
Combinatorial Modeling and Test Case Generation
for Industrial Control Software using ACTS

Sara Ericsson, Eduard Enoiu,
Mälardalen University, Västerås, Sweden.

Abstract—Combinatorial testing has been suggested as an
effective method of creating test cases at a lower cost. However,
industrially applicable tools for modeling and combinatorial test
generation are still scarce. As a direct effect, combinatorial
testing has only seen a limited uptake in industry that calls
into question its practical usefulness. This lack of evidence is
especially troublesome if we consider the use of combinatorial
test generation for industrial safety-critical control software, such
as are found in trains, airplanes, and power plants.

To study the industrial application of combinatorial testing, we
evaluated ACTS, a popular tool for combinatorial modeling and
test generation, in terms of applicability and test efficiency on
industrial-sized IEC 61131-3 industrial control software running
on Programmable Logic Controllers (PLC). We assessed ACTS in
terms of its direct applicability in combinatorial modeling of IEC
61131-3 industrial software and the efficiency of ACTS in terms of
generation time and test suite size. We used 17 industrial control
programs provided by Bombardier Transportation Sweden AB
and used in a train control management system. Our results
show that not all combinations of algorithms and interaction
strengths could generate a test suite within a realistic cut-off
time. The results of the modeling process and the efficiency
evaluation of ACTS are useful for practitioners considering to use
combinatorial testing for industrial control software as well as
for researchers trying to improve the use of such combinatorial
testing techniques.

I. INTRODUCTION

Software testing is an important activity used during soft-
ware development [1] for quality assurance. A test case used
during testing includes input parameters for stimulating the
software under test (i.e., a sequence of input parameters)
and the expected behavior in terms of outputs. Engineers are
designing a set of test cases called a test suite and are using a
test framework for running the test suite against the software
under test. The execution of the test suite produces a test
result which is compared to the expected result as stated in
the requirements. The result of executing a test suite is either
a pass or a fail verdict. Traditionally, the creation of tests is
performed manually by human engineers or supported by an
automatic test case generation tool able to design test cases
based on certain criteria. In industrial practice, because of the
complexity of the created software [2] there is no practical
way to exhaustively test all the possible combinations between
input parameter values. The selection of efficient and effective
test cases has been a topic of research for the last couple
of decades [1]. In particular, executing all possible input
combinations is often not practical since not all combinations
of parameter values trigger an interesting behavior and help
in the detection of a software fault. Combinatorial testing has

been proposed as a suitable method for efficient and effective
automatic test design [2], [3]. Combinatorial testing has been
an active field of research for more than 20 years [2] with
a number of combinatorial test generation tools being pro-
posed and developed. Advanced Combinatorial Testing System
(ACTS) [4], [5] is one of the most popular combinatorial test
generation tools used in software testing research. Even if
ACTS has been evaluated on several case studies [3], there
is a lack of evidence on how combinatorial testing tools
can be used for modeling and testing of industrial control
software, like the one used in the safety-critical domain. In
this domain, faults can lead to economical damage and, in
some cases, loss of human lives. As a consequence there is
a need to investigate the use of combinatorial testing and
identify the empirical evidence for, or against, modeling and
test generation in practice when developing industrial control
software.

This study shows how ACTS can be used for input space
modeling and evaluates the efficiency of the test generation
process when applied to industrial control software. The study
strives to answer how ACTS can be used for test generation
for a given set of programs provided by Bombardier Trans-
portation, a large company manufacturing train software and
hardware. The programs are developed in the IEC 61131-3
[6] programming standard for process control software and
Programmable Logic Controllers (PLCs), commonly used in
the engineering of embedded safety-critical systems (e.g., in
the railway and power control domains). The programs are
used in a train control management system (TCMS) running
on PLCs. The TCMS is in charge of many of the safety related
control and operational-critical functionality of a train, which
makes it crucial to detect software faults as early as possible
and in an efficient way. The use of automatic test generation
using ACTS could help an industrial engineer in testing the
PLC software in a more efficient way. Therefore, it is relevant
to evaluate the applicability of modeling the PLC programs
and to study how efficient the test generation for PLC software
is when using ACTS.

The aim of this paper is to evaluate combinatorial testing on
industrial control software and how it can be used in practice
for modeling and test generation for PLC software. In addition,
we provide valuable insights and experiences in how to apply
combinatorial testing in industrial practice. To achieve the
mentioned goal, we have designed an experiment to answer
the following research questions:

• RQ1: Is combinatorial testing using ACTS applicable

ar
X

iv
:1

80
3.

09
00

6v
2 

 [
cs

.S
E

] 
 1

1 
Ju

n 
20

18



for modeling industrial PLC software? This question
intends to assess the capability of ACTS which is a
widely adopted tool in academia, in terms of its modeling
capabilities for real industrial control software.

• RQ2: How efficient is combinatorial testing using ACTS
for test generation of industrial control software? This
question aims to evaluate the test generation efficiency
of different combinatorial test criteria.

To answer these questions we applied ACTS to 17 industrial
PLC programs of different sizes. We manually modeled the
input space and automatically generated test suites using
ACTS. In addition, we evaluated the test generation capability
in terms of efficiency and applicability based on the generation
time and the number of obtained test cases.

II. BACKGROUND

Testing is an important part of software development. As
exhaustive testing is costly and practically impossible to use
when dealing with industrial software [3] there is a need for
applicable test generation methods. There is some compelling
experimental evidence showing that most faults are triggered
by a combination of a few parameter values [3], which makes
combinatorial testing a feasible method for creating efficient
and effective test cases.

A. Combinatorial Testing

Combinatorial testing can be helpful in the creation of test
cases by generating certain combinations among parameter
values. Several techniques have been proposed for combina-
torial testing [2], [3], [7], [8] in order to generate a test suite
which covers the combinations of T parameter values at least
once or in a certain interaction strategy (e.g., each-used, pair-
wise, t-wise, base choice). One of the most used combinatorial
testing criterion is pairwise or 2-wise. A test set generated
using pairwise covers all the possible pairs of parameters in
the input space [7], [9], [10]. There are a few empirical studies
showing that the majority of software faults (i.e., between 50
to 97% according to a study by Kuhn et al. [7] from 2009, and
60 to 90% according to another study [3] from 2010) can be
discovered using pairwise testing or a higher criterion. This
is a promising result that motivates the need to study such
techniques in industrial projects. The results of another study
[9] showed that most of the faults have been discovered by test
suites created using less than seven parameter combinations
[7]. Since there is some evidence showing that software
failures are triggered by a combination of 6 or fewer input
parameter values [3], [11], we are interested in investigating
the applicability and scalability of automatically creating test
cases using these combinatorial techniques for industrial pro-
grams. By using higher strength t-way testing in the detriment
of manually created test cases can directly influence the cost-
effectiveness and applicability of such techniques. Several
testing strategies have been proposed to reduce the number
of combinations that have to be enumerated and the time to
generate test cases. A combinatorial testing strategy called
In-Parameter-Order (IPO) has been used in several different

algorithms to handle problems such as the sheer number of
test cases and long generation times [12] for 2-way testing.
The In-Parameter-Order-General (IPOG) algorithm has been
proposed as a variant of the IPO strategy that supports higher
strength than 2-way [13], [14]. The IPOG-D strategy is an
extension of IPOG combined with a recursive approach instead
of enumerating combinations used by IPOG, making it suitable
for larger multi-way combinations [14].

Modeling the software under test is an important part of
using combinatorial testing since it affects the test generation
procedure [2], [15]. According to Nie and Leung [2] a com-
binatorial test model for the software under test consists of
the following four elements: parameters, values of parameters,
possible interaction relations among parameters and parameter
constraints used to exclude combinations that are not possible.
A model consisting of these elements can be created by
reviewing different system documents and the code of the
program, along with other artifacts. We are interested, in
this paper, to investigate the creation of the test model for
real-world industrial control software and to investigate what
the sources of information used for creating these modeling
elements are.

B. ACTS Tool

ACTS is a combinatorial test generation research tool,
previously known as FireEye [13]. It is an academic tool
developed by researchers at the National Institute of Standards
and Technology and the University of Texas at Arlington in
the United States. It was first released in 2006 [4] and seems
to be actively updated. ACTS supports t-way combinatorial
test generation, with t restricted to values between one and six.
The tool has been evaluated and has been shown to potentially
uncover the faults caused by the combination of up to six
parameters [4]. A set of parameters is defined as a system
under test (SUT) and the tool supports the following data
types: Boolean, Number, Enum and Range [5]. A number of
algorithms for combinatorial test generation are implemented
in ACTS version 2.92: IPOG [13], IPOG-F, IPOG-F2, IPOG-
D and Base Choice. In base choice criterion, the value of one
input at the time is varied while keeping all other inputs at
fixed base values until all combinations have been covered.
This process is repeated for each parameter to create a final
test suite. According to the user guide of ACTS, IPOG-D is the
preferred strategy for larger systems while the other algorithms
are better suited for moderate-sized systems, with less than 20
parameters and 10 values per parameter on average [5]. In this
study, we evaluate this hypothesis by using several programs
of different sizes.

ACTS also supports the following two different test gener-
ation modes: scratch and extend. The former creates a whole
new test set, while the latter extends an existing test suite
with automatically generated tests. ACTS supports, as previ-
ously mentioned, t-way test generation and mixed combination
strengths (i.e., different values of t) for grouped parameters.
A set of parameters with the same strength is defined as a
relation. Another feature in ACTS is the possibility to add



constraints, since some combinations might not be allowed
and should therefore not be a part of the test suite. The user
can define constraints and the test suite will be generated with
test cases which fulfill these constraints. Once a test suite has
been generated it is possible to verify the t-way coverage, i.e.
how many of the tests cover the t-way coverage criteria [4],
[5]. ACTS is platform independent and implemented in Java
programming language. The tool can be used in several ways
since ACTS provides a graphical user interface, an application-
programming and a command line interface [4]. The test suite
can be saved to a file and exported in a comma separated value
format [5].

Other combinatorial test generation tools have been pro-
posed and are available. The IPO (PairTest) [10] and the AETG
System [16] are also used for pairwise testing implementing
the IPO strategy. A list of available tools for pairwise testing
can be found in [17]. In this study we use ACTS, as this is a
mature tool that has been used in several industrial scenarios
and is expected to be representative in the use of combinatorial
testing techniques.

C. PLC Control Software

Programmable Logic Controllers (PLCs) are a particular
kind of computers used in automation systems and are widely
used nowadays in the safety-critical domain [18], [19]. Au-
tomation tasks for industrial processes, such as automated
packaging [18], household appliances [19] and train control
and management [20] are just some of the examples where
PLCs are used. A PLC contains a microprocessor, a pro-
grammable memory and an I/O for communication [18]. The
PLC runs in a cyclic loop according to a certain task level
such that the program continuously reads the input parameters,
executes the program and writes the output in every execution
of the task [19]. An international standard has been proposed
for programming PLCs named IEC 61131-3 [6], published in
1993. Its purpose is to avoid the use of proprietary and closed
versions of programming languages that cannot be used for
other system applications and hardware. The standard defines
the following five programming languages: Instruction List
(IL) and Structured Text (ST) are textual languages while
Ladder Diagram (LAD), Sequential Function Chart (SFC) and
Function Block Diagram (FBD) are graphical languages. The
IEC 61131 standard includes the description of these five
languages and a complete development cycle that can be used
for engineering software on this kind of a platform [18]. In
this study we used programs developed in the IEC 61131-3
standard by industrial engineers, describing a safety-critical
system used in the train domain.

D. Related Work

Recently, researchers have shown an increased interest in
combinatorial software testing. There are a number of studies
in which combinatorial testing tools and techniques are being
evaluated (e.g., [13], [15], [21]) in their use of combinato-
rial modeling and testing of industrial systems. Borazjany
et al. [15] performed a case study in which they applied

combinatorial testing on an industrial system by using ACTS
to generate tests. The purpose of their study was to apply
combinatorial testing to a real-world system and evaluate its
effectiveness, as well as gaining experience and insight in the
practical application of combinatorial testing, including the
input modeling process. The tests are generated for testing
both the functionality and the system robustness. Another
study conducted at Lockheed Martin [21] reports about an
introduction of combinatorial testing in a large organization.
The applicability of combinatorial testing was evaluated by
comparing different features contained in a set of combina-
torial test tools and then applying these tools to real world
systems. A number of pilot projects were conducted where
ACTS was used as the primary tool. According to the results
of this study, ACTS continued to be used by a number of
teams once the pilot projects ended. Lei et al. [13] conducted
a study to generalize the pairwise IPO strategy to t-way testing,
and implemented this new strategy in FireEye. The tool was
evaluated in terms of efficiency by using different system
configurations. The experiments showed that the number of
tests increased rapidly with the t-strength. FireEye and four
other test generation tools were applied to a Traffic Collision
Avoidance System (TCAS) module. The results show that
FireEye performed considerably better in both size of test
suites and generation time for higher strength t-way testing.

Evaluations of the applications of such combinatorial tech-
niques on industrial systems are still rare, possibly because
they require a level of efficiency and modeling maturity of the
underlying tools that is difficult to achieve in academic tools.
Consequently, there is a need to provide further evidence of
the capabilities of modeling and test efficiency of automated
combinatorial test generation on industrial systems. Another
shortcoming of these empirical studies on combinatorial test
generation tools is that they are not focusing on the sources
of information needed for modeling the input model and how
applicable such techniques are for specific industrial systems,
such as PLCs. Previous studies on industrial systems have
shown that test generation tools are quite effective at detecting
faults, but how efficient and applicable are they for industrial
application of different sizes and number of parameters? In
this paper, we investigate this question using programs from
an industrial train control management system. These studies
motivated us to perform this study and provide some valuable
steps towards the application of ACTS in industrial practice
for PLC software.

III. EXPERIMENT SETUP

In this study we have conducted a case study [22] in which
we applied combinatorial modeling and test generation to
PLC software and evaluated the applicability of using such
a technique on different industrial programs. The purpose
of using ACTS for several PLC programs is to show its
applicability and test generation efficiency. In addition, we
show how combinatorial testing can be used for domain
specific programs, such as the ones used in PLCs. Once



TABLE I: Program categories based on the information provided by three industrial engineers. Three categories have been
defined: small, medium and large programs in terms of size and complexity.

Small PLC Program Medium PLC Program Large PLC Program

Engineer 1 1-5 inputs 5-10 inputs 10-30 inputs

Engineer 2 1-7 inputs 7-10 inputs 10-20 inputs

Engineer 3 1-5 inputs 5-10 inputs 10-20 inputs

Average 1-6 inputs 6-10 inputs 10-23 inputs

the modeling was performed, we generated test suites using
different t-strengths and test generation strategies.

TCMS Programs ACTS

Input space 
modelling

Test case 
generation

Applicability

Efficiency

Fig. 1: Method for modelling and test generation using ACTS.

The overall method of this study is shown in Figure 1. PLC
programs are used for input space modeling and test generation
in ACTS. The input space modeling is performed manually
in ACTS while the tests are generated automatically. The
modeling step is evaluated in terms of applicability (i.e, can
the selected programs be completely modeled using ACTS)
and the test suite generation is evaluated in terms of efficiency
(i.e., generation time and number of tests).

A. Subject of Study

The process began by selecting a number of representative
PLC programs of different sizes to use for modeling and test
generation using ACTS. We used programs from a control
train system already developed by Bombardier Transportation
Sweden AB. Due to time and resource constraints, we se-
lected a subset of programs to be used for modeling using
ACTS, from the provided Train Control Management System
(TCMS) containing programs written in IEC 61131-3 FBD
language. TCMS is a complex system with operation-critical
functionality for which testing is very important in order to
be able to achieve a safe and correct implementation in an
efficient and effective manner. The software part of TCMS
is part of a distributed system running on multiple hardware
units distributed across a train.

Three engineers working at Bombardier Transportation
Sweden AB and developing this system were asked to define
three size and complexity categories for the PLC programs in
TCMS: small, medium and large programs. Based on these
categories we asked them to write down the corresponding
number of inputs interval for each category according to their
experience. The result of this data collection is shown in Table
I. In addition, we asked each engineer to select two programs
from each category that contains typical and diverse behavior
and data types found in PLC programs written in IEC 61131-3
FBD language. The engineers selected 18 programs in total out
of the 189 PLC programs originally available. In determining

Fig. 2: The distribution of the number of input parameters per
selected PLC program.

the size of a program, the engineers took into account both
the number of parameters and the number of values for each
parameter. One program was removed from this experiment
since it was categorized wrongly as a medium size program
(i.e, this program should have been categorized as a small
program). Finally, 17 programs were used for combinatorial
modeling and testing (i.e. six small, five medium and six
large programs). As shown in Figure 2, the first six programs
are small in size according to the categories defined by the
industrial engineers. We considered a program with six inputs
to be of small size. In addition, programs 7-11 are of medium
size and programs 12-17 are large in size.

B. Test Generation

Once the models have been created using ACTS, test suites
were generated for each model. ACTS provides the following
algorithms for generating tests: IPOG, IPOG-F, IPOG-F2,
IPOG-D and Base Choice. When using IPOG or IPOG-F the
strength can be set to 1-6, while IPOG-F2 and IPOG-D support
strength 2-6 for t-way coverage. For Base Choice the choice
values can be assigned to each parameter. A base choice value
can been seen as a typical or interesting value of the parameter.
In this study a base value was assigned to each parameter
during the modeling process by a test engineer experienced
with testing PLC programs.

The tests were generated from the input space models and
the systems created using ACTS, by running ACTS from the



command-line. A batch file was created to generate several
test suites from several programs consecutively. The output
of the ACTS tool contained the relevant information, such
as number of tests and generation time. This information
was written to a log file. The creation of test suites has
been performed on the same machine running on 8GB of
RAM with 2.9GHz CPU. We used a batch file calling the
ACTS application with the following parameters during
the test generation: Ddoi is the strength for t-way testing,
Dalgo is the used algorithm, Doutput is the type of file the
generated tests should be saved to, and Xmx8g is used to
increase the java heap space for the application to 8GB. All
other options were automatically set to default in the ACTS
command-line application when generating tests. The strength
and the algorithm varied throughout the test generation and
the generated test suites were saved as comma-separated
values files. Test cases are generated by applying all possible
algorithms on each program. We used different interaction
strengths for all algorithms except BaseChoice and the test
generation process was stopped when any of the following
cases occurs:

1. Strength is greater than the number of inputs.
2. Maximum strength is reached.
3. Test generation time is greater than a certain time limit
(i.e., 1 hour time limit has been used in this study after
discussion with engineers in the company).
4. ACTS application runs out of memory (heap space).

When case (1) or case (2) occur no further test suites
with higher strength can be generated, as the strength of the
algorithm cannot be greater than the number of parameters and
none of the algorithms provided by ACTS support a greater
strength than six. The cut-off time for generating test cases
(3) was set to one hour based on discussion with engineers in
Bombardier Transportation Sweden AB testing the programs
considered in this case study. No test was generated further
for the remaining strengths when case (3) occurred because
the measured test generation time from our initial experiments
showed that time increases significantly with the strength of t.
In addition, if the test cases are not generated within the given
time limit, the tool is not showing the number of generated
test cases. This information is not available and was not used
when evaluating the efficiency in terms of number of test cases
created.

In the ACTS guide [5] the authors are recommending
the use of IPOG, IPOG-F and IPOG-F2 for programs of
moderate size, while using IPOG-D for larger programs. They
define moderate programs in size as models with less than 20
parameters and approximately 10 values per parameter. Table
II shows the number of parameters and the average amount of
values per parameter for each modeled program. We evaluate
the ACTS guide recommendation in the results section.

TABLE II: The average number of values per parameter and
the number of parameters per model.

Program Average Parameters
Program 1 18.8 6

Program 2 3.7 3

Program 3 3.7 4

Program 4 4.0 3

Program 5 3.7 4

Program 6 2.0 34

Program 7 18.9 8

Program 8 3.2 7

Program 9 19.4 7

Program 10 34.4 8

Program 11 2.9 7

Program 12 10.6 21

Program 13 7.7 22

Program 14 4.0 23

Program 15 19.4 22

Program 16 36.0 14

Program 17 13.6 27

C. Measuring Modeling Applicability

The subject programs were analyzed by observing their IEC
61131-3 representation in an XML format. We checked if the
information needed for input space modeling is included in
the source code of the XML files. The information which
could not be obtained directly from these files was gathered
directly by informal interviews with engineers developing
these programs at Bombardier Transportation Sweden AB.
All information obtained using this collection of information
was used to manually model the input space in ACTS. The
input space modeling is evaluated in terms of applicability.
Applicability refers to its success in meeting the input space
modeling goal (i.e, can the selected programs be modeled
in their entirety using ACTS and what are the sources of
information needed). This information is key to determine the
value of ACTS and its feasibility in an industrial context.

D. Measuring Test Generation Efficiency and Cost

The test cases were automatically generated using the ACTS
tool. We collected the information needed to evaluate the
test generation efficiency and cost (i.e., generation time and
number of test cases). The test case generation is evaluated in
terms of efficiency by measuring the generation time (i.e. the
time ACTS takes to generate a test suite) and the number of
test cases generated by ACTS for each strategy and strength.
These measures were collected directly as an output of running
the ACTS tool on each program.

We considered that a test suite is created efficiently if it has
been generated in less than ten minutes. This specific time
has been collected through interviews with three engineers
working at Bombardier Transportation Sweden AB. According
to this information, generating tests in less than 10 minutes is
equivalent to an efficient manual testing session for creating
specification-based tests for these programs.



To accurately measure the testing cost effort one would
need to measure the costs for performing all testing activities.
However, since the case study is focusing on test generation
efficiency for a system that is in use and for which the
development is finished, this type of cost measurement was
not feasible. Instead, we collected the number of test cases
generated as a proxy measure for the cost of testing. We are
interested in investigating the cost of using different strategies
in the same context. In this case study, we consider that the
costs are related to the number of test cases. The higher the
number of tests cases, the higher is the respective test suite
cost. For example, testing a complex program will require
more effort than a simple program. Thus, we assume that the
cost measure is related to the complexity of the software which
will influence the number of generated test cases.

IV. RESULTS

The following section shows the result of modeling the
PLC programs and the creation of an ACTS system for each
program, followed by the generation of test suites and the
collection of the results. For more details on the raw results
obtained from this study we refer the reader to the dataset
report [23].

A. Input Space Modeling

A model is defined by its parameters, the parameter con-
straints and possible relations among parameters. Each param-
eter is defined by a name, a data type and all the possible
or permitted values [2]. In this study a base choice value
is also assigned to each parameter. These base choice values
are used when generating tests using the base choice strategy.
The name and data type of each parameter were determined
by manually analyzing the PLC programs provided as XML
files, by parsing trough the code and the related comments.
The possible parameter values for some of the parameters
were determined by analyzing the XML files. These values
were found by inspecting the commented code in the variable-
tag for some of the input variables (as shown in the snippet
displayed in Figure 4). All variables of boolean type were
assigned their possible values (i.e., true and false). The rest of
the information needed to model the input space was obtained
by interviewing the engineers working at Bombardier Trans-
portation Sweden AB developing and testing these programs.
The engineers writing the code were asked to fill in the
missing information, which in most cases provided the rest
of the parameter values. The rest of the missing values and
base choice values were obtained by asking a test engineer
at Bombardier Transportation, responsible for testing some
of the programs used in this case study. No constraints or
relations could be defined for the PLC programs included in
this study. Overall, we found out that all information needed
for defining the ACTS model was either directly obtained from
the code (i.e. by analyzing the XML files) or by interviewing
the engineers writing and testing these programs. Figure 5a
and Figure 5b show the distribution of the sources from which

Fig. 3: Number of parameters for each modeled program.

Fig. 4: A snippet of an XML file showing three input variables
for a PLC control program. The comment option is one of the
sources of information that can be used for modeling the input
space.

the information needed for the input space modeling was
obtained.

Two different kind of input space models were created for
these programs, depending on the data types found in the
programs. A concrete model refers to a representation in which
tests generated based on this model can be directly used for
testing. Abstract models differ from the concrete ones because
they can not be used for testing without the use of an adapter
for concretization. Hence, we first need to generate a set of
abstract test cases. Some of the generated abstract tests need
to be combined and enriched with glue information to form
actual test cases [24]. Figure 3 shows how many parameters
each modeled program contains. The different data types



(a) Parameter Values Source (b) Base Choice Values Source

Fig. 5: Distribution of the source of information for parameter values for each program and the source of information for base
choice values for each program.

TABLE III: The different data types and the number of
occurrences of these types among the studied IEC 61131-3
programs.

Data Type in IEC 61131-3 Parameters
BOOL 79

USINT 45

INT 17

UINT 12

REAL 10

UDINT 5

STRING 4

WORD 3

found in the PLC programs are shown in Table III. A concrete
model was applied to 15 out of the 17 programs, while the
remaining two used an abstract model. These two programs
contained inputs of type WORD (i.e., 16 bit WORD data type).
The models for these programs are abstract in the sense that
each WORD is represented as 16 boolean parameters. Each
parameter represents a bit in the WORD, and therefore the
values of these parameters combined will form a complete
WORD.

When the names, data types, possible parameter values and
the base choice values are determined for each program, ACTS
is used to model the input space. The ACTS GUI application is
used for modeling and for each program a system was created.
The types of parameters in the PLC code had to be converted
to a corresponding data type in ACTS. The ACTS tool [5]
provides the following four data types: Boolean, Number,
Range and Enum. Table IV shows the data types found in
the programs along with their corresponding type in ACTS.
Range is considered the same data type as Number, since
a Range consists of ranges of type Number. In ACTS the

TABLE IV: Translation rules for different data types from IEC
61131-3 and their respective type in the ACTS model.

Translation Rules IEC 61131-3 ACTS
Rule 1 BOOL Boolean

Rule 2 INT Number

Rule 3 USINT Number

Rule 4 UINT Number

Rule 5 UDINT Number

Rule 6 REAL Enum

Rule 7 STRING Enum

Rule 8 WORD Boolean

TABLE V: The different data types and the number of
occurrences of these types among the modeled ACTS systems.

Data Type in ACTS Parameters
Boolean 127

Number 79

Enum 14

Number and Range data types only support integer values.
Therefore, the type Enum was used for floating point values.
The total number of different data types among the modeled
programs are shown in Table V.

Some of the input space models ended up having quite
a large number of possible values per parameter (e.g, some
parameters had up to 50000 values). In total, 39 parameters
had more than 100 possible values assigned to each of them
(more details are give in Table VI) and therefore we decided
to reduce the number of possible parameter values for those
parameters during the modeling process. The ACTS tool
notifies the user modeling the system that the test generation
might be slow when a system contains a parameter with more
than 100 possible values. The reduction of the parameter



TABLE VI: The number of parameter values of different
sizes for every model before the reduction (VPP=Values per
parameter).

Program V PP > 99 V PP (21− 99) V PP < 21

Program 1 2 0 4

Program 2 0 0 3

Program 3 0 0 4

Program 4 0 0 3

Program 5 0 0 4

Program 6 0 0 34

Program 7 1 0 7

Program 8 0 0 7

Program 9 2 1 4

Program 10 2 3 3

Program 11 0 0 7

Program 12 8 0 13

Program 13 6 0 16

Program 14 1 0 22

Program 15 2 2 18

Program 16 14 0 0

Program 17 1 0 26

Total 39 6 175

TABLE VII: The number of parameter values of different
sizes for every model after the reduction (VPP=Values per
parameter).

Program V PP > 99 V PP (21− 99) V PP < 21

Program 1 0 2 4

Program 2 0 0 3

Program 3 0 0 4

Program 4 0 0 3

Program 5 0 0 4

Program 6 0 0 34

Program 7 1 0 7

Program 8 0 0 7

Program 9 0 2 5

Program 10 1 4 3

Program 11 0 0 7

Program 12 0 8 13

Program 13 0 3 19

Program 14 0 1 22

Program 15 1 3 18

Program 16 0 14 0

Program 17 0 1 26

Total 3 38 179

values was conducted by asking a test engineer at Bombardier
Transportation Sweden AB to reduce the possible parameter
values. As a result of the reduction, only three parameters in
three different programs contained one parameter with more
than 100 possible values. Table VII shows the number of
parameters with different values per parameter after the value
reduction.

To create a system for each input model in ACTS is a

Fig. 6: A snippet showing two parameters from an XML
representation of a system modeled in ACTS.

TABLE VIII: The number of test suites generated under 600s
for each program and algorithm with different interaction
strengths. The percentage represents the number of test suites
generated under 600s out of all the possible number of test
suites for each algorithm.

IPOG IPOG-F IPOG-F2 IPOG-D

Test Suites <600s 78 60 40 50

Total Test Suites 92 92 75 75

Percentage 85% 65% 53% 67%

TABLE IX: The number of possible test suites generated under
600s for different program sizes.

Program Size IPOG IPOG-F IPOG-F2 IPOG-D

Small 100% 54% 70% 80%

Medium 93% 77% 60% 84%

Large 67% 47% 37% 43%

straightforward task since each data type in the model was
directly converted to a corresponding type in ACTS. Figure
6 shows a snippet from a program modeled in ACTS, as an
XML file.

Answer RQ1: ACTS is applicable for modeling
the input space of industrial PLC programs
by using information directly contained in the
source-code as well as information provided
by engineers.



B. Generation Time and Number of Test Cases

In this section we report the results related to RQ2. We
considered that a test suite generated in an efficient manner
in terms of generation time if it has been created by ACTS
in less than ten minutes according to information provided by
the engineers working at Bombardier Transportation Sweden
AB testing these programs. The information in Table VIII
shows the number of modeled programs for which ACTS
could generate a test suite in less than 600 seconds. The Total
test suites number represents the total number of different
test suites that can be generated for each program (i.e., the
number of test suites of all possible strengths of t allowed
by the model and the algorithm). For example Program 3
contains four parameters. Since IPOG allows strength 1-6, for
Program 3 we can only generate test suites up to strength 4.
Therefore, it is possible to generate four different test suites
using IPOG. Program 7 for example contains eight parameters,
but we can only generate six test suites with different strengths
using IPOG. In Table VIII we show the number of test suites
generated under 600 seconds. The results in Table VIII show
that the IPOG algorithm could generate 85% of the possible
test suites under 600s per modeled program and is therefore
the most efficient in terms of generation time, followed by
IPOG-D, IPOG-F, and IPOG-F2.

In Table IX we show for how many of the modeled pro-
grams ACTS can generate test suites using different algorithms
in less than 600s for each category of program size. These
results show that IPOG is the most efficient algorithm given
the 600s time limit for generating the majority of test suites
for all program sizes. For example, all test suites generated
using IPOG for the programs considered small in size took
less than 600s to generate.

In Table X we show the average, median, minimum and
maximum value for the generation time and test suite size,
based on the results obtained from 15 programs when the
interaction strength is set to two. No test data from Program
15 and 16 were included since the test generation ran out of
memory using IPOG-D. In addition, in Table XI we show the
results for 3-way coverage. The data in this table is based
on the data obtained from 13 out of the 17 programs. We
were unable to use the rest of the programs (the non-included
programs are shown in Table XII) since only IPOG could be
used for test generation within 600 seconds, with IPOG-F and
IPOG-F2 performing very badly in terms of test generation
efficiency.

The data in Table X and Table XI show that IPOG-F, on
average, generates smaller test suites than IPOG, but at the
cost of a longer generation time on average. Table XII shows
that IPOG-F has a longer generation time (i.e., longer than
1 hour generation time for 3 programs) than IPOG (i.e., less
than 2 minutes generation time for the same 3 programs).

Our experiment shows that the size of a test suite increases
with the interaction strength used. Figure 7 shows the average
test suite size using the IPOG algorithm for eight programs.
The average is calculated using those programs where IPOG

Fig. 7: The average test suite size using IPOG algorithm for
different interaction strengths.

could generate a test suite for all strengths from 1 to 6. The
plot shows the exponential increase in test suite size with the
strength t.

1) Results on IPOG-D: According to the user guide of
ACTS [5] a moderate sized model contains less than 20
parameters and approximately 10 values per parameter. For
these programs IPOG, IPOG-F and IPOG-F2 are preferred to
be used for combinatorial test generation. For larger systems
IPOG-D is suggested as a preferred way instead of the other
algorithms. Six of our models under test have more than 20
parameters (i.e., Program 6, 12-15 and 17 shown in Table
II). Eight modeled programs have more than 10 values per
parameter on average (i.e., Program 1, 7, 9, 10, 12 and 15-
17). Three programs contain more than 20 parameters and
more than 10 values per parameter on average (i.e., Program
12, 15 and 17). These three programs are considered large
according to the ACTS official user guide.

Our experiments show that when using the IPOG-D strategy
Program 12 runs out of memory for strength 5, Program 15
runs out of memory when the strength is set to 2, and Program
17 reaches the cut-off time within one hour when the strength
is 6. Analyzing the results from the other programs (i.e.,
which were defined as large PLC programs by engineers in
Bombardier Transportation Sweden AB), showed that Program
13 reaches the cut-off generation time of one hour at strength
5, Program 14 creates all possible test suites, and Program
16 runs out of memory when the strength is set to 2. When
using IPOG and IPOG-D for our definition of large programs,
the results show a smaller generation time for IPOG-D in 4
out of 14 test suites, but at the cost of much larger test suites
when compared to IPOG. In general IPOG-D creates larger
test suites than the other algorithms for large programs.

2) Base Choice Criterion: Generating tests using the Base-
Choice algorithm results in a shorter generation time than
pairwise testing (i.e., less than one tenth of a second, for all
of the programs regardless of program size). More details are
shown in Table XIII) in which all measured generation times
are measured in seconds. From our experiments, we show



TABLE X: Summary of the data collected for 2-way test cases. Generation time is given in seconds and size in number of
test cases.

IPOG IPOG− F IPOG− F2 IPOG−D

Size T ime Size T ime Size T ime Size T ime

Avg 1167 0.049 1162 0.513 1170 1.156 2428594 5.915

Med 231 0.028 231 0.080 231 0.130 3698 0.014

Min 14 0.014 11 0.013 11 0.003 26 0.003

Max 8828 0.185 8827 5.086 8827 12.059 25488036 66.336

TABLE XI: Summary of the data collected for 3-way test cases. Generation time is given in seconds, and size in number of
test cases per test suite.

IPOG IPOG− F IPOG− F2 IPOG−D

Size T ime Size T ime Size T ime Size T ime

Avg 5499 0.109 5446 6.978 5551 13.038 833331 2.232

Med 210 0.056 210 0.063 211 0.018 350 0.021

Min 28 0.003 28 0.003 28 0.002 42 0.005

Max 20339 0.560 20339 56.851 20592 118.307 10707624 28.569

TABLE XII: Results showing the generation time data for four
programs that were not included in the overall evaluation for
strength t=3. NA means that the data is not available.

IPOG IPOG-F IPOG-F2 IPOG-D

Program 10 3.3s >3600.0s >3600.0s 0.2s

Program 12 66.5s 3554.6s >3600.0s 69.5s

Program 15 23.2s >3600.0s >3600.0s NA

Program 16 118.9s >3600.0s 2560.3s NA

TABLE XIII: Generation times in seconds for different sizes
of programs using the BaseChoice algorithm.

Generation Time

Min Max Median Average
Small 0.001 0.002 0.002 0.002

Medium 0.002 0.004 0.002 0.002

Large 0.002 0.044 0.003 0.010

Overall 0.001 0.044 0.002 0.005

that ACTS using base choice criteria is efficient in terms of
generation time regardless the size of the programs considered.

3) Long generation times and running out of memory:
As previously mentioned, we used a cut-off time of one hour
(3600 seconds) for test case generation. This means that if a
test suite took longer than one hour to generate we stopped
the process and no further tests with a higher strength were
generated using the specific algorithm for the program under
test. This occurred among the different algorithms and this
occurrence differed from one program to another. For IPOG
this stopping criteria happened four times, for IPOG-F eight
times and for IPOG-F2 and IPOG-D five times. The ACTS
application also ran out of memory when generating a number
of test suites. For IPOG this happened once, for IPOG-F2 five
times and for IPOG-D three times. Interestingly for IPOG-
F this cut-off did not happen (as shown in Table XIV).
What needs to be taken into consideration in this case is

TABLE XIV: Shows at which strength the algorithms have
reached the cut time (3600s), or ran out of memory (OOM)
when applied to the programs. The 7 programs not included
in the table could generate all of the possible test suites, as
well as the combinations marked with ”-”.

Program IPOG IPOG-F IPOG-F2 IPOG-D

Program 1 - 5, >3600 5, OOM 6, >3600

Program 7 - 5, >3600 4, OOM 5, >3600

Program 9 - - 4, OOM -

Program 10 5, OOM 3, >3600 3, >3600 5, >3600

Program 12 4, >3600 4, >3600 3, >3600 5, OOM

Program 13 5, >3600 4, >3600 4, >3600 5, >3600

Program 14 - 6, >3600 5, OOM -

Program 15 4, >3600 3, >3600 3, >3600 2, OOM

Program 16 4, >3600 3, >3600 4, >3600 2, OOM

Program 17 - 5, >3600 5, OOM 6, >3600

the strength for which the cut-off stopping criteria occurred
when comparing these algorithms, since no further tests with
a higher strength were generated after the tool stopped its
execution.

Answer RQ2: ACTS is efficient in generating
test cases using Base Choice regardless of
the size of the PLC program, but is showing
limitations in generating t-wise test cases for
all interaction strengths.

V. DISCUSSION

This study provides insights and experiences on how to
apply combinatorial modeling and testing to PLC industrial
control software. The experiment is an empirical exploration
into the use of ACTS for this type of software. The modeling
process shows how ACTS can be used for modeling several



programs of different size and modeling complexity as well
as generating combinatorial test suites.

To answer RQ2 we generated tests for 17 systems created in
ACTS, one system for each PLC program. All five algorithms,
IPOG, IPOG-F, IPOG-F2, IPOG-D and Base Choice were
applied with different strength for t-way testing when possible.
Our experiments show how the generation time and number
of tests differ when using different algorithms combined with
varying strengths of t-way coverage. Our results suggest that
ACTS is not able to generate test suites under the one hour cut-
off time for all interaction strengths of the t-wise strategies and
algorithms used. For several programs, different algorithms
and t-strengths caused the ACTS tool to run out of memory
before finishing the generation of a test suite. IPOG creates
the most test suites under 10 minutes and the test generation
did not run out of memory or exceeded the cut-off time as
many times compared to some of the other strategies.

IPOG-D was hypothesized [5] to be suited for larger pro-
grams, but the hypothesis is not supported by our results. More
studies are needed to further confirm the results of this study
and get a better understanding of the circumstances in which
this hypothesis can be confirmed.

Related to our work, Lei et al. [13] conducted a study
measuring test suite size and generation time of FireEye
(an earlier version of ACTS). FireEye uses a test genera-
tion algorithm for t-way testing based on the IPO strategy.
Different configurations of parameters were used to perform
experiments. Their experimental results show an exponential
increase in number of tests with the strength t, which is similar
to the results of this paper. As a consequence, the generation
time and the cost of executing and checking the results of
the tests are potentially increasing. Another study by Hagar
et al. [21] describes the results of adopting combinatorial
testing tools (i.e., mainly using ACTS) in several pilot projects
at one company. Overall the adoption verdict was positive,
but changing an already implemented testing process can be
demanding on the company and the engineers using the ACTS
tool.

Our study can contribute to the adoption knowledge needed
by a company in the embedded system and automation do-
main. Our case study shows insights on how to use combina-
torial testing but also on the expectations of applying ACTS
for programs of different size. In the study by Hagar et al.
[21], the authors use a combinatorial coverage tool to check
the coverage of already existing test suites. Ideally, there is an
already existing test suite that can be used to cover a certain t
combination [21]. When generating tests for higher strengths
of t-way testing, we observed that this can be rather expensive
in terms of number of test cases and test generation time for
larger programs. Therefore, one way to use ACTS would be
to check the t-way coverage of existing manually created test
cases and then use the option to verify the extent the test suite
covers a certain t-way combinations [5].

Borazjany et al. [15] applied ACTS to a real-world system
(i.e., the ACTS tool itself). This study shows how to model
the input space for generating tests. Their results show that the

input space modeling is important and should be conducted
thoroughly. Our results suggest that the input modeling is
crucial since an engineer can use different sources of infor-
mation for building a combinatorial model such as the code
itself. An engineer using a combinatorial testing tool needs to
consider the translation rules for different data types between
the original program under test and the combinatorial model
used for test generation. Our study suggests that the modeling
of the input space cannot be directly performed by using only
the information directly contained in the code. An engineer
using ACTS would need to use the information provided by
implementers and testers to obtain a usable model.

VI. THREATS TO VALIDITY

We use a cut-off point for test generation after interviews
with engineers from Bombardier Transportation AB regarding
the needed time for a tester to provide a set of tests for
a desired program. Even if the efficiency are not easily
generalizable to other systems, engineers concluded that one
hour was a reasonable cut-off point for ACTS to terminate its
search. Recall, however, that the aim of these experiments was
not to provide measures of test effectiveness in the sense of
bug-finding, but instead to evaluate the applicability of using
ACTS for test generation and its success in meeting its goals
for the PLC programs used. We wanted to work with a realistic
cut-off time that could be used in practice if this approach is
to be adopted for testing PLC programs. Similarly, engineers
considered the tool efficient if it generated test cases in less
than 10 minutes. Therefore, we assumed an efficiency time
limit of 10 minutes for the sake of this experiment. The choice
of how to define this testing budget in practice is an open
research question that is not in the scope of this study, but can
affect the answers to the research questions.

The results are based on an experiment in one company in
Sweden using 17 PLC programs. Even if this number can be
considered small, we argue that having access to real industrial
control software and the opportunity to collect information
from engineers working in the embedded system domain can
be representative. More case studies are needed to generalize
these results to other systems and domains.

We performed interviews with several engineers working
as professional developers and testers with a certain level
of familiarity with the system under test. In addition, these
engineers did not have prior knowledge of working with com-
binatorial modeling and test generation but they were provided
with a short guideline on the experiment we performed.

We used the ACTS tool for combinatorial modeling and test
generation. There are other tools for modeling and generating
combinatorial tests and these may give different results. Nev-
ertheless, the ACTS tool is based on well known algorithms
and we assumed that its test suites are similar to the output
produced by other combinatorial test input generation tools.

VII. CONCLUSION

Recently, researchers have shown an increased interest in the
area of combinatorial testing that resulted in the development



of a number of test generation tools. ACTS is one of the
popular combinatorial tools that has been applied to several
industrial systems. Nevertheless, there is a lack of evidence
on how this approach can be applied to industrial control PLC
software.

In this paper, we performed a systematic study to determine
the use of combinatorial modeling and test generation for PLC
software using ACTS. The results from modeling 17 programs
provided by Bombardier Transportation Sweden AB show that
the information needed to model the input space model can
be created using different sources of information from both
the PLC programs (directly) and from engineers testing these
programs (indirectly). We created both abstract and concrete
models depending on the data types used in the PLC programs.
The systems created in ACTS using these models were used
for generating tests using different algorithms combined with
different t-way strengths. Overall, the IPOG algorithm seems
to yield the best results in terms of generating the most
test suites under 10 minutes generation time per program for
all possible strengths. According to our results, the IPOG-D
algorithm is not particularly applicable to large programs as
it was previously hypothesized. The results of this study can
be used to find out areas which combinatorial test generation
tools can be improved and hopefully our concrete insights will
lead to future research.

ACKNOWLEDGMENT

This work is partially funded from the Electronic Compo-
nent Systems for European Leadership Joint Undertaking un-
der grant agreement No. 737494 and The Swedish Innovation
Agency, Vinnova (MegaM@Rt2).

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[3] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Sp 800-142. practical combi-
natorial testing,” 2010.

[4] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial
test generation tool,” in International Conference onSoftware Testing,
Verification and Validation (ICST). IEEE, 2013, pp. 370–375.

[5] “Acts user guide,” 2014, manual included with ACTS 2.92 testing tool.

[6] I. E. Commission, “IEC International Standard 1131-3,” Programmable
Controllers, 2014.

[7] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter, “Combinatorial software
testing,” Computer, vol. 42, no. 8, pp. 94–96, 2009.

[8] R. Bryce, Y. Lei, D. R. Kuhn, and R. Kacker, “Combinatorial testing,”
Handbook of Software Engineering Research and Productivity Technolo-
gies, p. 196, 2010.

[9] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing: Beyond
pairwise,” IT Professional, vol. 10, no. 3, pp. 19–23, 2008.

[10] K.-C. Tai and Y. Lie, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, vol. 28, no. 1, p. 109, 2002.

[11] R. Bartholomew, “An industry proof-of-concept demonstration of auto-
mated combinatorial test,” in International Workshop on Automation of
Software Test (AST). IEEE, 2013, pp. 118–124.

[12] S. Gao, J. Lv, B. Du, Y. Jiang, and S. Ma, “General optimization
strategies for refining the in-parameter-order algorithm,” in International
Conference on Quality Software. IEEE, 2014, pp. 21–26.

[13] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog: A
general strategy for t-way software testing,” in International Conference
and Workshops on the Engineering of Computer-Based Systems. IEEE,
2007, pp. 549–556.

[14] Y. Lei, R. Kacker, Kuhn, and D. Richard, “Ipog/ipog-d: efficient test
generation for multi-way combinatorial testing,” Software Testing, Veri-
fication and Reliability, vol. 18, no. 3, pp. 125–148, 2008.

[15] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn, “Combinatorial
testing of acts: A case study,” in International Conference onSoftware
Testing, Verification and Validation (ICST). IEEE, 2012, pp. 591–600.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg
system: An approach to testing based on combinatorial design,” Software
Engineering, IEEE Transactions on, vol. 23, no. 7, pp. 437–444, 1997.

[17] J. Czerwonka, “Pairwise testing,” http://www.pairwise.org, online; ac-
cessed: 2016-04-09.

[18] W. Bolton, Programmable logic controllers. Newnes, 2015.
[19] O. Pavlovic and H.-D. Ehrich, “Model checking plc software written

in function block diagram,” in 2010 Third International Conference on
Software Testing, Verification and Validation. IEEE, 2010, pp. 439–448.

[20] E. P. Enoiu, A. Čaušević, T. J. Ostrand, E. J. Weyuker, D. Sundmark,
and P. Pettersson, “Automated test generation using model checking:
an industrial evaluation,” International Journal on Software Tools for
Technology Transfer, vol. 18, no. 3, pp. 335–353, 2016.

[21] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker, “Introducing
combinatorial testing in a large organization,” Computer, no. 4, pp. 64–
72, 2015.

[22] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[23] S. Ericsson and E. Enoiu, “Data Set Used in Combinato-
rial Modeling and Test Case Generation for Industrial Con-
trol Software using ACTS (Version v1) [Data set]. Zenodo.
http://doi.org/10.5281/zenodo.1204595,” March 2018.

[24] L. S. G. Ghandehari, M. N. Bourazjany, Y. Lei, R. N. Kacker, and D. R.
Kuhn, “Applying combinatorial testing to the siemens suite,” in Inter-
national Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2013, pp. 362–371.


	I Introduction
	II Background
	II-A Combinatorial Testing
	II-B ACTS Tool
	II-C PLC Control Software
	II-D Related Work

	III Experiment Setup
	III-A Subject of Study
	III-B Test Generation
	III-C Measuring Modeling Applicability
	III-D Measuring Test Generation Efficiency and Cost

	IV Results
	IV-A Input Space Modeling
	IV-B Generation Time and Number of Test Cases
	IV-B1 Results on IPOG-D
	IV-B2 Base Choice Criterion
	IV-B3 Long generation times and running out of memory


	V Discussion
	VI Threats to Validity
	VII Conclusion
	References

