
IoT-Testware – an Eclipse project

Ina Schieferdecker

TU Berlin and

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

ina.schieferdecker@fokus.fraunhofer.de

Sascha Kretzschmann, Axel Rennoch,

Michael Wagner

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

Abstract—It is the aim of IoT-Testware to supply a rich set of

TTCN-3 test suites and test cases for IoT technologies to enable

developers in setting up a comprehensive test environment of

their own, if needed from the beginning of a project. Initially,

IoT-Testware will focus on protocols like CoAP and MQTT. To

ensure test and implementation technology independence, the test

suites will be realized in TTCN-3 and implemented with Titan.

TTCN-3 has been defined and standardized by the European

Telecommunication Standards Institute in ETSI ES 201873 and

related extension packages. It is implemented and supported in

Eclipse IoT by the Titan project. The test suites will contain tests

for conformance, interoperability, robustness, and security

aspects.

Keywords—IoT; Testing; Open Source; Eclipse; TTCN-3

I. INTRODUCTION

The open source community has produced a lot of excellent
technology, frameworks and products that help implementing
IoT applications. A developer usually selects an appropriate set
of technology and components and incorporates them into an
application. The chosen components need to support the
implementation of all relevant aspects of an IoT solution
including device connectivity, management, monitoring, and
business logic and last but not least security enforcement at all
levels.

Implementing test suites and test cases covering several
aspects, levels, interfaces and protocols ensuring scalability,
interoperability and security is a tedious task. There are
currently many redundant pre-competitive activities ongoing
with limited access and impact to the IoT community.

The IoT-Testware project at the Eclipse Foundation [4] set
up a systematic approach for the development of automatic
executable test suites for IoT relevant protocols and services. It
follows the ETSI methodology for test development by using
standardized notations and procedures that provides a basis for
certification and labeling initiatives.

II. IOT UNDER TEST

With the emerge of the IoT, the quality assurance area face
new challenges. It needs to be considered that the system under

test (SUT) vary from single IoT devices to highly dynamic IoT
infrastructures and platforms. Consequently, test design
techniques have to be able to deal with a high number of
devices with open interfaces. Those devices are sensors,
actuators, microcontrollers or gateways. Sometimes they are
installed in harsh and unreliable environments. Primarily,
devices like sensors and microcontrollers work under resource-
constrained conditions such as energy supply or network
availability. All these non-functional aspects play a role and
must be considered by the test environment next to the
functional aspects like the software running on a device.
Implementing an easy test architecture as shown in Fig. 1, a
single micro controller unit (MCU) is the SUT where its
functionality and its ability for communication via the
Constrained Application Protocol (CoAP) [3] is tested.

The bigger the system becomes the more complex testing
approaches are needed. These prove quality not only for
systems themselves but also for connected system-to-system
architectures. Essential components of an IoT solution is
shown in Fig. 2.

Fig. 1. Simple test architecture.

As indicated, even a single device can stand as discrete
system assembled with other, perhaps more complex, systems.
This composition is controlled and routed at the edge of the
network level, normally represented by IoT-gateways. At this
level, interoperability is one of the important non-functional
requirement, as different system may implement different
protocols. Besides interoperability, security is the main concern
in the IoT development ([26][28]) as raw data and extracting
insights from data can cause serious harm. Fig. 3 illustrates an
IoT service test architecture that focuses on internet-accessible
services using the Message Queue Telemetry Transport
(MQTT) protocol [21]. The SUT is an IoT gateway or a cloud
server where security, connectivity and management
functionalities are main test concerns in particular.

Beyond that, integrated IoT infrastructures are tested using
the IoT infrastructure test architecture as shown in Fig. 4. As
SUT we consider IoT operating systems or IoT platforms like
the oneM2M service layer implementations [24], the RIOT
operating system [27] or any other.

Fig. 3. Gateway test architecture.

The high number of different (IoT) protocols, each with its
own advantages and disadvantages, is posing another challenge
for IoT testing. Thus, conformance testing becomes important
and define a significant requirement for quality management.
Within the Eclipse IoT-Testware project we start to develop
test suites for the de facto standard protocols in the world of the
IoT, namely MQTT and CoAP.

III. THE ROLE OF TTCN-3

The Testing and Test Control Notation (TTCN-3) [16], as
the only international test language standard, has been designed
and defined for the abstract specification and implementation
of test cases. Originally, it has been used for black-box
conformance protocol testing in telecommunication only, but
over the years its scope and applicability grows and today it is
suitable also for performance and security testing in multiple
domains like e.g. automotive, medicine, or banking.

The technology is explained very well in articles and books
(see e.g. [32]). It has been accepted in several international
projects, performed through e.g. European Telecommunication
Standardization Institute (ETSI), e.g. SIP tests [31], 3GPP or
the WiMax-Forum certification programs.

Fig. 4. oneM2M test architecture.

Fig. 2. IoT principal conmmunication architecture.

Naming conventions

Module decomposition

Test configuration

Type system

Analysis features

TSS &

TP

ext.

libraries
Test scenarios [pr, tb, po, def]

and templates

prototypes + mass production

validation activities / test campaigns

CD

SA

ext.
fct.

Fig. 5. TTCN-3 test development process.

As part of the ISO Conformance Testing Methodologies
Framework the first version of TTCN have been defined in
principle and standardized since the beginning of the nineties
[19] and many test suites have been produced and executed.
Many standardization bodies on international and national
level, also in industry make use of TTCN-3 test suites for
assuring the conformance and interoperability of their
technologies. These bodies include

• GCF/3GPP LTE mobile user equipment [1],

• oneM2M (Standards for M2M and the Internet of
Things) [25],

• OMA (Open Mobile Alliance Mobile Phone Standards
& Specifications) [23],

• Autosar (AUTomotive Open System ARchitecture) [2],

• TETRA (Terrestrial Trunked Radio) [29],

• ETCS (European Train Control System) [6].

One of the major reasons for the success of TTCN-3 is the
platform independence, ease to understand and learn the
language and the tool support for the test suite development
and automated execution of the test cases. A major step for the
dissemination of the technology has been two years ago with
the availability of the powerful Titan tool [5], an open source
TTCN-3 compiler and execution environment developed by
Ericsson and transferred to the Eclipse Foundation.

Today in most cases there is no formal (i.e. machine
processable) system model of the SUT available and time
pressure does not allow developing any formal model to get an
automatic tool support for test suite derivation. Thus, a manual-
written synthesis of the test suite is required. In the following,
we demand the availability of an existing test plan, i.e. a test
suite structure and test purposes (TSS & TP) document that
provides the basis for the implementation of the abstract test
suite (ATS) with TTCN-3.

In the industrial projects, the TTCN-3 test suite
development process follows a clear sequence of development

steps: As illustrated in Fig. 5 at the top a common set of
naming conventions within the project, the finding of suitable
test system interfaces and configurations for the selected test
architectures and a structure for the TTCN-3 modules will be
addressed. In a second step, the data type system has to be
specified. Existing libraries on type definitions (TTCN-3 or
other languages like ASN.1, IDL or XML) or frameworks with
reusable TTCN-3 functions (e.g. [12]) have to be considered.
At this point, it is also the time to agree on potential auxiliary
logging features enabling e.g. the automatic production of
meaningful test reports during test campaigns.

After the clarification of the above issues a prototype test
scenario with preamble (pr), testbody (tb), postamble (po) and
default (def) behaviour should be written and evaluated before
the mass of the test cases will be implemented. System adapter
(SA), codec (CD) and external functions that are part of the
TTCN-3 test system architecture could be implemented in
parallel to the last two steps. Please note that the Eclipse Titan
project already provides an extensive set of system adapter and
codec for the most relevant access ports in the context of the
IoT.

Fig. 6. CoAP test configurations

Fig. 7. MQTT test configurations

There are no standard naming conventions available and
even in different ETSI projects on TTCN-3 test suites different
naming conventions have been found [14][15]. The latter
situation is due to individual preferences and existing naming
conventions coming with the SUT standards. Interworking test
suites may even apply different naming conventions for two
involved protocols in order to reuse existing definitions for one
of the protocols. Nevertheless, an agreement on prefixes for
e.g. functions, defaults, templates are recommended [13].

The TTCN-3 test suite development process ends with
validation activities that may include application of static
quality checks but also sample test runs against SUT
simulations or selected product implementations.

IV. ECLIPSE TEST SUITES

The Eclipse IoT-Testware project is dedicated to open
source test solutions for IoT products and services as described
in the previous section II. This includes the popular IoT
transport layer protocols CoAP and MQTT that are part of the
initial focus of the work program. Following the ETSI
methodology developed and promoted by the ETSI Centre for
Testing and Interoperability [7], the work started with the
identification of the relevant test architecture and the
development of the TSS and TP catalogues. Fig. 6 and Fig. 7
illustrate the most relevant test configurations for CoAP and
MQTT. The initial test suites structures include basic checks of
mandatory message data fields but also dynamic tests of
protocol features for both server and client roles of the SUT.
The initial scopes of both TSS are given in the Fig. 8 and Fig.
9.

The functional test case definitions will also be extended by
performance and security tests. For security testing it is
intended to make use of the open source Fuzzino library [17] to
allow the generation of test data for fuzz testing.

Fig. 8. CoAP test suite sturcture

Both CoAP and MQTT test purpose definitions are
following the usual TP formats as used in ETSI projects, see
samples in Fig. 10 and Fig. 11.

Fig. 9. MQTT test suite sturcture

CoAP Server as SUT

 All mandatory message data fields

 Support all defined method codes and

understand regular and illegal or corrupted data

along with them

 Protocol features

 General

 Block transfer

 Piggybacked responses

 Message Types (ACK, CON, NON-con,

ReSeT)

 Options

 Max-Age

 Token option

 Several URI-path options

 Several URI-query options

 Lossy context

 Discovery service

 Error handling

 MQTT Broker as SUT

 All mandatory message data fields

 Regular and illegal/corrupted data

 Fixed Header

 Variable Header

 Payload

 Client identifier length restriction

(up to 65535 bytes)

 UTF-8 encoding

 Protocol features

 General

 QoS levels

 Delivery retransmission

 Retained messages

 Message ordering

 Anonymous client identifier

 Connect/disconnect (session handling)

 Credentials

 Session initiation

 Session states

 Subscribe

 Unsubscribe

 Immediate publish (w/o awaiting for

CONNACK)

 Last Will and Testament (LWT) message

 Heartbeats: keepAlive values (max timeout

between message exchange)

 Topic names/filters

 Error handling

MQTT Client as SUT

 All mandatory message data fields

 Regular and illegal/corrupted data

 UTF-8 encoded Strings

Fig. 10. Test purpose sample for CoAP

Fig. 11. Test purpose sample for MQTT

V. BENEFITS FOR THE COMMUNITY

Providing an open test suite to the vendors of IoT systems
and solutions is one possible way to meet the required quality
of such implementations. ETSI for example, provides
standardized publicly available test suites (conformance,
interoperability, performance benchmarking etc.) implemented
with TTCN-3 for almost every of its standardized
communication protocol or service specification across domain
borders. This list [11] encompasses test suites for the

• Tunneling Protocol (GTP) for the General Packet Radio
Service (3GPP GPRS),

• WiMax (IEEE 802.16),

• ePassport Readers,

• Session Initiation Protocol (IETF SIP),

• IP Multimedia Subsystem (3GPP and ETSI INT),

• DIAMETER (an IETF authentication, authorization,
and accounting protocol),

• IPv6 (IETF),

• Digital Private Mobile Radio (ETSI dPMR),

• Digital Mobile Radio (ETSI DMR),

• Intelligent Transport Systems (ETSI ITS) Test Suites.

Vendors or implementers of products according to these
standards do have immediately an executable test suite at hand
with which they can validate whether their implementation can
claim conformance with the specification. This has several
advantages for the vendors, which are among others:

• Early availability of a validated and consolidated test
suite for (parts of) the requirements,

• more time for the development of the system,

• early feedback regarding compliance of the developed
system with the respective standard,

• reduced costs for the development of the conformance
test suite,

• clarification of ambiguous requirements specifications
with respect to room for interpretations,

• unbiased evaluation of the implementation’s
conformance, and

• independent triage of test cases for the conformance test
suite.

There are also opinions who see some risks in publishing
open test suites. In the following, we like to address two major
issues.

The availability of a publicly available test suite could
tempt the industry to adjust their implementation to what is
required for passing the tests, instead of implementing the
requirement specifications. As a result, the implementation
would cover most probably only the functionality (and, thus,
requirements) covered by the standardized test suite. On the
other side if the test suite is able to determine that the
implementation meets the at least required quality with respect
of covered requirements, the passing of all the tests would give
a great deal of confidence.

The manipulation of test results in order to get the approval
is a well-known problem in technical engineering disciplines,
at the latest since e.g. the diesel exhaust scandal. It means that
the implementation/subject of testing adjust its behavior to
what is expected from the test environment. An attempt of
defraud by manipulations of the products could never be

excluded. However, such attempts do not have any meaning in
the context of the idea for an open test specification and test
system. The risk of faked test results may be much higher if
vendors claim “passed” test verdicts in their test report

Beside such discussion we see many more multiple benefits
for the IoT and Eclipse communities due to the IoT-Testware
project, e.g. a common growing test suite pool provided with
one unique international accepted test language that is ready for
download and use in your environment. The tests are open
source and under the professional control of the Eclipse
community and can be extended following the future demands
of the technology and market requirements.

VI. FUTURE WORK: TTCN-3 VIRTUALIZED

As stated in the previous chapters, we gain many
advantages when using open-source software within the IoT
testing domain. Thus, we can benefit from taking the best from
the tools to increase the degree of automation. We have learned
from our first steps in the IoT testing field that a big pitfall is
still the set-up of a full test (automation) environment,
including test suites and associated tools as well as third party
tools for tasks like monitoring, logging or to run security tests
like fuzzing. The composition of all these available open
source tools is a non-trivial task but needs to be tackled as it
reflects the complexity of IoT infrastructures also for the test
domain. A logical consequence is to hide the complexity from
the vendors or implementers of products who want to ensure
quality with the help of the test suites. We suggest two
advanced IoT testing approaches named “TTCN-3 virtualized”
and “virtualized testing with TTCN-3”.

Virtualizing the TTCN-3 test suites is a straightforward
solution and has the goal to deploy the Eclipse IoT-testware
together with the Titan ecosystem as a service. This service
provides the possibility to either use existing test suites as
defined in the Eclipse IoT-testware project or self-written test
suites that follow the official TTCN-3 language standard. In
any case, the Titan ecosystem comes with the needed test ports
(adapters and codecs to allow the communication with the
SUT) and the Titan compiler that compiles runnable test code
out of the TTCN-3 modules that can be executed against your
SUT. Logging is not restricted to be done natively by Titan, as
users are free to implement their own logging architecture on
the target or using a third-party tool. Besides some
configurations like choosing the right set of test suite or
providing configurations of the SUT, virtualized TTCN-3 hides
the complexity of the test environment. However, it needs to be
consider that tests might not running on highly constrained
devices implementing this approach. Mostly, these devises are
not designed to reply to incoming stimuli (e.g. simple MCUs
sending sensor data). Furthermore, virtualized TTCN-3 is
limited to few test requirements like functional and
conformance testing. Configurations that are more complex
could need too much manual work and would be less
advantageous.

The virtualized testing approach is another idea and similar
to the TTCN-3 virtualized approach but it defines another main
goal. Unlike foregrounding the building and executing
conformance tests as defined the Eclipse IoT testware, the user

is provided with a fully integrated test ecosystem as drafted in
Fig. 12.

Fig. 12. Virtualized testing with TTCN-3

We suggest a service that can be used by vendors. In their
perspective the virtualized test system appears either as API
they call with the SUT or they configure a kind of website to
let the service stimulate the SUT. It is shown in Fig. 12 that a
CoAP endpoint (e.g. CoAP client) calls the service to get tested
whereas a MQTT broker must be stimulated as it doesn’t play
an initializing role within the MQTT protocol. Inside the
“black-box” the requests from or the stimulations against the
external test objects will be processed. An adapter undertake
the task of delegating requests. In addition, it includes loading
the appropriate configuration and initiates all the involved tools
(e.g. third-party tools, databases). As said for virtualized
TTCN-3, the Titan ecosystem is running as service and
provides support for compiling and executing test cases. Based
on the parameter transmitted by the adapter layer, Titan
executes the correct test suite together with the fitting ports. In
the example illustrated in Fig. 12 the embedded Titan compiler
loads the CoAP test suite if the service called by a CoAP
endpoint or provides the adapter layer with the MQTT test
suite to stimulate the MQTT broker, respectively. We
recommend designing the virtualized testing service as plugin
architecture to easily add functionality later like third-party
tools, test suites or adapters.

Furthermore, we see a potential in extending the Node-
RED tool by a testing portion: With Node-RED it is possible to
simply build its own IoT infrastructure by adding nodes (e.g.
devices, APIs or online services) graphically and connect them
via edges [22]. We illustrated a toy example in Fig. 14, where a
local CoAP server is tested using Node-RED. The most left
blue node triggers two outgoing flows that lead to a function
node (orange) setting up a global counter. The other flow ends
in a representation of a CoAP server running locally and
sending GET requests to an observable resource named
“Observable_Resource” resulting in an outgoing flow to the
“Test component” node. Configurations are part of the tool and
shown in Fig. 13 for the local server. The “Test component”
node is a function node and can be seen as test case as it holds
the test logic. In the provided example it simply checks if the
global counter is equal to the value of the
“Observable_Resource” (both, the global counter and the

resource value are incremented, after every second and in the
“Test component” node, respectively). Lastly, the result of the
test node ends in three different debug nodes (green) that are
used to log the execution because it logs the verdict, the current
value of the global counter and the current value of the
“Observable_Resource”. The logging is displayed in Fig. 13,
on the right “debug tab. This is one possibility to introduce
testing into Node-RED.

VII. CONCLUSION

Following the methodology and the discussion of the
technical approach presented in this paper the authors see very
good chances and results on the open source approach using a
mature and standardized methodology. It is of great benefit for
the industry to refer to a commonly developed and confirmed
test suite using free testing tools. Furthermore, the approach
based on TTCN-3 provides additional opportunities for
standardization and certification bodies if more than a critical
mass is applying and accepting the results. Finally, with the
virtualized approach, at which virtualized testing can be seen as
an extended approach of virtualized TTCN-3, it becomes
possible to open the technology to everyone who needs to

ensure quality for ones IoT product independent of the
complexity to a certain extent.

ACKNOWLEDGMENT

The authors appreciate the Eclipse foundation, in particular
the members of the IoT-Testware and Titan projects for their
contributions. Especially we thank Mr. Alexander Kaiser of the
relayr GmbH for his contribution on the MQTT test suite in the
IoT-T project [20] and the support of the Open source
approach.

REFERENCES

[1] 3GPP Test suites: ftp://ftp.3gpp.org/tsg_ran/WG5_Test_ex-
T1/TTCN/Deliveries/

[2] Autosar: BSW & RTE Conformance Test Specification,
https://www.autosar.org/fileadmin/files/releases/4-0/conformance-
testing/AUTOSAR_PD_BSWCTSpecCreationValidation.pdf

[3] Constrained Application Protocol: http://coap.technology/

[4] Eclipse IoT-testware:
https://projects.eclipse.org/projects/technology.iottestware

[5] Eclipse Titan: https://projects.eclipse.org/projects/tools.titan

[6] ERTMS (The European Rail Traffic Management System),
http://www.ertms.net/

[7] ETSI Centre for Testing and Interoperability:
http://www.etsi.org/about/how-we-work/testing-and-
interoperability/centre-for-testing-and-interoperability

[8] ETSI Conformance Testing for the Network layer of
HiperMAN/WiMAX terminal devices; Part 3: Abstract Test Suite (ATS)
http://www.etsi.org/deliver/etsi_ts/102600_102699/10262403/01.02.01_
60/ts_10262403v010201p.pdf

[9] ETSI Making Better Standards, https://docbox.etsi.org/MTS/MTS/10-
PromotionalMaterial/MBS-20111118/home.htm

[10] ETSI Plugtests, http://www.etsi.org/about/what-we-do/plugtests

 Fig. 13. Node-RED included TTCN-3

 Fig. 13. Node-RED integrated TTCN-3

Fig. 14. Node-RED in-build CoAP server configuration

ftp://ftp.3gpp.org/tsg_ran/WG5_Test_ex-T1/TTCN/Deliveries/
ftp://ftp.3gpp.org/tsg_ran/WG5_Test_ex-T1/TTCN/Deliveries/
https://www.autosar.org/fileadmin/files/releases/4-0/conformance-testing/AUTOSAR_PD_BSWCTSpecCreationValidation.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/conformance-testing/AUTOSAR_PD_BSWCTSpecCreationValidation.pdf
http://www.ertms.net/
http://www.etsi.org/about/how-we-work/testing-and-interoperability/centre-for-testing-and-interoperability
http://www.etsi.org/about/how-we-work/testing-and-interoperability/centre-for-testing-and-interoperability
http://www.etsi.org/deliver/etsi_ts/102600_102699/10262403/01.02.01_60/ts_10262403v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/10262403/01.02.01_60/ts_10262403v010201p.pdf
https://docbox.etsi.org/MTS/MTS/10-PromotionalMaterial/MBS-20111118/home.htm
https://docbox.etsi.org/MTS/MTS/10-PromotionalMaterial/MBS-20111118/home.htm
http://www.etsi.org/about/what-we-do/plugtests

[11] ETSI Test suites: http://www.ttcn-
3.org/index.php/downloads/publicts/publicts-etsi

[12] ETSI TTCN-3 libraries: http://www.ttcn-
3.org/index.php/development/devlibraries

[13] ETSI generic naming conventions http://www.ttcn-
3.org/index.php/development/naming-convention

[14] ESTI TS 102 027-2: TIPHON Technology Compliance Specification,
IETF SIP 3261, ATS and partial PIXIT. ETSI 2003.

[15] ETSI TS 102 351: TTCN-3 IPv6 Test Specification Toolkit, ETSI 2004.

[16] ETSI European Standard (ES) 201 873 The Testing and Test Control
Notation version 3; http://www.ttcn-3.org

[17] Fraunhofer FOKUS, Fuzzino library:
https://github.com/fraunhoferfokus/Fuzzino

[18] Global Certification Forum: Globally Trusted Devices for Digital Life.
http://www.globalcertificationforum.org/images/gallery/Events/2015_Be
ngaluru_Workshop/Bengaluru_Workshop_5_April_2016_part1.pdf

[19] ISO 9646 / ITU-T: Conformance Testing Methodology Framework,
multipart standard.

[20] IoT-T project: http://www.iot-t.de/en/

[21] Message Queue Telemetry Transport: http://mqtt.org/

[22] Node-RED: https://nodered.org

[23] OMA: Interoperability Working Group,
http://technical.openmobilealliance.org/Technical/technical-
information/working-groups-and-committees/interoperability-working-
group

[24] oneM2M Functional architecture:
http://onem2m.org/images/files/deliverables/Release2/TS-0001-
%20Functional_Architecture-V2_10_0.pdf

[25] oneM2M Test suite (in progress):
http://git.onem2m.org:8080/TST/ATS/tree/master

[26] G. Press: Internet Of Things By The Numbers: What New Surveys
Found; https://www.forbes.com/sites/gilpress/2016/09/02/internet-of-
things-by-the-numbers-what-new-surveys-found

[27] RIOT Real time OS for sensor networks: https://riot-os.org/

[28] I. Skerrett: IoT Developer Trends 2017 Edition;
https://ianskerrett.wordpress.com/2017/04/19/iot-developer-trends-2017-
edition/

[29] TCCA (TETRA and Critical Communications Association),
http://www.tandcca.com/

[30] WiMAX Forum Certification Programs
http://www.wimaxforum.org/Page/certification

[31] A. Wiles et al.: Experiences of using TTCN-3 for Testing SIP and OSP.
ETSI, Sophia-Antipolis 2001.

[32] C. Willcock et al.: An Introduction to TTCN-3, 2nd Edition. Wiley, 2011.

http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi
http://www.ttcn-3.org/index.php/development/devlibraries
http://www.ttcn-3.org/index.php/development/devlibraries
http://www.globalcertificationforum.org/images/gallery/Events/2015_Bengaluru_Workshop/Bengaluru_Workshop_5_April_2016_part1.pdf
http://www.globalcertificationforum.org/images/gallery/Events/2015_Bengaluru_Workshop/Bengaluru_Workshop_5_April_2016_part1.pdf
http://mqtt.org/
http://technical.openmobilealliance.org/Technical/technical-information/working-groups-and-committees/interoperability-working-group
http://technical.openmobilealliance.org/Technical/technical-information/working-groups-and-committees/interoperability-working-group
http://technical.openmobilealliance.org/Technical/technical-information/working-groups-and-committees/interoperability-working-group
http://git.onem2m.org:8080/TST/ATS/tree/master
http://www.tandcca.com/
http://www.wimaxforum.org/Page/certification

