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Abstract—Nowadays, web services play a major role in the
development of enterprise applications. Many such applications
are now developed using a service-oriented architecture (SOA),
where microservices is one of its most popular kind. A RESTful
web service will provide data via an API over the network using
HTTP, possibly interacting with databases and other web services.
Testing a RESTful API poses challenges, as inputs/outputs
are sequences of HTTP requests/responses to a remote server.
Many approaches in the literature do black-box testing, as the
tested API is a remote service whose code is not available. In
this paper, we consider testing from the point of view of the
developers, which do have full access to the code that they
are writing. Therefore, we propose a fully automated white-box
testing approach, where test cases are automatically generated
using an evolutionary algorithm. Tests are rewarded based on
code coverage and fault finding metrics. We implemented our
technique in a tool called EVOMASTER, which is open-source.
Experiments on two open-source, yet non-trivial RESTful services
and an industrial one, do show that our novel technique did
automatically find 38 real bugs in those applications. However,
obtained code coverage is lower than the one achieved by the
manually written test suites already existing in those services.
Research directions on how to further improve such approach
are therefore discussed.

Keywords: REST, SBSE, SBST, SOA, Microservice, Web Ser-
vice, Test Generation

I. INTRODUCTION

Service-Oriented Architectures (SOA), and in particular

Microservice Architectures [1], are the common practice when

building enterprise applications. The market value for SOA

services was $5.7 billions in 2013, where the market leaders

are companies like IBM, Microsoft, Oracle and SAP. Such

market is estimated to reach $16 billions by 20201. Currently,

REST [2] is the most common way to build web services used

in enterprise systems.

Besides being used internally in many enterprise applica-

tions, there are many RESTful web services available on the

Internet. Websites like ProgrammableWeb2 currently list more

than 16 thousand Web APIs. In the Java ecosystem, based on

a survey 3 of 1700 engineers, better REST support (together

with HTTP/2 support) was voted as the most desired feature in

the next version of Java Enterprise Edition (at that time, JEE 8).

This is because, according to that survey, “The current practice

of cloud development in Java is largely based on REST and

asynchrony”.

1http://www.radiantinsights.com/research/services-oriented-architecture-soa
2https://www.programmableweb.com/api-research
3http://www.infoworld.com/article/3153148/java/oracle-survey-java-ee-

users-want-rest-http2.html

Testing web services, and in particular RESTful web ser-

vices, does pose many challenges [3], [4]. Different techniques

have been proposed, especially to handle the complexity

of service orchestration, and black-box testing of external

services. Most of the work so far has been concentrating on

SOAP web services. SOAP is a well defined protocol based

on XML. However, most enterprises nowadays are shifting

to REST services, which usually employ JSON (JavaScript

Object Notation) as data format for the message payloads.

Furthermore, there is not much research on white-box testing

of web services, as that requires having access to the source

code of those services.

In this paper, we propose a novel approach that can automat-

ically generate integration tests for RESTful web services. Our

technique has two main goals: maximising code coverage (e.g.,

statement coverage), and finding faults using the HTTP return

statuses as an automated oracle. We aim at testing RESTful

services in isolation, which is the typical type of testing done

directly by the engineers while developing those services. To

generate the tests, we employ an evolutionary algorithm, in

particular a Genetic Algorithm using the Whole Test Suite

approach [5].

We implemented a tool prototype called EVOMASTER,

and carried out experiments on three different RESTful web

services. Two are open-source, whereas the third was provided

by one of our industrial partners. Those systems range from

2 to 10 thousand lines of code. Results of our experiments

show that our novel technique did automatically find 38 real

faults in these systems. However, code coverage results are

relatively low compared to the coverage obtained by the

existing, manually written tests. This is due mainly to the

presence of string constraints and interactions with databases

and external web services. Further research will be needed to

address these issues to improve performance even further.

In particular, this paper provides the following research and

engineering contributions:

• We designed a novel technique that is able to generate

effective tests cases for RESTful web services.

• We propose a method to automatically analyse, export

and exploit white-box information of these web services

to improve the generation of test data.

• We presented an empirical study on non-trivial software

which shows that, even if our tool is in a early prototype

stage, it can automatically find 38 real faults in those

RESTful web services.

http://arxiv.org/abs/1901.01538v1


• To enable replicability of our results, tool comparisons

and reuse of our algorithm implementations, we released

our tool prototype under the open-source LGPL license,

and provided it on the public hosting repository GitHub4.

II. BACKGROUND

A. HTTP

The Hypertext Transfer Protocol (HTTP) is an application

protocol for communications over a network. HTTP is the

main protocol of communication on the World Wide Web. The

HTTP protocol is defined in a series of Requests for Comments

(RFC) documents maintained by Internet Engineering Task

Force (IETF) and the World Wide Web Consortium (W3C),

like for example RFC 72305 and RFC 72316.

An HTTP message is usually sent over TCP, and is com-

posed of four main components:

Verb/Method: the type of operation to do, like getting a

specific web page.

Resource path: an identifier to specify on which resource the

HTTP operation should be applied, like for example the

path of an HTML document to get.

Headers: extra metadata, expressed as a list of key/value

pairs. An example of metadata is the accept header, which

is used to specify the format (e.g., HTML, XML or JSON)

in which the resource should be returned (a resource

could be available in different formats).

Body: the payload of the message, like the HTML text of a

web page that is returned as response to a get request.

The HTTP protocol allows the following operations (i.e.,

verbs/methods) on the exposed resources:

GET: the specified resource should be returned in the body

part of the response.

HEAD: like GET, but the payload of the requested resource

should not be returned. This is useful if one only needs

to check if a resource exists, or if he just needs to get its

headers.

POST: send data to the server, e.g., the text values in a web

form. Often, this method is the one used to specify that

a new resource should be created on the server.

DELETE: delete the specified resource.

PUT: replace the specified resource with a new one, provided

in the payload of the request.

PATCH: do a partial update on the given resource. This is in

contrast with PUT, where the resource is fully replaced

with a new one.

TRACE: echo the received request. This is useful to find

out if a given HTTP request has been modified by

intermediates (e.g., proxies) between the client and the

server.

OPTIONS: list all available HTTP operations on the given

resource. For example, it could be possible to GET a

HTML file, but not DELETE it.

4https://github.com/arcuri82/EvoMaster
5https://tools.ietf.org/html/rfc7230
6https://tools.ietf.org/html/rfc7231

CONNECT: establish a tunneling connection through an

HTTP proxy, usually needed for encrypted communica-

tions.

When a client sends an HTTP request, the server will send

back an HTTP response with headers and possibly a payload

in the body. Furthermore, the response will also contain a

numeric, three digit status code. There are five groups/families

of codes, specified by the first digit:

1xx: used for provisional responses, like confirming the

switching of protocol (101) or that a previous, conditional

request in which only the headers were sent should

continue to send the body as well (100).

2xx: returned if the request was handled successfully (200).

The server could for example further specify that a new

resource was created (201), e.g., as a result of a POST

command, or that nothing is expected in the response

body (204), e.g., as a result of a DELETE command.

3xx: those codes are used for redirection, e.g., to tell the

client that the requested resource is now available at a

different location. The redirection could be just temporary

(307) or permanent (301).

4xx: used to specify that the user request was invalid (400).

A typical case is requesting a resource that does not exist

(404), or trying to access a protected resource without

being authenticated (401) or authorized (403).

5xx: returned if the server cannot provide a valid response

(500). A typical case is if the code of the business logic

has a bug, and an exception is thrown during the request

processing, which is then caught by the application server

(i.e., the whole server is not going to crash if an exception

is thrown). However, this kind of code could also be

returned if the needed external services (e.g., a database)

are not responding correctly. For example, if the hardrive

of a database breaks, a server could still be able to

respond with a 500 code HTTP, even though it cannot

use the database.

The HTTP protocol is stateless: each incoming request

needs to provide all the information needed to be processed, as

the HTTP protocol does not store any previous information. To

maintain state for a user doing several related HTTP requests

(e.g., think about a shopping cart), then cookies need to be

employed: those are just HTTP headers with a unique id

created by the server to recognize a given user. The user will

need to include such header in all of his HTTP requests.

B. REST

For many years, the main way to write a web service

was to use SOAP (Simple Object Access Protocol), which is

a communication protocol using XML enveloped messages.

However, in recent years, there has been a clear shift in

industry toward REST (Representational State Transfer) when

developing web services. All major players are now using



REST, like for example Google7, Amazon8, Twitter9, Reddit10,

LinkedIn11, etc.
The concepts of REST were first introduced in a highly

influential (nearly 6000 citations so far) PhD thesis [2] in 2000.

REST is not a protocol (like SOAP is), but rather a set of

architectural guidelines on building web services on top of

HTTP. Such client-server applications needs to satisfy some

constraints to be considered RESTful, like being stateless and

the resources should explicitly state if they are cacheable or

not. Furthermore, resources should be identified with a URI.

The representation of a resource (JSON or XML) sent to the

client is independent from the actual format of the resource

(e.g., a row in a relational database). These resources should be

managed via the appropriate HTTP methods, e.g., a resource

should be deleted with a DELETE request and not a POST

one.
Let us consider an example of a RESTful web service

that provides access to a product catalog. Possible available

operations could be:

GET /products (return all available products)

GET /products?k=v (return all available products filtered by

some custom parameters)

POST /products (create a new product)

GET /products/{id} (return the product with the given id)

GET /products/{id}/price (return the price of a specific prod-

uct with a given id)

DELETE /products/{id} (delete the product with the given

id)

Note that those URIs do not specify the format of the

representation returned. For example, a server could provide

the same resource in different formats, like XML or JSON,

and that should be specified in the headers of the request.
Another aspect of REST is the so called HATEOAS (Hy-

permedia As The Engine Of Application State), where each

resource representation should also provide links to other

resources (in a similar way as links in web pages). For

example, when calling a GET /products, not only all products

should be returned, but also there should be links to what

other methods are available. Ideally, given the main entry point

of an API, such API should be fully discoverable by using

those links. However, the use of HATEOS is quite rare in

practice [6], mainly due to the lack of a proper standard on

how links should be defined (e.g., a JSON or XML schema),

and the extra burden that it would entail on the clients.
Note: as REST is not a protocol, but just a set of archi-

tectural guidelines [2], the ubiquitous term “REST” has often

been misused in practice. Many Web APIs over HTTP have

been called and marketed as REST, although strictly speaking

they cannot be considered as fully REST [6], [2]. Although

in this paper we use the term REST, the presented novel

technique would work as well to any Web API which is

7https://developers.google.com/drive/v2/reference/
8http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
9https://dev.twitter.com/rest/public
10https://www.reddit.com/dev/api/
11https://developer.linkedin.com/docs/rest-api

accessed via HTTP endpoints, and where the payload data

is expressed in a language like JSON or XML.

C. Search-Based Software Testing

Test data generation is a complex task, as software can

be arbitrarily complex. Furthermore, many developers find it

tedious to write test cases. Therefore, there has been a lot

of research on how to automate the generation of high quality

test cases. One of the easiest approach is to generate test cases

at random [7]. Although it can be effective in some contexts,

random testing is not a particularly effective testing strategy,

as it might cover just small parts of the tested software. For

example, it would not make much sense to use a naive random

testing strategy on a RESTful API, as it would be extremely

unlikely that a random string would result in a valid, well-

formed HTTP message.
Among the different techniques proposed throughout the

years, search-based software engineering has been particularly

effective at solving many different kinds of software engi-

neering problems [8], in particular software testing [9], with

advanced tools for unit test generation like EvoSuite12 [10],

[11]. Software testing can be modeled as an optimization

problem, where one wants to maximize the code coverage

and fault detection of the generated test suites. Then, once a

fitness function is defined for a given testing problem, a search

algorithm can be employed to explore the space of all possible

solutions (test cases in this context).

There are several kinds of search algorithms, where Genetic

Algorithms (GAs) are perhaps the most famous. In a GA, a

population of individuals is evolved for several generations.

Individuals are selected for reproduction based on their fitness

value, and then go through a crossover operator (mixing the

material of both parents) and mutations (small changes) when

sampling new offspring. The evolution ends either when an

optimal individual is evolved, or the search has run out of the

allotted time.

III. RELATED WORK

Canfora and Di Penta provided a discussion on the trends

and challenges of SOA testing [12]. Afterwards, they provided

a more in detail survey [3]. There are different kinds of testing

for SOA (unit, integration, regression, robustness, etc.), which

also depend on which stakeholders are involved, e.g., service

developers, service providers, service integrators and third-

party certifiers. Also Bertolino et al. [13] discussed the trends

and challenges in SOA validation and verification.
Successively, Bozkurt et al. [4] carried out a survey as well

on SOA testing, in which 177 papers were analysed. One of the

interesting results of this survey is that, although the number

of papers on SOA testing has been increasing throughout the

years, only 11% of those papers provide any empirical study

on actual, real systems. In 71% of the cases, no experimental

result at all was provided, not even on toy case studies.
A lot of the work in the literature has been focusing on

black-box testing of SOAP web services described with WSDL

12https://github.com/EvoSuite/evosuite



(Web Services Description Language). Different strategies

have been proposed, like for example [14], [15], [16], [17],

[18], [19]. If those services also provide a semantic model

(e.g., in OWL-S format), that can be exploited to create more

“realistic” test data [20]. When in SOAs the service com-

positions are described with BPEL (Web Services Business

Process Execution Language), different techniques can be used

to generate tests for those compositions [21], [22]

Black-box testing has its advantages, but also its limitations.

Coverage measures could improve the generation of tests but,

often, web services are remote and there is no access to

their source code. For testing purposes, Bartolini et al. [23]

proposed an approach in which feedback on code coverage is

provided as a service, without exposing the internal details of

the tested web services. However, the insertion of the code

coverage probes had to be done manually. A similar approach

has been developed by Ye and Jacobsen [24]. In our approach

in this paper, we do provide as well code coverage as a service,

but our approach is fully automated (e.g., based on on-the-fly

bytecode manipulation).

Regarding RESTful web services, Chakrabarti and Ku-

mar [25] provided a testing framework in which “automatic

generation test cases corresponding to an exhaustive list of

all valid combinations of query parameter values”. Seijas et

al. [26] proposed a technique to generate tests for REST-

ful API based on an idealised, property-based test model.

Chakrabarti and Rodriquez [27] defined a technique to formal-

ize the “connectedness” of a RESTful service, and generate

tests based on such model. When formal models are available,

techniques like in [28] and in [29] can be used as well. Our

technique is significantly different from those approaches, as it

does not need the presence of any formal model, can automat-

ically exploit white-box information, and uses an evolutionary

algorithm to guide the generation of effective tests.

Regarding the usage of evolutionary techniques for testing

web services, Di Penta et al. [30] proposed an approach for

testing Service Level Agreements (SLA). Given an API in

which a contract is formally defined stating “for example,

that the service provider guarantees to the service consumer a

response time less than 30 ms and a resolution greater or equal

to 300 dpi”, an evolutionary algorithm is used to generate tests

to break those SLAs. The fitness function is based on how far

a test is from breaking the tested SLA, which can be measured

after its execution.

IV. PROPOSED APPROACH

In this paper, we propose a novel approach to automatically

generate test cases for RESTful API web services. We consider

the testing of a RESTful service in isolation, and not as part

of an orchestration of two or more services working together

(e.g., like in a microservice architecture). We consider the case

in which our approach to automatically generate test cases is

used directly by the developers of such RESTful services. As

such, we assume the availability of the source code of these

developed services. The goal is to generate test cases with

high code coverage and that can detect faults in the current

implementation of those services. We hence need to define

how a test case looks like, what can be used as an automated

oracle (needed to check for faulty behaviours), and how a

search algorithm can be used to generate such tests.

A. Test Case

In our context, a test case is one or more HTTP requests

towards a RESTful service. The test data can hence be seen

as a string, representing the HTTP request. However, besides

the given structure of a HTTP request (e.g., headers and

parameters in the resource paths), such test data can be

arbitrarily complex. For example, the content in the body

section could be in any format. As currently JSON is the main

format of communication in RESTful APIs, in this paper we

will focus just on such format. Handling other less popular

formats, like for example XML, would be just a matter of

engineering effort.

At any rate, before being able to make an HTTP request,

we need to know what API methods are available. In contrast

to SOAP, which is a well defined protocol, REST does not

have a standard to define the available APIs. However, a very

popular tool for REST documentation is Swagger13, which is

currently available for more than 25 different programming

languages. Another tool is RAML14, but it is less popular.

When a RESTful API is configured with Swagger, it will

automatically provide a JSON file as a resource that will

fully define which APIs are available in that RESTful service.

Therefore, the first step, when testing such RESTful service,

is to retrieve such Swagger JSON definition.

Figure 1 shows an extract from a Swagger definition of

one of the systems we will use in the empirical study. The

full JSON file is more than 2000 lines of code. In that figure,

there is the definition for two HTTP operations (GET and

PUT) on the same resource. To execute a GET operation

on such resource, there is the need of two values: a nu-

meric “id” which will be part of the resource path, and an

optional query parameter called “attrs”. For example, given

the template /v1/activities/{id}, one could make a request for

/v1/activities/5?attrs=x.

The PUT operation needs as well an “id” value, but not the

optional parameter “attrs”. However, in its HTTP body, it can

have a JSON representation of the resource to replace, which

is called “ActivityProperties” in this case. Figure 2 shows such

object definition. This object has many fields of different types,

like numeric (e.g., “id”), strings (e.g., “name”), dates (e.g.,

“date published”), arrays (e.g., “tags”) and other objects as

well (e.g., “author”). When a test case is written for such PUT

operation, besides specifying an “id” in the path, one would

also need to instantiate such “ActivityProperties” object, and

marshall it as a JSON string to add in the body of the HTTP

request.



Fig. 1. Swagger JSON definition of two operations (GET and PUT) on the
/v1/activities/{id} resource.

"/v1/activities/{id}": {

"get": {

"tags": [

"activities"

],

"summary": "Read a specific activity",

"description": "",

"operationId": "get",

"produces": [

"application/json"

],

"parameters": [

{

"name": "id",

"in": "path",

"required": true,

"type": "integer",

"format": "int64"

},

{

"name": "attrs",

"in": "query",

"description": "The attributes to include in

the response. Comma-separated list.",

"required": false,

"type": "string"

}

],

"responses": {

"default": {

"description": "successful operation"

}

}

},

"put": {

"tags": [

"activities"

],

"summary": "Update an activity with new information

. Activity properties not specified in the request will

be cleared.",

"description": "",

"operationId": "update",

"produces": [

"application/json"

],

"parameters": [

{

"name": "id",

"in": "path",

"required": true,

"type": "integer",

"format": "int64"

},

{

"in": "body",

"name": "body",

"required": false,

"schema": {

"$ref": "#/definitions/ActivityProperties"

}

}

],

"responses": {

"200": {

"description": "successful operation",

"schema": {

"$ref": "#/definitions/Activity"

}

}

}

}

Fig. 2. Swagger JSON definition of a complex object type.

"ActivityProperties": {

"type": "object",

"properties": {

"id": {

"type": "integer", "format": "int64"},

"name": {

"type": "string",

"minLength": 0, "maxLength": 100 },

"date_published": {

"type": "string", "format": "date-time"},

"date_created": {

"type": "string", "format": "date-time"},

"date_updated": {

"type": "string", "format": "date-time"},

"description_material": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"description_introduction": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"description_prepare": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"description_main": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"description_safety": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"description_notes": {

"type": "string",

"minLength": 0, "maxLength": 20000},

"age_min": {

"type": "integer", "format": "int32",

"maximum": 100.0},

"age_max": {

"type": "integer", "format": "int32",

"maximum": 100.0},

"participants_min": {

"type": "integer", "format": "int32"},

"participants_max": {

"type": "integer", "format": "int32"},

"time_min": {

"type": "integer", "format": "int32"},

"time_max": {

"type": "integer", "format": "int32"},

"featured": {

"type": "boolean", "default": false},

"source": {

"type": "string"},

"tags": {

"type": "array",

"xml": {"name": "tag", "wrapped": true},

"items": {"$ref": "#/definitions/Tag"}},

"media_files": {

"type": "array",

"xml": {"name": "mediaFile", "wrapped": true},

"items": {"$ref": "#/definitions/MediaFile"}},

"author": {"$ref": "#/definitions/User"},

"activity": {"$ref": "#/definitions/Activity"}

}

}

B. Oracle

When automatically generating test cases with a white-

box approach, like for example trying to maximize statement

coverage, there is the problem of what to use as an automated

oracle [31]. An oracle can be consider as a function that tells

whether the result of a test case is correct or not. In manual

testing, the developers decide what should be the expected

result for a given test case, and write such expectation as an

13http://swagger.io
14http://raml.org



Fig. 3. An example (in Java, using DropWizard) of endpoint definition
to handle a GET request, where requesting a missing resource, instead of
resulting in a 404 code, does lead to a 500 code due to a null pointer exception.

@GET @Timed

@Path("{id}/file")

@Produces(MediaType.APPLICATION_OCTET_STREAM)

@UnitOfWork

@ApiOperation(value = "Download media file. Can resize " +

"images (but images will never be enlarged).")

public Response downloadFile(

@PathParam("id") long id,

@ApiParam(value = "" +

"The maximum width/height of returned images. " +

"The specified value will be rounded up to the " +

"next ’power of 2’, e.g. 256, 512, 1024 and so on.")

@QueryParam("size") int size)

{

MediaFile mediaFile = dao.read(id);

try {

URI sourceURI = new URI(mediaFile.getUri());

...

} catch (IOException e) {

...

}

...

assertion check directly in the test cases. In automated test

generation, where many hundreds if not thousands of test cases

are generated, asking the developers to write such assertions

is not really a viable option.

There is no simple solution for the oracle problem, just

different approaches with different degrees of success and

limitations [31]. In system-level testing, the most obvious

automated oracle is to check if the whole system under test

does crash (e.g., a segmentation fault in C programs) when

a test is executed. Such test case would have detected a bug

in the software, but not all bugs lead to a complete crash of

an application (likely, just a small minority of bugs are of

this kind). Another approach is to use formal specifications

(e.g., pre/post conditions) as automated oracles, but those are

seldom used in practice.

In unit testing, one can look at thrown exceptions in the

tested classes/methods [32]. However, one major problem here

is that, often, thrown exceptions are not a symptom of a bug,

but rather a violation of an unspecified pre-condition (e.g.,

inserting a null input when the target function is not supposed

to work on null inputs).

Even if no automated oracle is available, generated tests

are still useful for regression testing. For example, if a tested

function foo takes as input an integer value, and then returns

an integer as result of the computation, then an automatically

generated test could capture the current behavior of the func-

tion in an assertion, for example:

int x = 5;

int res = foo(x);

assertEquals(9, res);

Now, a test generation tool could choose to create a test with

input value x = 5, but it would not be able to tell if the

expected output should really be 9 (which is the actual value

returned when calling foo(x)). A developer could look at such

generated test, and then confirm if indeed 9 is the expected

output. But, even if he doesn’t check it, such test could be

added to the current set of test cases, and then run at each

new code change as part of a Continuous Integration process

(e.g., Jenkins15). If a modification to the source code leads foo
to return a different values than 9 when called with input 5,

then that test case will fail. At this point, the developers would

need to check if indeed the recently introduced change does

break the function (i.e., it is a bug), or rather if the semantics

of that function has changed.

In the case of test cases for RESTful APIs, the generated

tests can be used for regression testing as well. This is

also particularly useful for security: for example, a HTTP

invocation in which the returned status is 403 (unauthorized)

can detect regression faults in which the authorization check

are wrongly relaxed. Furthermore, the status codes can be used

as automated oracles. A 4xx code does not mean a bug in the

RESTful web service, but a 5xx can. If the environment (e.g.,

databases) of the tested web service is working correctly, then

a 5xx status code would often mean a bug in such service. A

typical example is thrown exceptions: the application server

will not crash if an exception is thrown in the business logic

of a RESTful endpoint. Such exception would be caught, and

a 5xx code (e.g., 500) would be returned. Note: if the user

sends invalid inputs, he should get back a 4xx code, not a

5xx one. Not doing input validation and letting the endpoint

throwing an exception would have two main problems:

• the user would not know that it is his fault, and so just

think it is a bug in the web service. Inside an organisation,

such developer might end up wasting time in filling a bug

report, for example. Furthermore, the 5xx code would not

give him any hint on how to fix how he is calling the

RESTful API.

• the RESTful endpoint might do a sequence of operations

on external resources (e.g., databases and other web

services) that might require to be atomic. If an exception

is thrown due to a bug after some, but not all, of those

operations are completed, the environment might be left

in a inconsistent state, making the entire system working

incorrectly.

Figure 3 shows a simple example of endpoint definition

which contains bugs. This code is from one of the projects

used in the empirical study. In that particular case, a resource

(a media file) is referenced by id in the endpoint path (i.e.,

@Path(“{id}/file”)). Such id is used to load such resource

from a database (i.e., dao.read(id)), but there is no check if it

exists (e.g., if different from null). Therefore, when a test is

created with an invalid id, the statement mediaFile.getUri()

does result in a null pointer exception. Such exception is

propagated to the application server (Jetty, in this case), which

will create a HTTP response with status 500. The expected,

correct result here should had been a 404 (not found) code.

C. Code Instrumentation

To generate high coverage test cases, coverage itself needs

to be measured. Otherwise, it would not be possible to check

15https://jenkins.io



if a test has higher coverage than another one. So, when the

system under test (SUT) is started, it needs to be instrumented

to collect code coverage metrics. How to do it will depend on

the programming language. In this paper, for our prototype,

we started by focusing on Java.

Coverage metrics can be collected by automatically adding

probes in the SUT. This is achieved by instantiating a Java

Agent that intercepts all class loadings, and then add probes

directly in the bytecode of the SUT classes. This process can

be fully automated by using libraries like ea-agent-loader16

(for Java Agent handling) and ASM17 (for bytecode manipula-

tion). Such an approach is the same used in unit test generation

tools for Java like EvoSuite [10].

Measuring coverage is not enough. Knowing that a test

case cover 10% of the code does not tell us how more

code could be covered. Often, code is not covered because

it is inside blocks guarded by if statements with complex

predicates. Random input data is unlikely to be able to solve

the constraints in such complex predicates. This is a very well

known problem in search-based unit testing [33]. A solution to

address this problem is to define heuristics that measure how

far a test data is to solve a constraint. For example, given

the constraint x == 0, although neither 5 nor 1000 does

solve such constraint, the value 5 is heuristically closer than

1000 to solve it. The most famous heuristic in the literature is

the so called branch distance [34], [33]. In our approach, we

use the same kind of branch distance used in unit testing, by

automatically instrumenting the boolean predicates when the

bytecode of a class is loaded for the first time (same way as

for the code coverage probes).

Even if one can measure code coverage and branch distances

by using bytecode manipulation (e.g., for JVM languages),

there is still the question of how to retrieve such values. In

unit testing, a test data generation tool would run in the same

process of where the tests are evaluated, and so such values

could be directly read. It would be possible to do the same

for system testing: the testing tool and the SUT could run

in the same process, e.g., the same JVM. However, such an

approach is not optimal, as it would limit the applicability of

a test data generation tool to only RESTful services written

in the same language. Furthermore, there could be third-party

library version conflicts between the testing tool and the SUT.

As the test cases would be independent of the language in

which a RESTful API is written (as they are just HTTP calls),

focusing on a single language is an unnecessary limitation.

Our solution is to have the testing tool and the SUT running

in different processes. For when the SUT is run, we provide

a library with functionalities to automatically instrument the

SUT code. Furthermore, the library itself would automatically

provide a RESTful API to export all the coverage and branch

distance information in a JSON format. The testing tool, when

generating and running tests, would use such API to determine

the fitness of these tests. The testing tool would be just one,

16https://github.com/electronicarts/ea-agent-loader
17http://asm.ow2.org/

but, then, for each target programming language (e.g., Java, C#

and JavaScript) we would just need its library implementation

for the code instrumentation.

Such an approach would not work well with unit testing:

the overhead of an HTTP call to an external process would be

simply too great compared to the cost of running a unit test. On

the other hand, in system-level testing, an entire application (a

RESTful web service in our case) runs at each test execution.

Although non-zero, such overhead would be more manageable,

especially when the SUT itself has complex logic and interacts

with external services (e.g., a database).

Although the overhead of instrumentation is more manage-

able, it still needs to be kept under control. In particular, in

our approach we consider the two following optimizations:

• when the SUT starts, the developer has to specify which

packages to instrument. Instrumenting all the classes

loaded when the SUT starts would be far too inefficient.

For example, there is no point in collecting code cover-

age metrics on third-party libraries, like the application

servers (e.g., Jetty or Tomcat), or ORM libraries like

Hibernate.

• by default, when querying the SUT for code coverage

and branch distance information, not all information is

retrieved: only the one of newly covered targets, or better

branch distance, is returned. The reason is that, if the

SUT is 100 thousand lines of code, then you do not want

to un/marshal JSON data with 100 thousand elements

at each single test execution. The testing tool will ask

explicitly for which testing targets it needs information

for. For example, if a target is fully covered with an

existing test, there is no point in collecting info for that

target when generating new tests aimed at covering the

other remaining targets.

D. Search Algorithm

Given a way to define a test case, run it, and collect metrics

on its performance (e.g., code coverage and branch distances),

then we could use any search algorithm. In our approach, we

evaluate the use of a Genetic Algorithm (GA) to generate test

cases.

The final output of our technique is a test suite, which is

a collection of test cases. Each test case will cover one or

more testing targets. In our case, we consider two types of

testing targets: (1) coverage of statements in the SUT; and (2)

returned HTTP status codes for the different API endpoints

(i.e., we want to cover not only the happy day scenarios like

2xx, but also user errors and server errors, regardless of the

achieved coverage).

As we need to evolve test suites, we use the Whole Test Suite

approach [5], with the extra usage of a test archive [35]. A

GA individual will be a set of test cases, randomly initialized,

with variable size and length. The fitness of a test suite is

the aggregated fitness of all of its test cases. The crossover

operator will mix test cases from two parent sets when new

offspring are generated. The mutation operator will do small



modifications on each test case, like increasing or decreasing

a numeric variable by 1.

We support all valid types in JSON (e.g., numbers, strings,

dates, arrays and objects). Some of them are treated specially.

For example, for date times, as genotype we consider an array

of six bounded numeric values: year, month, day, hour, minute

and seconds. We consider valid values (e.g., seconds are from

0 to 59), but also some invalid ones (e.g., -1 second) to

check how the SUT behaves when handling time stamps with

invalid format. When such date is used in a JSON variable,

the phenotype will be a date string composed from those six

integer values.

When a test is executed, we check all targets it covers. If

it covers a new target, the test will be copied from the test

suite and added to an archive, to not lose it during the search

(e.g., due to a mutation operation in the next generations). At

the end of the search, we collect all tests stored in the archive,

remove the redundant ones, and write the minimised suite to

disk as a test class file.

E. Tool Implementation

We have implemented a tool prototype in Kotlin to exper-

iment with the novel approach discussed in this paper. The

tool is called EVOMASTER, and it is released under the LGPL

open-source license.

For handling the SUT (start/stop it, and code instrumenta-

tion), we have developed a library for Java, which in theory

should work for any JVM language (Java, Kotlin, Groovy,

Scala, etc.). However, we have tried it only on Java systems.

Our tool prototype can output test cases in different formats,

like JUnit 4 and 5, in both Java and Kotlin. Such test suites

will be fully self-contained, i.e., they will also deal with the

starting/stopping of the SUT. The test cases are configured

in a way that the SUT is started on an ephemeral TCP port,

which is an essential requirement for when tests are run in

parallel (i.e., to avoid a SUT trying to open a TCP port that

is already bound). The generated tests can be directly called

from an IDE (e.g., IntelliJ or Eclipse), and can be added as

part of a Maven or Gradle build.

In the generated tests, to make the HTTP calls toward

the SUT, we use the highly popular RestAssured18 library.

Assertions are currently generated only for the returned HTTP

status codes.

F. Manual Preparations

In contrast to tools for unit testing like EvoSuite, which

are 100% fully automated (a user just need to select for

which classes tests should be generated), our tool prototype

for system/integration testing of RESTful APIs does require

some manual configuration.

The developers of the RESTful APIs need to import our

library, and then create a class that extends the RestController

class in such library. The developers will be responsible to

define how the SUT should be started, where the Swagger

18https://github.com/rest-assured/rest-assured

Fig. 4. Example of class that needs to be implemented by the developers of
the SUT to enable the usage of our test case generation tool. In this particular
case, the SUT is written with Spring, where Application is the main entry
point of the SUT.

public class EMController extends RestController {

private ConfigurableApplicationContext ctx;

private final int port;

private Connection connection;

public EMController(){this(0);}

public EMController(int port) {

this.port = port;

}

@Override public int getControllerPort(){

return port;

}

@Override public String startSut() {

ctx = SpringApplication.run(Application.class,

new String[]{"--server.port=0"});

if(connection != null){

try { connection.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

JdbcTemplate jdbc = ctx.getBean(

JdbcTemplate.class);

try {

connection = jdbc.getDataSource()

.getConnection();

} catch (SQLException e) {

e.printStackTrace();

}

return "http://localhost:"+getSutPort();

}

protected int getSutPort(){

return (Integer)((Map) ctx.getEnvironment()

.getPropertySources().get("server.ports")

.getSource()).get("local.server.port");

}

@Override public boolean isSutRunning() {

return ctx!=null && ctx.isRunning();

}

@Override public void stopSut() { ctx.stop();}

@Override public String getPackagePrefixesToCover() {

return "org.javiermf.features.";

}

@Override public void resetStateOfSUT() {

ScriptUtils.executeSqlScript(connection,

new ClassPathResource("/empty-db.sql"));

ScriptUtils.executeSqlScript(connection,

new ClassPathResource("/data-test.sql"));

}

@Override public String getUrlOfSwaggerJSON() {

return "http://localhost:"+getSutPort()+

"/swagger.json";

}

@Override public List<AuthenticationDto>

getInfoForAuthentication(){

return null;

}

}

schema can be found, which packages should be instrumented,

etc. This will of course vary based on how the RESTful API



is implemented, e.g., if with Spring19, DropWizard20, Play21,

Spark22 or JEE.

Figure 4 shows an example of one such class we had to

write for one of the SUTs in our empirical study. That SUT

uses Spring. That class is quite small, and needs to be written

only once. It does not need to be updated when there are

changes internally in the API. The code in the superclass Rest-

Controller will be responsible to do the automatic bytecode

instrumentation of the SUT, and it will also start a RESTful

service to enable our testing tool to remotely call the methods

of such class.

However, besides starting/stopping the SUT and providing

other information (e.g., location of the Swagger file), there are

two further tasks the developers need to perform:

• RESTful APIs are supposed to be stateless (so they can

easily scale horizontally), but they can have side effects

on external actors, such as a database. In such cases,

before each test execution, we need to reset the state

of the SUT environment. This needs to be implemented

inside the resetStateOfSUT() method. In the particular

case of the class in Figure 4, two SQL scripts are

executed: one to empty the database, and one to fill it

with some existing values. We did not need to write

those scripts by ourself, as we simply re-used the ones

already available in the manually written tests in that SUT.

How to automatically generate such scripts would be an

important topic for future investigations.

• if a RESTful API requires some sort of authentication and

authorization, such information has to be provided by the

developers in the getInfoForAuthentication() method. For

example, even if a testing tool would have full access to

the database storing the passwords for each user, it would

not be possible to reverse engineer those passwords from

the stored hash values. Given a set of valid credentials,

the testing tool will use them as any other variable in

the test cases, e.g., to do HTTP calls with and without

authentication.

V. EMPIRICAL STUDY

In this paper, we have carried out an empirical study aimed

at answering the following research questions.

RQ1: Can our technique automatically find real faults in

existing RESTful web services?

RQ2: How do our automatically generated tests compare,

in terms of code coverage, with the already existing,

manually written tests?

RQ3: What are the main factors that impede the achieve-

ments of better results?

A. Artefact Selection

To achieve sound, reliable conclusions from an empirical

study, ideally we would need a large set of artefacts for

19https://github.com/spring-projects/spring-framework
20https://github.com/dropwizard/dropwizard
21https://github.com/playframework/playframework
22https://github.com/perwendel/spark

experimentation, selected in an unbiased way [36]. However,

for this paper, this was not really possible. First, system

level testing requires some manual configuration (e.g., recall

Section IV-F). Second, our novel prototype is still in a early

stage of development, and it might not be ready yet to handle

many different types of systems. Third, a major issue is that

RESTful web services, although extremely popular among

enterprises in industry, are less common among open-source

projects. Finding the right projects that do not require complex

installations (e.g., special databases and connections to third-

party tools) to run is not a trivial task.

We used Google BigQuery23 to analyse the content of the

Java projects hosted on GitHub24, which is the main repository

for open-source projects. We searched for Java projects using

Swagger. We excluded too large projects (as potentially too

difficult to handle at this early stage), as well as the too

small, trivial ones. We dowloaded and tried to compile and

run several of these projects, with different degrees of success.

In the end, for the empirical study in this paper, we manually

chose two different RESTful web services which we could

compile and run their test cases with no problems. These

services are called FeaturesService25 and ScoutApi26. Besides

those two open-source web services, we also used a RESTful

web service provided by one of our industrial partners. Due

to non-disclosure agreements, we can only provide limited

information about that particular web service. Data about these

three RESTful web services is summarized in Table I.

Those three RESTful web services contain between 2 and 10

thousand lines of codes (tests included). This is a typical size,

especially in a microservice architecture [1]. The reason is that,

to avoid the issues of monolithic applications, such services

usually become split if growing too large, as to make them

manageable by a single, small team. This, however, does also

imply that enterprise applications can end up being composed

of hundreds of different services. In this paper, we focus on

the testing of RESTful web services in isolation, and not their

orchestration in a whole enterprise system.

B. Experiment Settings

On each of the web services in our case study, we ran

our tool to generate test cases. As our technique is based on

randomized algorithms, each experiment has been repeated 30

times with different random seeds.

The longer a search algorithm is run, the better results

one can expect. For the experiments in this paper, we use

a stopping criterion of 100 thousand fitness evaluations. On

the computer used to run these experiments, each run took

roughly between two and four minutes. Considering three web

services, and 30 repetitions per service, we ran a total of 90

experiments, for a total of 9 million fitness evaluations.

In a search algorithm, there can be many parameters that

need to be configured. For example, in a GA, one has to

23https://cloud.google.com/bigquery
24https://github.com
25https://github.com/JavierMF/features-service
26https://github.com/mikaelsvensson/scout-api



TABLE I
INFORMATION ABOUT THE THREE RESTFUL WEB SERVICES USED IN THE EMPIRICAL STUDY. WE REPORT THEIR NUMBER OF JAVA CLASSES AND LINES

OF CODE, ALSO FOR THEIR TESTS. WE ALSO SPECIFY THE NUMBER OF ENDPOINTS, I.E., THE NUMBER OF EXPOSED RESOURCES AND HTTP METHODS

APPLICABLE ON THEM, AS WELL AS IF THEY DO ACCESS A DATABASE OR EXTERNAL WEB SERVICES.

Name # Classes LOCs # Test Classes Test LOCs Endpoints Database Ext. Services

FeaturesService 23 1247 14 822 18 Yes No
Industrial 50 3584 13 2313 10 Yes Yes
ScoutApi 75 7479 21 2428 49 Yes No

TABLE II
RESULTS OF THE EXPERIMENTS, BASED ON 30 RUNS PER SUT. IN

PARTICULAR, WE REPORT THE AVERAGE NUMBER OF TEST CASES IN THE

FINAL TEST SUITES, THE AVERAGE NUMBER OF DISTINCT ENDPOINTS

WITH AT LEAST ONE TEST LEADING TO A 5XX STATUS CODE RESPONSE,
THE AVERAGE NUMBER OF DIFFERENT HTTP STATUS RESPONSES PER

ENDPOINT, AND THEIR MAX NUMBER FOR A SINGLE ENDPOINT.

SUT #Tests #5xx #Codes Max

FeaturesService 46.0 15.0 2.6 4
Industrial 25.4 6.0 2.5 3
ScoutAPI 105.3 18.0 2.0 3

specify the population size, the probability of applying the

crossover operator, the probability of applying mutation, etc.

The choice of those parameters will impact the performance of

the search algorithm. In parameter tuning, one would experi-

ment with different parameter settings to find the best ones for

the given domain (e.g., test case generation for RESTful API).

Fortunately, not only there are general guidelines on how to

choose those settings, but search algorithms are often robust:

using non-tuned, default settings from the literature can still

provide good enough results on average [37].

For the GA employed in this paper, we used a population

size of 30, crossover probability 0.7, and mutation probability

1/n per variable in a test (where n is the number of variables,

so on average only one will be mutated). When a test suite is

generated, it will have a random number of tests between 1

and 30.

C. Experiment Results

Table II shows the results of the experiments on the three

different RESTful web services. Although during the search

we evaluated 100 thousand HTTP calls per run, the final test

suites are much smaller, on average between 25 (Industrial)

and 105 (ScoutAPI) tests. This is because we only keep tests

that contribute to cover our defined testing targets (i.e., code

statements and HTTP return statuses per endpoint).

These tests, on average, can lead the SUTs to return 5xx

status code responses in 39 distinct cases. In the case of

FeaturesService (15) and ScoutAPI (18), those tests pointed to

actual bugs in those systems. A simple example is the one we

previously showed in Figure 3. A generated test revealing such

bug is shown in Figure 5. Note: for that particular endpoint,

there are only three decisions to make: (1) whether or not to

call it with a valid authentication header; (2) the numeric value

Fig. 5. Generated RestAssured test (Java, JUnit 4) for the endpoint shown
in Figure 3. We also show the scaffolding code used to automatically
start/stop/reset the SUT.

static EMController controller = new EMController();

static String baseUrlOfSut;

@BeforeClass

public static void initClass() {

baseUrlOfSut = controller.startSut();

assertNotNull(baseUrlOfSut);

}

@AfterClass

public static void tearDown() {

controller.stopSut();

}

@Before

public void initTest() {

controller.resetStateOfSUT();

}

@Test

public void test0() throws Exception {

given().header("Authorization", "ApiKey user")

.accept("*/*")

.get(baseUrlOfSut +

"/api/v1/media_files/-4203492812/file" +

"?size=-141220")

.then()

.statusCode(500);

}

}

of the “id” in the resource path; and (3) the numeric value of

the “size” query parameter.

However, not all the test cases resulting in a 5xx response

in the Industrial web service were revealing bugs. In one

case, a 500 returned code was the expected, correct behavior.

This happens because the Industrial web service, in contrast

to the other two, does access some external web services.

Usually, in such a testing context, one would use a tool like

WireMock27 to mock out the responses of such external web

services. However, this was not configured for our experiments.

Therefore, every time the SUT tried to connect to such external

web services, those calls failed, and the SUT could not

complete its operations. This is the type of situations where

a 500 code is the right response, although there is no bug in

the SUT.

In Table II we can see that, on average, each single endpoint

is called with data that result in at least two different status

codes. In some cases, it even happened that the same endpoint

27http://wiremock.org



TABLE III
STATEMENT COVERAGE RESULTS FOR THE GENERATED TESTS COMPARED

TO THE ONES OBTAINED BY THE ALREADY EXISTING, MANUALLY

WRITTEN TESTS.

SUT Coverage Manual Cov.

FeaturesService 41% 82%
Industrial 18% 47%
ScoutAPI 20% 43%

was called from test data that resulted in four different returned

status codes.

RQ1: Our novel technique automatically found 38 real

bugs in the analyzed web services.

Besides finding faults, the generated test suites can also be

used for regression testing. To be useful in such context, it

would desirable that such test suites would have high code

coverage. Otherwise, a regression in a non-executed statement

would not fail any of the tests. Table III shows the state-

ment coverage results of the generated tests. Such results are

compared against the ones of the already existing, manually

written tests. Code coverage was measured by running the

tests directly from the IDE IntelliJ, using its code coverage

tools. This also helped to check if the generated tests worked

properly. The results in Table III clearly show that, for the

generated tests, the obtained code coverage is lower.

RQ2: On average, the generated test suites obtained

between 18% and 41% statement coverage. This is lower

than the coverage of the existing test cases in those SUTs.

D. Discussion

The results in Section V-C clearly show that our novel tech-

nique is useful for software engineers, as it can automatically

detect real faults in real systems. However, albeit promising,

code coverage results could had been better. Therefore, we

did manually analyze some of the cases in which only low

coverage was obtained. We found out at least three main

reasons for those results, and so here we discuss possible

solutions to improve performance even further:

String Constraints: Some branches in the SUTs depend on

string constraints. Strings are complex to handle, and,

throughout the years, for unit testing different techniques

based on specialized search operators [38] and seeding

strategies [39] have been proposed. Our prototype does

not support such techniques yet. It will be a matter of

implementing and adapting them, and, then, evaluate if

they do perform well in our testing context.

Databases: even if a database is initialised with valid data,

our technique has currently no way to check what is

inside them, even less, it cannot generate or modify such

data. Recall the example of Figure 3: even if there is

valid data in the database, our testing tool has no gradient

toward generating an id matching an existing key in the

database. The testing tool should be extended to be able to

check all SQL commands executed by the SUT, and use

such info when generating the HTTP calls. Furthermore,

the generation of data in the database should be part of

the search as well: a test case would not be any more just

HTTP calls, but also SQL commands.

External Services: like for databases, we need to handle ac-

cesses to external web services as well. This means using

tools like WireMock, which should then be configured in

the generated tests, and become part of the search.

RQ3: String constraints, accesses to databases and

external web services are the current main impediments.

VI. THREATS TO VALIDITY

Threats to internal validity come from the fact that our

empirical study is based on a tool prototype. Faults in such

tool might compromise the validity of our conclusions. Al-

though such prototype has been carefully tested, we cannot

provide any guarantee that it is bug-free. Furthermore, as

our techniques are based on randomized algorithms, such

randomness might affect the results. To mitigate such problem,

each experiment was repeated 30 times with different random

seeds.

Threats to external validity come from the fact that only

three RESTful web services were used in the empirical study.

Although those three services are not trivial (i.e., between 2

and 10 thousand lines of code), we cannot generalize our

results to other web services. However, besides open-source

projects, we used an industrial one as well, which helps us

increase our confidence that our novel technique can be helpful

for practitioners.

VII. CONCLUSION

RESTful web services are popular in industry. Their ease

of development, deployment and scalability make them one

of the key tools in modern enterprise applications. This is

particularly the case when enterprise applications are designed

with a microservice architecture [1].

However, testing RESTful web services poses several chal-

lenges. In the literature, several techniques have been proposed

for automatically generating test cases in many different

testing contexts. But, as far as we know, we are aware of no

technique that could automatically generate integration, white-

box tests for RESTful web services. This kind of tests are

what often engineers write during the development of their

web services, using, for example, the very popular library

RestAssured.

In this paper, we have proposed a technique to automat-

ically collect white-box information from the running web

services, and, then, exploit such information to generate test

cases using an evolutionary algorithm. We have implemented

our novel approach in a tool prototype called EVOMASTER,

written in Kotlin/Java, and ran experiments on three different

web services. Two of them are existing open-source projects,

available on GitHub. The third was a web service provided by

one of our industrial partners. These services range from 2 to

10 thousand lines of code (existing tests included).



Our technique was able to generate test cases which did

find 38 bugs in those web services. However, compared to the

existing test cases in those projects, achieved coverage was

lower. A manual analysis of results pointed out to three differ-

ent main problems: handling of string constraints, accesses to

database and to other external services.
Future work will need to focus on these three main issues.

Furthermore, to achieve a wider impact in industry, it will also

be important to extend our tool to also handle other popular

languages in which RESTful web services are often written

in, like for example JavaScript/NodeJS and C#. Due to a

clean separation between the testing tool (written in Kotlin)

and the library to collect and export white-box information

(written in Java, but technically usable for any JVM language),

supporting a new language is just a matter of re-implementing

that library, not the whole tool. To make the integration of

different languages simpler, our library itself is designed as

a RESTful web service where the coverage information is

exported in JSON format. However, code instrumentation (e.g.,

bytecode manipulation in the JVM) can be quite different

among languages.
To learn more about EVOMASTER, visit our webpage at:

www.evomaster.org
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