, 410
S.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Fowler. Continuous Integration. Tech. rep. http://
www.martinfowler.com/articles/continuousIntegration.
html. http://www.martinfowler.com/, May 2006.

V. Garousi and Z. Junji. “A survey of software test-
ing practices in Canada”. In: Journal of Systems and
Software 86.5 (2013), pp. 1354-1376.

B. Grun, D. Schuler, and A. Zeller. “The Impact of
Equivalent Mutants”. In: Software Testing, Verification
and Validation Workshops, 2009. ICSTW ’09. Interna-
tional Conference on. Apr. 2009, pp. 192-199.

R. Hamlet. “Testing Programs with the Aid of a Com-
piler”. In: Software Engineering, IEEE Transactions on
SE-3.4 (July 1977), pp. 279-290.

Y. Jia and M. Harman. “An Analysis and Survey of
the Development of Mutation Testing”. In: Software
Engineering, IEEE Transactions on 37.5 (Sept. 2011),
pp. 649-678.

Y. Jia and M. Harman. “Constructing Subtle Faults
Using Higher Order Mutation Testing”. In: Source Code
Analysis and Manipulation, 2008 Eighth IEEE Interna-
tional Working Conference on. Sept. 2008, pp. 249-258.
Y. Jia and M. Harman. “Higher Order Mutation
Testing”. In: Information and Software Technology
51.10 (2009). Source Code Analysis and Manipulation,
{SCAM} 2008, pp. 1379-1393.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R.
Holmes, and G. Fraser. Are Mutants a Valid Substitute
for Real Faults in Software Testing? Tech. rep. UW-
CSE-14-02-02. University of Washington, 2014.

M. Kintis, M. Papadakis, and N. Malevris. “Evalu-
ating Mutation Testing Alternatives: A Collateral Ex-
periment”. In: 2010 Asia Pacific Software Engineering
Conference. 2010, pp. 300-309.

M. Kintis, M. Papadakis, and N. Malevris. “Isolating
First Order Equivalent Mutants via Second Order Mu-
tation”. In: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on.
Apr. 2012, pp. 701-710.

L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala.
“Overcoming the Equivalent Mutant Problem: A Sys-
tematic Literature Review and a Comparative Exper-
iment of Second Order Mutation”. In: Software Engi-
neering, IEEE Transactions on 40.1 (Jan. 2014), pp. 23—
42.

J. D. McGregor. “Test early, test often”. In: Journal of
Object Technology 6.4 (May 2007). (column), pp. 7-14.
Q. V. Nguyen and L. Madeyski. “Advanced Computa-
tional Methods for Knowledge Engineering: Proceed-
ings of the 2nd International Conference on Computer
Science, Applied Mathematics and Applications (ICC-

SAMA 2014)”. In: ed. by T. Do, L. H. A. Thi, and
T. N. Nguyen. Cham: Springer International Publishing,
2014. Chap. Problems of Mutation Testing and Higher

Order Mutation Testing, pp. 157-172.
A. Offutt. “The Coupling Effect: Fact or Fiction”. In:

SIGSOFT Softw. Eng. Notes 14.8 (Nov. 1989), pp. 131—
140.

A. J. Offutt. “Investigations of the Software Testing
Coupling Effect”. In: ACM Trans. Softw. Eng. Methodol.
1.1 (Jan. 1992), pp. 5-20.

A. J. Offutt and J. M. Voas. Subsumption of condition
coverage techniques by mutation testing. Tech. rep.
George Mason University, 1996.

A. Offutt and R. Untch. “Mutation 2000: Uniting the
Orthogonal”. English. In: Mutation Testing for the New
Century. Ed. by W. Wong. Vol. 24. The Springer
International Series on Advances in Database Systems.
Springer US, 2001, pp. 34-44.

M. Papadakis and N. Malevris. “An Empirical Evalu-
ation of the First and Second Order Mutation Testing
Strategies”. In: Proceedings of the 2010 Third Interna-
tional Conference on Software Testing, Verification, and
Validation Workshops. ICSTW ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 90-99.

A. Parsai, A. Murgia, Q. D. Soetens, and S. Demeyer.
“Mutation Testing As a Safety Net for Test Code
Refactoring”. In: Scientific Workshop Proceedings of the
XP2015. XP ’15 workshops. Helsinki, Finland: ACM,
2015, 8:1-8:7.

A. Parsai, Q. D. Soetens, and S. Demeyer. “Mutation
Analysis: An Industrial Experiment”. MA thesis. Uni-
versity of Antwerp, 2015.

A. Parsai, A. Murgia, and S. Demeyer. “Evaluating
Random Mutant Selection at Class-level in Projects with
Non-adequate Test Suites”. In: Proceedings of the 20th
International Conference on Evaluation and Assessment
in Software Engineering. EASE ’16. Limerick, Ireland:
ACM, 2016, 11:1-11:10.

M. Polo, M. Piattini, and I. Garcia-Rodriguez. “De-
creasing the Cost of Mutation Testing with Second-
order Mutants”. In: Softw. Test. Verif. Reliab. 19.2 (June
2009), pp. 111-131.

K. S. H. T. Wah. “A theoretical study of fault coupling”.
In: Software Testing, Verification and Reliability 10.1
(2000), pp. 3-45.

K. H. T. Wah. “An analysis of the coupling effect I:
single test data”. In: Science of Computer Programming
48.23 (2003), pp. 119-161.

R. K. Yin. Case Study Research: Design and Methods.
Applied Social Research Methods. SAGE Publications,
2003.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/

	I Introduction
	II Background
	III Proposed Model
	IV Case Study Design
	V Results and Discussion
	VI Threats to Validity
	VII Related Works
	VIII Conclusion

