

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

Vulnerability Assessment of Web Services with Model-Based Mutation Testing

Siavashi, Faezeh; Truscan, Dragos; Juri, Vain

Published in:
Proceedings of 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)

DOI:
10.1109/QRS.2018.00043

Published: 01/01/2018

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Siavashi, F., Truscan, D., & Juri, V. (2018). Vulnerability Assessment of Web Services with Model-Based
Mutation Testing. In NN (Ed.), Proceedings of 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS) (pp. 301–312). IEEE. https://doi.org/10.1109/QRS.2018.00043

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 25. Apr. 2024

https://doi.org/10.1109/QRS.2018.00043
https://research.abo.fi/en/publications/e6f3d556-277e-4392-9dab-49a8dbf5b99e
https://doi.org/10.1109/QRS.2018.00043

Vulnerability Assessment of Web Services with
Model-based Mutation Testing

Faezeh Siavashi
dept. Information Technologies

Åbo Akademi University
Åbo, Finland

Email: faezeh.siavashi@abo.fi

Dragos Truscan
dept. Information Technologies

Åbo Akademi University
Åbo, Finland

Email: dragos.truscan@abo.fi

Jüri Vain
dept. Software Science

Tallinn University of Technology
Tallinn, Estonia

Email: juri.vain@ttu.ee

Abstract—We present a model-based mutation testing ap-
proach, for evaluating the authentication and authorization of
web services in a multi-user context. Model of a web service
and its security requirements are designed using UPPAAL Timed
Automata. The model is mutated to create invalid behavior which
is used for test generation to reveal faults in the system under
test. The approach is supported by a model-based mutation
testing tool, µUTA, that automatically generates mutants, selects
a collection of suitable mutants for testing and generates test cases
from them. We modify a previously defined mutation operator
and introduce three new operators for additional mutants. We
define criteria for the mutation-selection and demonstrate the
approach on a blog web service. Results show that the approach
can discover authorization faults that were not detected by
traditional methods.

Index Terms—Model-Based Mutation Testing, Timed Au-
tomata Mutation, User Behavioral model, UPPAAL, Security
Testing

I. INTRODUCTION

Popular social web services such as Facebook, Twitter,
concentrate large amounts of sensitive data related to their
users and are expected to be responsible for their integrity
and security. One of the top security risks that are reported
by OWASP is the incorrect configured user and session
authentication which enables attackers to exploit passwords,
keys, or session tokens, or take control of users accounts to
assume their identities [1].

Authentication and authorization are the two main ways of
securing a web service and the data it maintains. Authen-
tication is the process of verifying a user’s identity, while
authorization is the process of proving user’s permission to
access resources provided by a web service. For example,
once a user is signed in to a blog (authentication), she
can manage/edit her posted articles but is not allowed to
manage/edit other users’ articles (authorization). Furthermore,
access control and authorization in web services are often
defined based on user’s roles in a group setting. For instance,
a blog’s administrator may have permission to manage all
posted articles, whereas other users do not. Such role-based
requirements make implementation of security systems of a
web service more challenging.

As defined in BS 7799-3:2017 standard, vulnerability is a
weakness of an asset or group of assets that can be exploited

by one or more threats, where an asset is anything that
has value to the organization, its business operations and
their continuity, including information resources that support
the organization’s mission [13]. To ensure that the security
system of a web service is implemented correctly, all possible
scenarios of user activities should be tested in an ideal case.
Since manual testing is error-prone and mostly not exhaustive,
model-based testing (MBT) has gained more attention by
offering automated test generation from the model of a system
under test (SUT) and its environment. As models can be
designed based on specific test oracles such as robustness and
security, they create test cases to validate the systems based on
the test oracles. The test cases are executed against the SUT,
and the test outputs are compared with the expected outputs.

Leveraging MBT by adding mutation testing leads to more
powerful testing technique, known as Model-based Mutation
Testing (MBMT) [11]. In MBMT, the original test model is
altered systematically by mutation operators creating multiple
versions of a model (known as mutant models). The mutants
can be used for automatic generation of invalid test inputs
that are executed against the SUT. The goal in MBMT is to
find whether any invalid tests can pass the testing, thus they
can reveal unexpected behavior (i.e., fault) in the SUT. Hence,
MBMT can expose the mistakes that are caused by missing
requirements or incorrect implementation.

The concept of MBMT itself is not new, however to our
knowledge, the security requirements such as authentication
and authorization have not been assessed using such technique
yet. Available modeling and testing approaches focus on the
integrity of the specification based on individual user activities
and not multi-user interactions.

In our previous work on testing web services with a similar
MBMT approach, the model of the SUT was defined for single
user activities in a web service with the purpose of evaluating
the robustness of the SUT [36]. However, the authorization and
privileges for multiple users were not designed and tested. In
this paper, we extend and improve the MBMT approach with
three main contributions, as follows:

• we extend the previous approach to evaluating the vul-
nerability of web services in multi-user context;

• we improve the mutation-selection process to achieve
more efficient mutants (i.e., the mutants that reveal

Fig. 1. Overview of our model-based mutation testing approach

faults);
• we introduce and evaluate three new mutation operators

of Uppaal Timed Automata models and extend one of the
previously defined mutation operators to create additional
mutations.

We model a web service, its users and their authentication
and authorization requirements. The model will be mutated to
create invalid test inputs that target faults in the implemen-
tation of the web service. Besides, some mutation-selection
criteria such as reachability are employed to provide more
suitable mutants for testing.

Model-based mutation testing approach utilizes black-box
testing for detecting vulnerabilities in web services, assuming
that their source-code is not available.

Figure 1 presents an overview of the process. At first, a
model is designed and verified by model checking. In the
second step, mutants are generated by applying the mutation
operators. In this paper, we select some suitable mutants from
a list of mutation operators presented in [2] and [5], extend
one of the operators and introduce three new operators to
create further mutations. To increase the efficiency of MBMT,
we apply a mutation-selection technique to the mutants and
eliminates trivial mutants (i.e., mutants that are unreachable
or incorrect). The selected mutants are called valid mutants
and will be used for test generation.

In the third step, a test runner executes the valid mutants,
mimicking possible faults in the SUT. If the SUT detects an
invalid input, the corresponding mutant will be killed; other-
wise, it will be alive. In the analysis of the results, the alive
mutants will be assessed for detecting possible vulnerabilities
in the implementation of the system. The efficiency of the

mutation operators will be measured as well.

II. PRELIMINARIES

We use UPPAAL Timed Automata (UPPAAL TA) as the
base of modeling and mutating a web service. We first briefly
describe TA and UPPAAL TA formalisms and then review their
formal definitions.

A. Overview of Timed Automata

Alur and Dill introduced the theory of Timed automata (TA)
for modeling and verification of real-time systems [6]. TA are
expressed as a set of locations and directed edges that can
connect the locations to each other and extended with real-
valued clocks. A timed automaton can execute individually or
in synchrony with other automata. During execution of TA,
all clocks increase with the same speed.

Clocks can be updated or reset along with transitions of
TA. The transitions can be constrained by guards of edges
and enable or disable transitions.

If there is more than one enabled transition at a time, then
one of them will be chosen randomly. This characteristic
provides more freedom to design non-deterministic behavior
in the systems with random discrete events [20], such as
real-time systems.

Definition 1. Timed Automata (TA)
Let C be a set of non-negative real valued variables of

n clocks and G(C) be a set of guards on clocks that are
conjunctions in form of x ./ c, where x 2 G, c 2 N, and
./2 {, <,=, >,�}. Let v : C ! R�c indicates that a real
value is assigned to every clock c 2 C and Let U(C) denote
the set of updates of clocks. A timed automaton is a tuple
(L, l0, I, E), where:

• L is a finite set of locations and l0 2 L is initial location;
• E ⇢ L⇥A⇥G(C)⇥2c⇥L is a set of edges including an

action, a guard and a set of clocks.
• I : L ! G(C) assigns location invariants.
A transition can be denoted by l

a,g,u��! l0, iff
(l, g, a, u, l0) 2 E. A state in TA is defined in form of
s = (l, v), where l is a location and v is a non-negative clock
value that satisfies the invariant of l. A TA progresses either
by changing from a state to other by executing an edge,i.e.,
(l, v)

a�! (l0, v0), or by staying in a location and passing time,
i.e, (l, v) d�! (l, v + d), as long as the invariant of location l
is true.

Definition 2. Timed Input-Output Automata (TIOA)
Timed Input-Output Automata (TIOA) was introduced as

extensions of TA, in a way that the actions set, A is divided
into two sets of inputs and outputs actions, A

i

and A
o

respectively [22]. The input actions model the behavior of the
environment and output actions model the external actions of
the system. Thus, for each input action in the system, there is
an output. A TIOA, A is a tuple < I

A

, O
A

, L
A

, l0
A

, C
A

, T
A

>,
where:

• I
A

is a finite set of inputs, labeled by “?”, O
A

is a finite
set of outputs, labeled by “!”,

• L
A

is a set of locations that indicates the state of the
system after the transition,

• l0
A

is the initial location,
• C

A

is a set of clocks instantiated to zero at l0
A

, and
• T

A

is a set of transitions in the system.
The theory of TIOA is implemented in modeling frame-

works such as UPPAAL.

B. Overview on UPPAAL Timed Automata & UPPAAL-TRON
UPPAAL is widely used modeling and verification tool for

real-time and reactive systems. The tool and its formalism
were introduced as Ph.D. thesis [31]. It extends TA with
other data types in addition to clocks. In UPPAAL , due
to the distinction between local and global variables, it is
possible to model systems and their environment as separate
interacting automata. Such functionality enables refining the
specification of either of a system or the environment without
having a significant change in the other. Moreover, various
testing goals can be designed in the environment such as
safety, robustness, user scenarios.

Definition 3. Uppaal Timed Automata
A UPPAAL TA model is a network of n timed automata that

share variables, clocks and actions. A UPPAAL TA model A
i

is a tuple < L
i

, l0
i

, C,A,E
i

, l
i

>, 1  i  n.
A UPPAAL TA model of a system can be analyzed if a

particular criterion will be satisfied during the execution of the
model. This analysis is done by defining reachability properties
in UPPAAL TA models as explained below:

In UPPAAL a model of a system and its environment can
be synchronized by channels over edges. Channels are labeled
by “!” as emitting and “?” as receiving. Thus, UPPAAL TA
leverage modeling complex systems by supporting parallel
transitions from different automata.

Reachability Analysis in UPPAAL TA
Reachability analysis in UPPAAL TA is implemented as a

finite symbolic state space exploration by executing symbolic
computation steps. A symbolic state denoted as (l,D), where
l is a location of a timed automaton and D, clocks valuations,
represents {(l0, v)|l0 = l ^ v 2 D}. The initial state of the
automaton is (l0, D0), where D0 = {v|(l0, vo)

d�! (l0, v)}. The
reachability for symbolic state indicates that the location l is
reachable at some point of the time. A symbolic computation
step is defined in the form of (l,D)

a�! (l0, D0), representing
an action followed by some delay. An action is reachable iff
(l, v)

a�! (l0, v0) and D0 = {v00|(l, v) a�! (l0, v0) ^ (l, v0)
d�!

(l00, v00) ^ v 2 D}.
Beside reachability, in UPPAAL TA, safety, deadlock-

freeness and liveness properties also can be defined. The
UPPAAL model checker contains an engine for verifying such
properties [23].

Once a model of a system is verified based on its
specification criteria, it can be used for validation of its actual

behavior. UPPAAL utilizes an online testing tool, TRON which
generates test cases from UPPAAL TA models and executes
them against systems.

Conformance Testing With UPPAAL TA
UPPAAL TRON generates symbolic timed traces in UPPAAL

TA models. A symbolic timed trace TTrS of a UPPAAL
TA model is a sequence of symbolic states, each state being
defined as a tuple (l,D, v), where l is a location, D is the
clock constraints and v a set of non-negative variables’ values.
Similar to the TA progress described above, a transition in
UPPAAL TA from a symbolic state to another is possible either
by an action or by some delay (l,D, v)

a/d��! (l0, D0, v0).
UPPAAL TRON takes environment constraints of a system

into account. Thus, the model of a system and its environment
are defined as TIOAs, where the model is split into two
parts of the SUT and the environment that are synchronized
by input/output actions. The interaction between the system
and its environment are identified as observable actions in
UPPAAL TRON. The actions among the SUT (or environment)
with other systems are known as internal actions and are
not observable. During the execution, these internal actions
are abstracted as delays by UPPAAL TRON. Therefore,
conformance testing contains delays and observable actions.

Definition 4. Relativized Timed Input/Output Confor-
mance (rtioco)

For input enabled timed input/output labeled transition
systems i, s 2 S and e 2 E , relativized timed input/output
conformance is defined asl below:

i rtioco
e

s , 8� 2 TTr(e).Out(hi, ei after �)

✓ Out(hs, ei after �),

where S and E are TIOAs with observable inputs and
outputs, i, s and e are initial states of the implementation under
test, specification and environment respectively. TTr(e) is a
set of timed i/o traces of the environment e, hi, ei and hi, si are
observable i/o actions that are synchronized. hi, ei after � in-
dicates that observable trace � is executed on implementation i
via environment e and hi, ei after � means that an observable
trace � is evaluated on the specification s via environment e
and returned a set of possible states. Out(states) contains a
list of possible output actions or delays.

The practical implication of the previous definitions is
that the implementation conforms the specification within a
shared environment if and only if the observable i/o behavior
in the model is always the same as the behavior of the
implementation. Thus, the result of conformance testing with
UPPAAL TRON will be one of the three cases: passed, failed,
or inconclusive. When the specified behavior in the model
conforms to the implementation, the test will pass; otherwise,
it will fail. If the output is not in the set of inputs for the
environment or no input/output is provided within the defined
time (test timeouts), then the test result is interpreted as
inconclusive.

C. Model-Based Mutation Testing

Mutation testing extends the fault detection capabilities of
MBT by exposing more vulnerabilities of systems. It changes
a system’s program or its specification, to create new versions
of the system (mutants). Mutation operators are rules that
establish the mutants by altering the syntax of the program
(or the specification). The syntax alternations usually result in
different behavior in mutants. In model-based mutation testing,
the mutants are generated from the test model of the SUT.
The tests exhibit altered inputs (incl. faulty inputs) and input
sequences against the SUT. Hence the mutants allow testing
of the SUT with invalid.

Although mutation testing has shown to be more efficient
than other test criteria [30], it suffers from a large number
of mutants that are not suitable or have equivalent behavior to
their original specification/program. Creating and executing all
mutants are usually costly. In this paper, we follow the mutants
selection principles, reachability, infection, and propagation
(RIP) for killing mutants. The RIP model was primarily
defined for code-based mutation testing [7]. We adopt the RIP
model for model-based mutation testing. To kill a mutant:

1) It must be reachable, which means that the mutated part
of the model is executed at some point of test run,

2) It must cause infection (i.e., changes the state), on the
mutant model after the mutation is visited,

3) It can propagate the mutation through the model (i.e.,
the difference in the behavior of the mutant is observ-
able).

If the reachability and infection are satisfied by a mutant, it
is called weak mutant and if all conditions are met, it is called
strong mutant.

In our MBMT approach, during mutant selection, we check
whether each mutation is reachable and potentially infects the
SUT during test execution. These conditions help to eliminate
unfit mutants. In UPPAAL TA, reachability, liveness, and
deadlock-free properties can be defined on states and paths.
We define reachability criteria based on the model elements
where the mutation is applied.

1) RIP condition for mutants in UPPAAL TA: In the context
of UPPAAL TA, if a mutation applied on an edge, guard,
or update, the reachability for symbolic computation step
is defined using a global variable in the model and update
its value on the action the mutation occurs. Let m 2 v,
be a boolean variable that is initialized to zero and action
a is a mutated action. A mutated action is reachable iff in
(l, v),m = 0 and in (l0, v0),m = 1, and (l, v)

a�! (l0, v0) and
D0 = {v00|(l, v) a�! (l0, v0)^ (l, v0)

d�! (l00, v00)^ v 2 D ^m =
1}

After a mutation is reached, if input/output actions are
different from the original input/output actions, then it means
that the mutation changes the original state and causes an
infection. One way of detecting the infection is to apply
bisimulation relation, which compares traces of the original
model and its mutants and checks whether they are equivalent.
We used this technique in [37]. The mutants that pass the

Fig. 2. Mutant classification in our approach

reachability and infection conditions will be considered as
valid mutants. Aichering and Jöbstl introduced such condition
regarding refinement relation in [5].

Mutated test cases are generated from the valid mutants the
online testing tool UPPAAL TRON. The propagation condition
can be checked during the test execution by comparing the
observable behavior of the mutants with the behavior of the
SUT. Since UPPAAL TRON evaluates the test results based on
rtioco relation, it is a proper tool for detecting propagation of
the mutations at runtime.

If the mutation causes a change in observable input/output
or the delays, and it can be detected during the test generation,
then it considered as killed. Otherwise, if the SUT provides test
outputs to the mutated test stimuli, then the mutated test case
will not be detected and the mutant will be alive. The reason is
that the SUT might be more permissive than its specification.

2) Mutation Classification in MBMT: In [11], Belli et al.,
an extended classification of the mutants for MBMT after
executing them against the SUT. Such designation elevates
the quality of testing and distinguishes whether the faults
are raised by the mutants or by poor implementation of the
SUT. In this study, however, we classify the mutants during
mutation generation. The reason behind this is to identify more
suitable mutants from the beginning and reduce the time of test
execution and thus attain more efficient testing.

Figure 2 gives the classification in each step of our MBMT
approach, starting from the mutation generation until the test
analysis. After the model is designed and its conformance with
the implementation is approved, we use the mutation operators
to generate all possible combinations of mutants. Then, the
reachability and infection properties of the mutants will be
checked. The outcomes of this step are as follows:

• An invalid mutant model is either incorrect syntactically,
or does not satisfy the mutation selection criteria (reach-
ability and infection). Syntactically incorrect mutants are
known as stillborn mutants.

• A valid mutant model must be a syntactically correct
model and satisfy the mutation selecting criteria (reach-
ability and infection).

Valid mutants are used for generating mutated test cases.
During test execution they will be classified further as follows:

• A killed mutant model is a mutant which does not
conform to the behavior of the SUT resulting in a failed
or inconclusive verdict during testing. The killed mutants
can be either trivial (killed by every test) or non-trivial,
but in both cases, they are considered not interesting and
thus eliminated.

• An alive mutant is a valid mutant that generates faulty
behavior that cannot be observed or distinguished from
the behavior of the SUT.

• If a mutant is killed but also reveals an anomaly in the
SUT, then we count it as a fault-revealing killed mutant.

Since infection criterion ensures that the mutants are not
equivalent to the original model, we do not have any equivalent
mutants. Analyzing alive mutants classifies them as follow:

• If the SUT behaves the same as a mutant, then there is a
fault in the implementation of the SUT. Such mutant is
called fault-revealing alive mutant.

• If a mutant’s behavior does not harm the SUT and does
not cause any change in the state of the SUT, then it
is known as a not faulty alive mutant. Distinguishing
between such mutant and fault-revealing alive mutants
should be checked by manual inspection.

III. MODELING WEB SERVICES WITH UPPAAL TIMED
AUTOMATA

As mentioned earlier, UPPAAL TA can be used for modeling
behavior of a system as well as its environment, which
includes behavior of other systems and users that interact with
the system under test. The interaction between a system and
its environment is via observable channel synchronizations in
the UPPAAL TA model.

First, we demonstrate a simple communication between a
user and a web service with an excerpt of the actual model
and then we explain how the model is extended for multi-user
communication and their security specification.

Figure 3 shows two automata, a user and a web service.
The automata are synchronized via channels following the
request-response paradigm specific to web services. When a
user wants to post a new article in a blog, she sends a request
to the web service by clicking corresponding button or link
in the browser. For each HTTP request, a channel is defined
emitting from User1 and receiving in Blog. The response
to the request corresponds to a channel synchronization in the
opposite direction, i.e., emitting from Blog and receiving in
User. To edit and article, the user first gets access to the
article (manage article) and then she submits the changes
(edit article).

Fig. 3. Excerpt model of user interaction with a Blog

The extended version of model consists of Blog, User1
and User2 automata which describe multi-user interactions
in a blog web service as shown in Figure 4. For demonstration,
a limited number of user activities are modeled. From a
user’s point of view, the activities are limited to posting
articles, commenting, reading, editing and deleting. In the web
service’s side, the events are in the form of HTTP requests
that trigger corresponding functions creating or modifying
resources or interacting with other systems.

The users automata are modeled with two different user-
ids. The model contains some shared resources for tracking
articles and comments and are accessible by both users. Each
user can create new articles (add comments to the articles),
or have access to available resources arbitrarily. The shared
resources are defined as follows:

• cu, sa, su and sc, indicate “current user”, “selected
article”, “selected user” and “selected comment” respec-
tively. These variables enable random selection of users,
articles and comments.

• Users, max art and max cmt variables indicate the num-
ber of users, maximum number of articles and maximum
number of comments, respectively. Bounding the maxi-
mum numbers in the model prevents the possibility of a
state space explosion.

• article[Users][max art] assign articles to the users,
thus, article[2][3] means that each user can create up
to three articles. For instance, User1 can create three
articles which are mapped to article[0][0], article[0][1]
and article[0][2]. The initial values are set to zero.

• Comment[Users][max art][max cmt] contains data
about the user-id of the person who comments on
the articles. Thus, when User1 (with id=0) adds a
comment on article 1 of User2, then we have Com-
ment[1][0][0]=0+x. The constant value x is an offset
number that prevents confusing the initial values (zero)
with the user-id (id=0).

The article and Comment variables are updated by func-
tions addart() and delart(), addcmt(), and delcmt().

As it is shown in user automata, the values of user-id and
article are selected randomly:

u : int[0, Users� 1], a : int[0,max art� 1]

These values will be assigned to su and sa variables
identifying the selected user and selected article. For instance,
if u and a are zero and 1 and if the selected article exists (i.e.,
guard: article[0][1] > 0), then manage ar can be executed.
The model is non-deterministic and either of the two users can
start sending requests.

General security requirements are extracted from the re-
quirements and are presented in Table I. In each request,
the user credentials should be sent to the web service and
verified. The authentication is specified in the user automata
by updating the cu variable, which is used as guard conditions
in Blog. Besides, only the owner of a resource has the right to
delete and edit his comments or articles. Therefore, in Blog,
the cu == su guard is used to check this condition.

For instance, the first requirement in Table I includes an
authentication condition, i.e., the user should be verified, and
an authorization condition, i.e., the user is the owner of
the article. The authentication condition is defined in such
a way that the model updates the shared variable cu (i.e.,
cu=0 or cu=1). When dele cmt is requested, in Blog the
authorization is defined by comparing the owner of the request
and the owner of the article (cu). The way in which the security
requirements of the model have specified allows us to scale the
model up for verifying the behavior of more than two users.

IV. MODEL-BASED MUTATION TESTING WITH µUTA

As shown in 1, our approach on MBMT includes three
main steps. Once the test model conforms with the SUT
(i.e., step (1)), it can be used for generating mutants. In this
section, we describe step (2) and step (3) of the approach,
namely Mutation Generation and Selection, and Model-based
Mutation testing and Analysis. The µUTA tool automates step
(2) and, partially, step (3). The analysis of the test results is
done manually.

A. Mutation Generation & Selection

The idea of generating mutants for TA for testing the
dynamic behavior of real-time systems was first presented by
Nilsson et al. in [29]. Then, various mutation operators on
timed automata elements were formally defined by Aboutrab
et al. [2] and Aichernig et al. [3]. From the the previously
proposed operators, we have selected the ones shown in
Table II, which apply to actions and guards. However, the
mutation operators for invariant and locations are not selected
because they are not applicable in this particular case study.

• Change Name of actions (CN) – replaces the name of an
action with the name of other actions in the model. Thus,
the expected sequence of the inputs to the implementation
will be different.

• Change Targets of actions (CT) – changes the target
location of an action to another location in the model.
This operator breaks the flow of test inputs and violates
the state of the model. Both input and output actions can
be mutated by this operator.

• Change Sources of actions (CS) – changes the source
location of an action to another location. Similar to CT,
this operator mutates the sequence of input/outputs.

In addition, we introduce three new mutation operators as
follows:

• Remove Actions (RA) – randomly deletes one action
at a time and creates a mutant. Omitting an action will
manipulate the sequence of input/output actions.

• Duplicate Actions (DA) – randomly copies an action in
different parts of a model, thus alternates the sequence
of inputs and outputs by repeating actions in unexpected
states of the model.

• Remove Guards (RG) – randomly selects an action and
removes its guard. Actions that are mutated by RG will
be always enabled.

Previously, the mutation operators on guards were defined
to negate conditions, in [3], or to alter timing constraints [2].
We modify this operator and split it in two new operators:

• Change Guards Logical operators (CGL) – changes
logical operators (i.e., ==, <=, >=, ! =, < and >) in
guards.

• Change Guards Variables (CGV) – alters values of the
variables that are used in guards and creates additional
mutants that cannot be defined by other mutation opera-
tors.

µUTA implements the mutation operators which generate
mutants from the given UPPAAL TA model. Distinguishing
between the valid and invalid mutants with the tool is done
by defining some model-checking conditions. The tool uses
verifyta [9] to select valid mutants. Verifyta is an UPPAAL
interface that can verify an UPPAAL TA model based on
given list of conditions that are formalized as queries. The
mutants are killable if they do not satisfy at least one of the
following conditions:

Deadlock-freeness and livelock-freeness – If the mutants
have deadlock or live-lock, they are killable. Deadlock means
that a system enters to a state where no further action is
enabled, while live-lock means that a system reaches to
a condition that continually switches among some states
forever, without any progress. UPPAAL supports verifying
deadlock-freeness, however, livelock-freeness for mutants are
automatically defined by µUTA.

Mutation reachability – As we described in Section II-C,
for the mutation operators that alter actions (i.e., CN, CT,
CS, and DA), we apply symbolic computation steps. In
UPPAAL a boolean variable is declared and initialized to
False, and on the mutated action, it will be updated to
True. Therefore, if the action is fired, then the variable
will be set to True. Consequently, the reachability of the
mutated action can be checked symbolically during simulation.

input/output traces – To ensure that the input/output trace
in the mutant is different than input/output trace of the original

Fig. 4. A UPPAAL TA model of interactions of two bloggers within a Blog

model, we create a set of traces that contain all edge coverage
and all location coverage. If a mutant model does not follow
the traces, then it is considered as invalid; otherwise, it is
valid. The comparison is automatically done via bi-simulation
following the approach presented in [37].

B. Mutation Testing & Analysis

In the last step of the approach, we use the valid mutants
for test generation against the Blog web service and analyze
the results. A tester sets up individual test sessions using
the UPPAAL TRON testing tool. The test execution from the
model-level inputs to actual HTTP requests is established by
a test adapter, which converts input/outputs actions into their
corresponding requests/responses. A HTTP request will be
sent to the Blog web service as an URL, and UPPAAL TRON
waits for the response from the web service. The test adapter
converts the response into a receiving action in the model. The
result of each test will be categorized into alive and killed
mutants, based on the verdict of the test session.

The analysis of the result is a manual process.
Distinguishing whether an alive mutant addresses a genuine
bug or it is in fact an equivalent model is yet a manual
process. Moreover, not all possible bugs that are found
during the mutation analysis will reveal vulnerabilities in the
implementation or indicate wrong specifications. A bug proves
that the expected and actual behavior do not conform, while
vulnerability is a specific bug that manifests the possibility of
exploiting the system under test. Therefore, deciding whether
an alive mutant is a bug, which reveals vulnerability should
be done manually based on the experience of the tester.
Defining useful mutation operators has a significant impact
on computational time and test effort. Typically, mutation
score is a standard for evaluating the mutation operators.

Mutation Fault Detection The ratio of mutants (killed or
alive) that reveal faults in the SUT to the number of generated
mutants is measured by

MFD =
FAM

i

+ FKM
i

VM
i

,

TABLE I
SECURITY REQUIREMENTS FOR A WEB LOG

Security requirements Authorization Authentication
A user can delete any Guard in Blog update in User1/User2
comment under his article. (comments[su][sa][sc] == cu) (cu=0, or cu=1)
An article can only Guard in Blog (cu==su) ”
be edited/deleted by its owner.
A comment can only . Guard in Blog (cu==su) ”
be edited by its owner
A comment can only Guard in Blog
be deleted by its owner OR by the (Comments[su][sa][sc] == cu ”
owner of the article. ||cu == su)

TABLE II
MUTATION OPERATORS (* NEW OPERATORS)

Element Mutation Operator Description

Action

CN Change names of actions
CT Change targets of actions
CS Change sources of actions

RA* Remove actions
DA* Duplicate actions

Guard
RG* Remove guards
CGL Change guards logical operators
CGV Change guards variables

where FAM
i

indicates the number of fault-revealing alive
mutants, FKM

i

is the number of fault-revealing killed mu-
tants, and VM

i

is the number of all the valid mutants
generated.

Mutation testing has some fundamental problems. One of
the problems is caused by having identical mutants generated
by two or more mutation operators. Redundant mutants not
only increase the test generation and test execution time but
also have an impact on the validity of the assessment. How-
ever, this problem is tackled in our approach. The mutation
operators in the µUTA tool are carefully designed, imple-
mented and tested to prevent generating redundant mutants.
Each mutation operator is implemented in such a way that
provides unique mutants.

Another main problem is the equivalency. Equivalent mu-
tants are those that are behaviorally equivalent to the original
model. In code-based mutation testing, equivalency has been
proven to be undecidable. However, in timed automata, it
can be prevented. Our technique for solving such problem is
to compare input and output traces of each mutant with the
original model.

V. EVALUATION

A. Blog Web service
We selected the Blog web service as an example of a web

service that provides multiple user interactions and supports
some of the general security requirements such as authoriza-
tion and authentication. The Blog web service is designed
in REpresentational State Transfer (REST) [34] architectural
style and provides functionality for creating new user accounts,
posting new articles, commenting, deleting/editing posts and
comments, managing user’s profile, similar to common social
networks. The web service is implemented in Python using

Flask web developing micro framework [19]. We chose Flask
as it has a simple and flexible structure which does not restrict
developers to specific formats. This feature, however, makes
the web applications prone to error and an interesting topic
for testing.

B. Tool chain

Our MBMT approach is supported by a set of tools that
automate the mutation generation, selection and execution pro-
cedures. The UPPAAL model-checker is used for modeling and
verification the original test model. For online conformance
testing, we use UPPAAL TRON.
µUTA tool contains some components: a generator, a

selector and a test runner. The generator systematically creates
mutants form a given UPPAAL TA model based on given
set o mutation operators. The selector is a component that
creates model-checking rules for each mutant and utilizes the
verifyta tool [9] to validates them. If the rules are satisfied by
verifyta, then the mutants will be classified as valid, otherwise
discarded (i.e., invalid mutants). The test runner sets up test
sessions using UPPAAL TRON, orchestrates the execution of
valid mutants against the implementation of the SUT, and
synthesizes the test results in a report.

To execute test cases that are generated by the mutants, we
developed a test adapter, which translates the model-level test
cases into test scripts that create HTTP requests that include
test inputs. The responses from the web service under test will
also translated by the test adapter into model-level responses.

The µUTA tool is developed using Python language and
the test adapter is developed in Java language.

C. Results

The results of the MBMT approach for the Blog case study
are presented in detail in Table III. From the Blog model, in
total 2962 mutants were generated, whereas only 138 were
valid for testing (i.e., VM). The generation and validation
process took 24 hours and 44 minutes on a PC running
Windows 7 Enterprise 64-bit operating system with Intel quad-
core CPU, and 16 GB RAM. The test execution time for each
valid mutant set to 150 seconds. It took about 200 minutes to
run all the valid mutants against the SUT.

TABLE III
MODEL-BASED MUTATION TESTING PROCESS AND THE RESULTS.

Mutation Generation and Selection Mutation Testing Analysis
Operators time #of IM #of VM #of KM #of FKM #of AM # of FAM #of NFAM MDF

CN 0:51:24 302 2 2 0 0 0 0 0
CT 01:18:22 160 20 12 0 8 0 8 0
CS 01:08:34 171 9 1 8 0 0 0 88.9%

RA* 00:02:05 9 9 9 0 0 0 0 0
DA* 18:43:57 2099 79 78 0 1 0 0 0
RG* 00:24:30 3 1 1 0 0 0 0 0
CGL 0:36:08 8 12 12 0 0 0 0 0
CGV 1:39:00 210 6 4 0 2 2 0 33.3%
Total 24:44:00 2962 138 119 8 11 2 8 7.2%

In total three different defects are found, one of them is
revealed during the test execution and two others are

found during the analysis.

From 138 valid mutants, 119 mutants were killed during
the test execution (i.e., KM), eight mutants caused a crash in
the SUT during the test and by investigating them, we found
that all of the crashes belong to a bug in the implementation.
Therefore, they are labeled as fault-revealing killed mutants
(FKM).

Eleven mutants passed the test execution and remained as
alive mutants (AM). All FKMs were generated by the CS
operator and revealed a vulnerability in the implementation
of the SUT. From eleven AMs, eight of the mutants were
generated from the CT operator, two from CGV and one from
DA, respectively.

The alive mutants were investigated by comparing their be-
havior to the original model, and whether they were represent-
ing any vulnerabilities. Deciding whether an AM shows faults
(FAM), or does not create a fault (NFAM) is done manually.
For instance, if a mutation changes the input/outputs in a way
that the mutant does not generate additional behavior, then
the mutant is NFAM. For example, in the User1 automaton,
a mutant is generated using the CT operator, which changed
the target of access_ cmt? edge to the initial location,
then the actions dele_ cmt!, edit_cmt! and cancel!

cannot be executed (they are not accessible via the access_
cmt? action), thus the mutant is not able to generate the same
traces as the original model. However, the mutant’s traces will
not be faulty and it will be not faulty alive mutant (NFAM).

To this extent, we investigated the AMs and found that none
of the eight alive mutants generated by the CT operator were
able to create faulty behavior and thus they were counted as
not faulty alive mutants (NFAM). Similarly, the single alive
mutant generated by the DA operator did not address any
vulnerabilities in the SUT and was counted as a NFAM. The
two CGV mutants, however, were able to reveal two distinct
vulnerabilities in the SUT and were labeled as faulty alive
mutants (FAM). The vulnerabilities were caused by mistakes
in two separate parts of the implementation and are explained
below.

D. Describing the bugs and identifying vulnerabilities

As described in Table IV, there are three bugs that were
detected by the MBMT approach.

The first bug was detected during the test execution. The
mutations were applied on the “delete” request for non-
existing resources. The expected behavior of the SUT in this
situation is to reject the request by a standard HTTP response,
such as ”404: Not Found”. It can be done by adding
a condition in the source code to check if the resource is
available. However, this condition was missing in the code.
Thus, invalid delete requests could crash the execution of the
SUT. Eight FKMs generated by CS revealed the same bug.

In the analysis of the alive mutants, we detected two other
bugs that show incorrect authorizations in two different HTTP
requests: deleting articles and editing comments. In both cases
the expected behavior of the SUT is first to verify whether
the user is the owner of the resource, however, since such
condition was missing in the source code, the SUT wrongly
allows unauthorized users to modify resources. Two FAMs
generated by CGV detected these bugs.

Vulnerabilities are the specific bugs that can exploit the
system under test. If the bugs can cause abusing the system
or unintended behavior occur in the system, then they are
the system’s vulnerabilities. Therefore from the bugs that
we detected, we concluded that all three bugs are Blog
vulnerabilities.

E. Efficiency of MBMT

Mutation Fault Detection (MFD) score is presented in the
last column in Table III. CS has the highest score of 88.9%,
followed by CGV with 33.3%, whereas other operators did
not reveal any fault and got zero scores. The result shows
that having a large number of mutations may not necessarily
provide better results. For instance, DA generated the highest
number of valid mutants. However, all of them were killed
during the test execution. In contrast, CS has only nine valid
mutants, which eight of them revealed one fault.

F. Testing Effort

To evaluate whether applying the reachability criterion is
efficient regarding mutation generation and testing effort,
we conducted two experiments on the same case study: (1)
MBMT without verifying mutations’ reachability properties,

TABLE IV
DESCRIPTION OF DETECTED VULNERABILITIES

Fault description Operator on which step
The SUT stops working when it receives a
delete request to an non-existing article CS during testing
The SUT allows the user to delete an article
without authorization check CGV during analysis of alive mutants
The SUT allows the user to edit Comments
without authorization check CGV during analysis of alive mutants

and (2) MBMT including verification of mutations’ reachabil-
ity.

In the first experiment, the time of the mutation generation
was roughly 120 hours, which is five times more than the
second experiment. Moreover, the number of valid mutants for
testing in the first experiment was 348, whereas in the second
experiment we had 138 valid mutants. The test execution and
analysis of the results in both experiments were similar. This
comparison confirms that applying the reachability criterion
significantly reduces the time of mutation generation and
selection and consequently the time of test execution.

G. Evaluation of Mutation Operators
In this work, we extended one of the previously defined

mutation operator to create mutants on values of variables in
the guards (CGV) and were able to detect two authorization
defects. The results suggest that additional modification on the
mutation operators may provide more efficient mutants.

The new mutation operators (RA, DA, and RG) offer a large
number of valid mutants for testing. However, none of the
mutants were able to reveal any fault. The mutation operator
for removing actions (RA) simulates a condition in the web
service where there is no response to a request or there is a
response to a non-existing request.

The mutation operator for duplicating actions (DA) suggests
that a request (or a response) will appear unexpectedly. Finally,
removing guards (RG) creates a test model in which mutated
actions do not have guards, thus they are always enabled.

Despite none of the new mutation operators were fault
revealing in our case study, they still provide new faulty be-
havior that cannot be created by any other mutation operators.
Nevertheless, these mutation operators can deliver valuable
mutants and should be investigated more.

H. Relation Between Mutations and Real Faults
To understand what kind of faults can be simulated by

certain mutation operators, we compare the faults with the
corresponding mutations. The first fault in Table IV is caused
by the changing source of a transition (CS). It shows that
deleting a resource was not properly implemented in the source
code. The source code is implemented in such a way that
it does not have the necessary condition of checking the
availability of a resource, before deleting it. Such condition
should always be included in the source code. Thus, CS can
show lack of such condition by breaking the test sequences.

The second and third faults are caused by Change Guard
Variables (CGV). The correlation between the faults and the

mutation operator is straightforward: the operator changes the
guards’ values which simulate changing user’s id in HTTP
requests. Changing guards enables some transitions that oth-
erwise are disabled.

VI. RELATED WORK

Due to the importance of testing security of web services,
many studies and tools have been proposed in the literature.
To draw the position of our research among the available
studies, first, we describe related model-based mutation testing
approaches, then we present some of the most related work
on the model-based design and testing of web services and
compare the available studies with our work, and then we
focus on security testing approaches of web services.

A. MBMT approaches and improvements

MBMT has been gaining attention in software testing field,
especially safety and security applications. Apart from theo-
retical research and experiments, one of the keys to making
mutation testing available tool support. In a recent survey
conducted by Papadakis et al. [30], available model-based
mutation testing approaches are discussed. We only review
some of the tools that are more similar to our work.

One of the well-defined tools is MoMuT that supports auto-
matic mutation of different modeling languages, such as UML
statecharts and Timed Automata [4], [3]. MoMuT for UML
contains mutation operators for a large number of elements in
UML. It only supports non-deterministic models. Thus test
cases are linear sequences of inputs and outputs. MoMuT
for TA uses UPPAAL TA models and applies timed input-
output conformance (tioco) check between the specification
and mutants. The conformance checking is done via SMT
solver Z3.

Larsen et al. present an efficient technique of MBMT using
Ecdar tool, which belongs to UPPAAL family [24]. The tool
creates a strategy for refinement check for MBMT. The tool
supports only deterministic models.

Belli et al. present MBMT with directed graphs using only
two elementary mutation operators (insertion and omission)
[11]. They describe the test algorithms and mutation gen-
eration technologies that are used to experiment with two
different case studies. Their work is supported by a chain of
tools including an event sequence graph (ESG)-based mutant
and test set generator (MTSG). SIMULTATE is a toolset that
uses fault injection technique on Simulink models to perform
mutation analysis for certain parts of systems[32].

Several optimization techniques have been studied to reduce
the cost of test execution. Devorey et al. presented featured
mutants model (FMM) [15]. Their technique significantly
reduces the time of testing by integrating multiple executions
into a single one.

B. Modeling and Testing of web services
Model-driven development is a standard way of developing

web services and can be used both for design and generation
tests. Modeling web services has been presented by formal
verification methods, model-checkers, specification languages,
and theorem proving. Bozkurt et al. investigated a comprehen-
sive survey on testing web services presenting available web
service testing strategies [12].

Typically, web services are modeled with specification lan-
guages, simulated, verified and tested. Majority of the studies
use model-checkers to verify the correctness of specifications,
while some of the studies use models for verification as well
as test generation. We review the studies that are similar to
our approach.

Model-based testing of web services with symbolic tran-
sition systems (STS) is introduced by Frantzen et al. [18].
Belli et al. presented an event-oriented approach for MBT of
a composite of web services in [10] and described expected
behavior as a positive model and generated tests. They also
defined some possible fault scenarios as a fault model which
specifies undesired situations in communications of the web
service composition and used for negative testing.

Modeling behavior of web services and their compositions
are studied using UML [8], [28]. In order to automate the test
generation, UML model of web services has been transformed
into executable models. For instance, UML to UPPAAL TA
transformation has been deployed in [16], [14] and [33].

In [33], we specified model of a web service composition
using UML state diagrams and verified the requirements.
Then, we transformed the model into UPPAAL TA models
and generated the tests from the UPPAAL TA. In this study,
however, we used the UPPAAL TA model to generate mutants
to assess the vulnerabilities of the web services. Besides,
in this paper, we focus on evaluating the authorization and
authentication of web services.

C. Testing security of web services – different approaches
Security of web services is one of the fast evolving subjects

in software testing. The reason behind such challenging issue
is that the complexity of web services especially online
social networks is growing fast. Mistakes in implementing and
defining user credentials in web service are still one of the
most common faults that are reported.

Several studies have been done on testing security in web
services using fault injection, cross-site scripting (XSS) or
modeling attacks scenarios. Salas and Martins presented a new
approach to analyzing the robustness of Web Services by fault
injection [35]. In their approach, attacks are simulated which
can be used for evaluating the penetration on the web services.
However, the process is not automated.

Dragoni and Massacci presented a framework which estab-
lishes communications between client and server based on the
defined privileges as well as behavioral constraints [17]. They
showed that the framework works as expected against both
cooperative and malicious behavior.

A comprehensive analysis is done on all available mutation
testing method presenting the current state of the art in
this field and the open challenges [21]. Lee and Offutt [26]
introduced an Interaction Specification Model which formalize
the interactions among Web components. They defined a set of
mutation operators for XML data model to mutate the inputs of
the Web components. Li and Miller presented mutation testing
methods using XML schema to create invalid inputs [27].
Mutation testing is extended to XML-based specification lan-
guages for Web services.

Lee et al. presented ontology-based mutation operators on
OWL-S, which is an XML-based language for specifying
semantics on web services [25]. They mutate semantics of
the specifications of their case study such as data mutation,
condition mutation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described three new improvements on
our MBMT approach. Our approach includes the specification
of a web service model in UPPAAL TA, generating mutants
from the model, eliminating the trivial mutants and generating
mutated tests. We presented the µUTA tool, which automates
the mutation generation, mutation-selection, and mutation ex-
ecution. As one of the improvements, we demonstrated how
to select fewer, but suitable mutants by following mutation
testing principles.

The second improvement of the approach was the demon-
strating its relevance for the testing security of web services
concerning multi-user context. As a consequence of inten-
sive user collaborations in such services, user authentication
credentials should be protected from malicious parties and
adversaries. The dependability of social web services depends
on offering privacy and security. We modeled and verified a
Blog web service with two users including their privacy.

Lastly, we extended one of the previously defined mutation
operators and introduced three new mutation operators to
generate additional mutants. The evaluation of the approach
showed that the mutation-selection criteria speed up the
MBMT approach preserving the same quality of the test.

In future work, we plan to provide further experiments on
web services and employ smarter mutations by combining
primary mutation operators. Higher order mutations might
be more efficient since infection of the first order mutations
can be quickly discarded by other guards in the first place;
thus they will not be selected for testing. Therefore, creating
less restricted models using multiple mutations would help in
generating stronger mutants.

Some of the problems that should be addressed in future
work are scalability of test models and context-aware test
generation. For large-scale web applications, which concurrent
operations are prone to vulnerabilities, modeling and testing

the critical parts using the approach would be helpful. For
these issues, we can focus on various test modularization
principles such as aspects, contracts etc. and validating that
part rather than including other parts of the system.

ACKNOWLEDGMENT

This work has been funded by the ECSEL MegaM@Rt2
project. This project has received funding from the Electronic
Component Systems for European Leadership Joint Undertak-
ing under grant agreement No 737494. This Joint Undertaking
receives support from the European Union’s Horizon 2020
research and innovation programme and Sweden, France,
Spain, Italy, Finland and the Czech Republic.

We would like to thank Tewodros Deneke and anony-
mous reviewers for comments that significantly improved the
manuscript.

REFERENCES

[1] The Open Web Application Security Project (OWASP). [Online;
accessed 11-June-2018].

[2] M. Aboutrab et al. Specification mutation analysis for validating timed
testing approaches based on timed automata. In 36th Annual IEEE
Computer Software and Applications Conference, COMPSAC 2012,
Izmir, Turkey, July 16-20, 2012, pages 660–669, 2012.

[3] B. Aichering et al. Time for Mutants – Model– Based Mutation Testing
with Timed Automata. In Tests and Proofs, pages 20–38. Springer, 2013.

[4] B. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran.
MoMuT::UML model-based mutation testing for UML. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, pages 1–8, April 2015.

[5] B. K. Aichernig and E. Jöbstl. Towards symbolic model-based mutation
testing: Combining reachability and refinement checking. arXiv preprint
arXiv:1202.6123, 2012.

[6] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[7] P. Ammann and J. Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[8] C. Armstrong. Modeling web services with uml. In OMG Web Services
Workshop, 2002.

[9] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
Formal methods for the design of real-time systems, pages 200–236.
Springer, 2004.

[10] F. Belli et al. A holistic approach to model–based testing of Web service
compositions. Software: Practice and Experience, 44(2):201–234, 2014.

[11] F. Belli et al. Model-based mutation testing - approach and case studies.
Sci. Comput. Program., 120:25–48, 2016.

[12] M. Bozkurt, M. Harman, and Y. Hassoun. Testing web services: A
survey. 2011.

[13] BS 7799-3:2017. Information security management systems – guidelines
for information security risk management.

[14] M. E. Cambronero et al. Validation and verification of web services
choreographies by using timed automata. Journal of Logic and Algebraic
Programming, 80(1):25–49, 2011.

[15] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P.-Y. Schobbens, and
P. Heymans. Featured model-based mutation analysis. In Proceedings
of the 38th International Conference on Software Engineering, pages
655–666. ACM, 2016.

[16] G. Dıaz et al. Model checking techniques applied to the design of web
services. CLEI Electronic Journal, 10(2), 2007.

[17] N. Dragoni and F. Massacci. Security-by-contract for web services. In
Proceedings of the 2007 ACM Workshop on Secure Web Services, SWS
’07, pages 90–98, New York, NY, USA, 2007. ACM.

[18] L. Frantzen et al. Towards model-based testing of web services. 2006.
[19] M. Grinberg. Flask Web Development: Developing Web Applications

with Python. ” O’Reilly Media, Inc.”, 2014.
[20] A. Hessel et al. Testing Real-Time Systems Using UPPAAL, pages 77–

117. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[21] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. Software Engineering, IEEE Transactions on,
37(5):649–678, 2011.

[22] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory
of timed i/o automata. Synthesis Lectures on Distributed Computing
Theory, 1(1):1–137, 2010.

[23] K. G. Larsen et al. UPPAAL in a Nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1–2):134–152, Oct. 1997.

[24] K. G. Larsen, F. Lorber, B. Nielsen, and U. M. Nyman. Mutation-based
test-case generation with ecdar. In 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 319–328, March 2017.

[25] S. Lee et al. Automatic mutation testing and simulation on owl-s
specified web services. In Simulation Symposium, 2008. ANSS 2008.
41st Annual, pages 149–156. IEEE, 2008.

[26] S. C. Lee and J. Offutt. Generating test cases for XML-based Web
component interactions using mutation analysis. In Software Reliability
Engineering, 2001. ISSRE 2001. Proceedings. 12th International Sym-
posium on, pages 200–209, Nov 2001.

[27] J.-h. Li et al. Mutation analysis for testing finite state machines. In
Electronic Commerce and Security, 2009. ISECS’09. Second Interna-
tional Symposium on, volume 1, pages 620–624. IEEE, 2009.

[28] E. Marcos et al. Representing web services with uml: A case study. In
International Conference on Service-Oriented Computing, pages 17–27.
Springer, 2003.

[29] R. Nilsson, J. Offutt, and J. Mellin. Test case generation for mutation-
based testing of timeliness. Electronic Notes in Theoretical Computer
Science, 164(4):97 – 114, 2006. Proceedings of the Second Workshop
on Model Based Testing (MBT 2006).

[30] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Har-
man. Mutation testing advances: an analysis and survey. Advances in
Computers, 2017.

[31] P. Pettersson. Modelling and verification of real-time systems using
timed automata: theory and practice. 1999.

[32] I. Pill, I. Rubil, F. Wotawa, and M. Nica. Simultate: A toolset for
fault injection and mutation testing of simulink models. In 2016 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 168–173, April 2016.

[33] I. Rauf et al. An integrated approach for designing and validating
rest web service compositions. In 10th International Conference on
Web Information Systems and Technologies, volume 1, pages 104–115.
SCITEPRESS Digital Library, 2014.

[34] L. Richardson and S. Ruby. RESTful web services. O’Reilly, 2008.
[35] M. Salas and E. Martins. Security testing methodology for vulnerabilities

detection of xss in web services and ws-security. Electronic Notes in
Theoretical Computer Science, 302(Supplement C):133 – 154, 2014.
Proceedings of the XXXIX Latin American Computing Conference
(CLEI 2013).

[36] F. Siavashi et al. On mutating uppaal timed automata to assess
robustness of web services. In Proceedings of the 11th International
Joint Conference on Software Technologies, volume 1, pages 15–26.
SCITEPRESS-Science and Technology Publications, 2016.

[37] F. Siavashi et al. Testing Web Services with Model-Based Mutation,
volume 743, page 4567. Springer, 2017.

