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Abstract— The increasing inclusion of Machine Learning
(ML) models in safety critical systems like autonomous cars
have led to the development of multiple model-based ML
testing techniques. One common denominator of these testing
techniques is their assumption that training programs are
adequate and bug-free. These techniques only focus on assessing
the performance of the constructed model using manually
labeled data or automatically generated data. However, their
assumptions about the training program are not always true
as training programs can contain inconsistencies and bugs. In
this paper, we examine training issues in ML programs and
propose a catalog of verification routines that can be used
to detect the identified issues, automatically. We implemented
the routines in a Tensorflow-based library named TFCheck.
Using TFCheck, practitioners can detect the aforementioned
issues automatically. To assess the effectiveness of TFCheck, we
conducted a case study with real-world, mutants, and synthetic
training programs. Results show that TFCheck can successfully
detect training issues in ML code implementations.

I. INTRODUCTION

Nowadays, software applications powered by Machine
Learning (ML) are increasingly being deployed in safety-
critical systems such as self-driving cars or aircraft collision-
avoidance systems. Therefore, their reliability is now of
paramount importance. Recently, researchers have proposed
many testing approaches to help improve the reliability of
ML applications [1]. A common denominator of these testing
approaches is the evaluation of the model performance in
terms of prediction ability regarding manually labeled data
and-or automatically generated data set. The test data set
is used to check for inconsistencies in the behavior of
the models. Whenever inconsistencies are uncovered, the
training set is augmented with miss-classified test data in
order to help the model learn the properties of corner-
cases on which it performed poorly. This process is re-
peated until a satisfactory performance is achieved. These
proposed ML testing approaches assume that the ML model
is trained adequately, i.e., the training program is bug-free
and numerically stable. They also assume that the training
algorithm and the model hyper-parameters are optimal in
the sense that the model has the adequate capacity to learn
the patterns needed to perform the targeted task, adequately.
However, bugs exist in ML training codes and these bugs can
invalidate some of these assumptions. In fact, Zhang et al. [2]
investigated bugs in neural networks training programs built
on TensorFlow [3] and reported about multiple occurrences.
They also identified five challenges related to bug detection

and localization. One of these challenges is coincidental
correctness. A coincidental correctness occurs when a bug
exists in a program, but by coincidence, no failure is detected.
Coincidental correctness can be caused by undefined values
such NaNs and Infs, induced by numerically unstable func-
tions. Finding training input data to expose these issues can
be challenging. Also, a bug in the implementation of a neural
network can result in saturated or untrained neurons that do
not contribute to the optimization, preventing the model from
learning properly. Moreover, when a neural network makes
mistakes on some adversarial data, gathering more data is
not a panacea. The neural network model may not have
the appropriate capacity to learn patterns from these noisy
data or may miss good regularization to avoid overfiting the
noise. Detecting all these issues requires effective verification
mechanisms. In this paper, we introduce a list of verification
routines to help developers detect and correct errors in their
ML training programs. Since these verification routines can
be difficult to adopt for beginners and since their man-
ual application can be very time-consuming, we developed
TFCheck, a TensorFlow (TF) library that implements the
proposed verification routines. To assess the effectiveness
of TFCheck at detecting bugs in ML training programs
automatically, we conducted a case study using real-world,
mutants and synthetic training programs. Results of the case
study show that using TFCheck, developers can successfully
detect training issues in a ML code implementation. This
paper makes the following contributions:

« We provide a practical guide outlining issues and veri-
fication routines, that developers can use to detect and
correct issues in their ML training programs.

e We also provide TFCheck, a TF-based library imple-
menting the verification routines presented in our guide.
Using TFCheck, developers can monitor and debug TF
programs automatically.

The remainder of this paper is organised as follows.
Section [[I] provides background information about Deep
Neural Networks (DNNs) and TF. Section [III| discusses the
related literature. Section presents some common issues
experienced by developers when training ML models along-
side some verification mechanisms. Section [V] describes the
structure of our TF-based library TFCheck and its utilization.
Section [V]] reports about a case study aimed at evaluating
TFCheck. Finally, Section concludes the paper.



II. BACKGROUND

This section introduces key concepts of the paper.

A. Deep Neural Network

Neural Networks (NN) are powerful statistical learning
models that can solve complex classification and regression
problems. A NN is composed of interconnected layers of
computation units, mimicking the structures of brain’s neu-
rons and their connectivity. Each neuron includes an activa-
tion function (i.e., a non-linear transformation) to a weighted
sum of input values with bias. The predicted output of a
NN is calculated by computing the outputs of each neuron
through the network layers in a feed-forward manner. In fact,
DNNs, which are the backbone of deep learning use a cas-
cade of multiple hidden layers to increase exponentially, the
learning capacity of NNs. DNNs are built using differentiable
model fitting, which is an iterative process during which
the model trains itself on input data through gradient-based
optimization routines, making small adjustments iteratively,
with the aim of refining the model until it predicts mostly
right outputs. The principal components of a NN are:
Parameters represent the trained weights and biases used
by neurons to make their internal calculations.

Activations represent non-linear functions that add non-
linearity to neuron output aimed at indicating, fundamentally,
if a neuron should be activated or not.

Loss Function consists of a math function, which estimates
the distance between predicted and actual outcomes. If the
DNN’s predictions are perfect, the loss is zero; otherwise,
the loss is greater than zero.

Regularization consists in techniques that penalize the
model’s complexity to prevent overfitting such as L1-L2
regularization or dropout.

Optimizer adjusts the parameters of the model iteratively
(reducing the objective function), in order to: (1) build the
best-fitted model i.e., lowest loss; and (2) keep the model as
simple as possible i.e., strong regularization. The most used
optimizers are based on gradient descent algorithms.
Hyperparameters are model’s parameters that are constant
during the training phase and which can be fixed before
running the fitting process such as the number of layers or
the learning rate.

When training a DNN, ML developers set hyperparam-
eters, choose loss functions, regularization techniques, and
gradient-based optimizers, following best practices or guide-
lines derived from the literature. After training the model,
the best-fitted model is evaluated on a testing dataset (which
should be different from the training dataset), using error
rate and accuracy measures. The occurrence of errors in the
training program of a DNN often translates into poor model
performance. Therefore, it is important to ensure that DNN
program implementations are bug-free. Given the large size
of the testing space of a DNN [1], systematic debugging and
testing techniques are required to assist developers in errors
detection and correction activities.

B. TensorFlow Framework

TensorFlow (TF) is a popular library that can be leverage
to create DNNs. TF is based on a Directed Acyclic Graph
(DAG) that contains nodes, which represent mathematical
operations, and edges, which encapsulate tensors (i.e., mul-
tidimensional data arrays). This computational graph offers
a high-level of abstraction to represent the algebraic com-
putation of the constructed DNN models, independently of
the programming language used, the execution environment,
and the target hardware. Thus, it provides TF users with
the flexibility to execute their computation on one or more
CPUs/GPUs, or even mobile devices.

TF uses a concept known as deferred execution or lazy
evaluation. This means that there are two principal phases
in a TF program: (1) a construction phase, that assembles a
graph, including variables and operations ; (2) an execution
phase that uses a session to execute operations and evaluate
results in the graph. The constructed DAG allows the TF
XLA compiler to generate an optimized and faster code
for any targeted deployment environment. Indeed, the TF
execution engine schedules the designed computations’ tasks
in a way that ensures the efficient use of resources. In our
work, we choose to implement our verification routines on
TF because of its high popularity in the ML community [4].
The communication interface between a TF model under test
and our TFCheck library is its corresponding DAG.

III. RELATED WORK

Roger et al. [5] applied property-based testing to detect
errors in implementations of MCMC (Markov chain Monte
Carlo) samplers. Property-based testing is a technique that
consists in inferring the properties of a computation using the
theory and formulating invariants that should be satisfied by
the program. Using the formulated invariants, test cases are
generated and executed repeatedly throughout the computa-
tion to detect inconsistencies in the system. Thus, to test the
correctness of MCMC using property-based approach, Roger
et al. verified that the conditional distribution was consistent
with the joint distribution for the produced samples at each
update iteration. In order words, instead of comparing the
outputs with a reference oracle (that could be not available
in such case), one can ensure that probability laws hold
throughout the execution of a scientific program. For our
goal of testing the sanity of DNN training program, we
assume that almost all the mathematical functions used are
provided as ready-to-use routines by ML libraries. The target
issues are related to the training program that assembles those
components as the DNN implementation and sets the differ-
ent hyperparameters as the DNN configuration. Therefore,
most of our verification routines are rooted in fundamental
statistical and mathematical concepts that could indicate the
presence of inappropriate configuration or implementation
errors. Selsam et al. [6] proposed to formally specify the
computations of ML programs and constructed formal proofs
of written theorems that define what it means for a program
to be correct and error-free. Using these formal mathematical
specifications and a machine-checkable proof of correctness



representing a formal certificate that can be verified by a
stand-alone machine without human intervention, they ana-
lyzed a ML program designed for optimizing over stochastic
computation graphs, using the interactive proof assistant
Lean, and reported it to be bug-free. In this paper, we propose
a series of verification operations that can be used to detect
errors in the implementation of ML training programs.

The TF official debugging tool (tfdbg) [7] offers fea-
tures such as DAG inspection, real-time tensor values, an
conditional breakpoints.However, it is not very practical
since it adds a huge overhead on computation time, as it
handles each execution step of the graph, to allow TF user
to debug the issues and pinpoint the exact graph nodes
where a problem first surfaced. Thus, TF users often rely
on Tensorboard visualization tool to interactively display
the curves of measures and the data flow structure of the
running DAG [8]. They use named scope to define hierarchy
on the graph to have nodes’ names like dense_layer/weight
pr dense_layer/Relu. This is useful to collapse the variables
from one scope during the visualization of multiple layers.
We intend to build our TFCheck library following this
established naming convention and the simple use of session
object that provides a connection between the Python code
and the DAG on execution. Through this object, it is possible
to fetch any graph node value by its predefined name. Hence,
TFCheck performs verification operations on the values of
nodes fetched before and after running training operations.
These verification operations do not require to break neither
the feed-forward nor the backward pass. Therefore, TFCheck
introduces the verification routines before and after training
operation runs while keeping the training pass to be executed
in an atomic way.

IV. ML MODEL TRAINING PITFALLS

Many issues can prevent a proper training of a DNN.
Below, we elaborate on some of these issues divided into
three groups based on the affected components: Parameter-
related, Activation-related, and Optimization-related issues.

A. Parameters related issues

In the following, we discuss three different types of issues
that are related to parameters and their verification routines.

1) Untrained Parameters: The most basic and common
issue in relation to model’s parameters occurs when develop-
ers forget to connect the different branches of a DNN or call
the function of the creation layer with incorrect parameters.
A DNN can still train and converge with less number of
layers, but it could not have enough learning capacity to
reach high prediction ability. Therefore, it is important to
check that all defined parameters are modified appropriately.
Verification routine. This issue can be detected by storing
each actual tensor’s parameter and comparing it with the
tensor’s parameters obtained after the execution of training
operations, in order to make sure that each parameter is
getting optimized and differs from its default value.

2) Poor Weight Initialization: The initialization of
weights values should be done carefully. Weights need to
be initialized in a way that breaks the symmetry between
hidden neurons of the same layer, because if hidden units of
the same layer share the same input and output weights, they
will compute the same output and receive the same gradient,
hence performing the same update and remaining identical,
thus wasting capacity. In other words, there is no source of
asymmetry between neurons if their weights are initialized
to be the same. The initial random weights values should be
small enough to neither diverge while the gradients explode,
nor very close to zero, so the gradients vanish quickly.
Verification routine. One can verify that there are signifi-
cant differences between the parameter’s values by comput-
ing the variance of each parameter’s values and checking if
it is not equal or very close to 0.

3) Parameters’ Values Divergence: Weights can diverge

to +/ — oo if the initial values or the learning rate are too
high and there is a lack of—or—insufficient regularization,
because the back-propagation updates process would push
the weights to becoming higher and higher, until reaching
oo values (this is caused by overflow rounding precision). In
addition to that, biases also risk divergence in the sense that
they can become huge in certain situations where features
could not explain enough the predicted outcome and might
not be useful in differentiating between available classes.
This problem occurs more likely when the distribution of
classes is very imbalanced.
Verification routine. One can verify that parameters’ values
are not diverging by computing their 75" percentiles (upper
quartiles) and verifying that they are less than a predefined
threshold, during each training iteration.

4) Parameters’ Unstable learning: The use of several
hidden layers can cause unstable learning situations such
as: (1) Layer’s parameters changing rapidly in an unstable
way; preventing the model from learning relevant features.
The intuition is that the parameters are a part of the esti-
mated mapping function, so we risk overfitting the current
processed batch of data when we try to adapt strongly the
parameters in order to fit this batch; (2) Layer’s parameters
changing slowly; making it difficult to learn useful features
from data. These learning issues are strongly related to the
unstable gradient phenomenon. Indeed, we mentioned that
the computation of the gradients with respect to earlier layers
contains a product of terms from all the later layers. This
backpropagation of gradient tend to establish significantly
different learning speeds in the layers. To ensure stability,
advanced mechanisms or adequate hyperparameters choices
are needed to establish relatively similar learning speed with
respect to all neural network’s layers, through balancing out
the computed gradients with respect to the layers’ parameters
as much as possible. In fact, the parameters’ updates are
computed by an optimizer using not only the gradient and
the learning rate. It also contains other hyper-parameters such
as momentum coefficients to provide adaptive gradient steps.
As suggested by Bottou [9], it is useful to compare the
magnitude of parameter gradients to the magnitude of the



parameters themselves with the aim of verifying that the
magnitude of parameter updates over batches represent
something like 1% of the magnitude of the parameter, not
50% or 0.001%.

Verification routine. This issue can be detected by compar-
ing the magnitude of parameters’ gradients to the magnitude
of the parameters themselves. More specifically, following
Bottou’s recommendation to keep the parameter update ratio
around 0.01 (i.e., —2 on base 10 logarithm), one can compute
the ratio of absolute average magnitudes of these values and
verify that this ratio doesn’t diverge significantly from the
following predefined thresholds (see the inequation [I).

mean(abs(updates)) 1
mean(abs(parameters))

—4 < logy (

Using this verification routine, one can recognize the layers
where updates seem to be unstable or stalled.

B. Activation related issues

In the following, we detail three categories of problems
related to activation and their verification routines.

1) Activations Out of Range: Activation functions have

specific output range. One common mistake is to implement
a mathematical function or to apply a wrong existing function
for a layer assuming inaccurate outputs ranges. It is necessary
to make sure that activation’s range of values stays consistent
with what is expected theoretically from their corresponding
function (e.g., sigmoid’s outputs are between [0, 1] and tanh’s
outputs are between [—1, 1]).
Verification routine. To detect activation out of range issues,
one can verify if the activation values exceed known theo-
retical range of values. This verification routine is particular
useful to find computation mistakes when a new activation
function is implemented from scratch.

2) Neuron Saturation: Bounded activation functions with
a sigmoidal curve, such as sigmoid or tanh, exhibit smooth
linear behaviour for inputs within the active range, and
become very close to either the lower or the upper asymp-
totes for relatively large positive and negative inputs. The
phenomenon of neuron saturation occurs when a neuron
returns almost only values close to the asymptotic limits of
the activation functions. In such case, any change on weights
of this neuron will not have a noticeable influence on the
output of the activation function. As a result, the training
process may stagnate with stable parameters, preventing the
training algorithm from refining them.

Verification routine. To detect neuron saturation issues
in NNs, one can use the single-valued saturation measure
pp proposed by Rakitianskaia and Engelbrecht [10]. This
measure is computed using the outputs of an activation
function and is applicable to all bounded activation functions.
It is independent of the activation function output range
and allows a direct statistical measuring of the degree of
saturation between NNs. pp is bounded and easy to interpret:
it tends to 1 as the degree of saturation increases, and tends
to zero otherwise. It contains a single tunable parameter,
the number of bins B, that converges for B > 10, i.e.,

it means splitting the interval of activation outputs into B
equal sub-intervals. Thus, B = 10 can be used without any
further tuning. Given a bounded activation function g, pp is
computed as the weighted mean presented in Equation
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Where, B is the total number of bins, gg is the scaled average
of output values in the bin b within the range [—1, 1], N, is
the number of outputs in bin b. Indeed, this weighted mean
formula turns to a simple arithmetic mean when all weights
are equal. Thus, if g is uniformly distributed in [1,1], the
value of pp will be close to 0.5, since absolute activation
values are considered, thus all gl’) values are squashed to
the [0, 1] interval. For a normal distribution of g;, the value
of pp will be smaller than 0.5. The higher the asymptotic
frequencies of g;, the closer pp will be to 1.

This verification routine can be automated by storing for each
neuron its last O outputs values in a buffer of a limited size.
Then, computing its pp metric based on those recent outputs.
If the neuron corresponding value tends to be 1, the neuron
can be considered as saturated. After checking all neurons for
saturation, one can compute the ratio of saturated neurons per
layer to alert developers about layers with saturation ratios
that surpass a predefined threshold.

3) Dead ReLU: ReLU stands for rectified linear unit,

and is currently the most used activation function in deep
learning models, especially CNNs. In short, ReLU is linear
(identity) for all positive values, and zero for all negative
values. Contrary to other bounded activation functions like
sigmoid or tanh, ReLU does not suffer from the saturation
problem, because the slope does not saturate when x gets
large and the problem of vanishing gradient is less observed
when using ReLU as activation function. However, the fact
that they are null for all negative values increases the risk
of “dead ReLUs”. A ReLU neuron is considered “dead”
when it always outputs zero. Such neurons do not have any
contribution in identifying patterns in the data nor in class
discrimination. Hence, those neurons are useless and if there
are many of them, one may end up with completely frozen
hidden layers doing nothing. This problem often occur when
the learning rate is too high or when there is a large negative
bias. Recent ReLU variants such as leaky ReLU and ELU
are recommended as good alternatives when lower learning
rates do not solve the problem.
Verification routine. A given neuron is considered to be
dead if it only returns zero or almost zero value as output.
Hence, dead ReLUs issues can be detected by storing the last
obtained outputs for each neuron in a limited size buffer and
checking if almost all the stored values are zero or closer to
zero. Whenever we find zero or close to zero values, we can
mark the neuron as dead. By computing the ratio of dead
neurons per layer, one can detect layers with a high number
of dead neurons with respect to a predefined threshold in
order to warn developers about these frozen layers.



C. Optimization related issues

In the following, we present six kinds of issues related to
parameters and their verification routines.

1) Unable to fit a small sample: Given a small data set, a
DNN model should be able to fit it without any issue, because
even simple models would be able to fit a tiny subset of data,
otherwise, there is likely a poor configuration or a software
defect. In such circumstance, there is no need to try training
the DNN on large data for multiple days running.
Verification routine. One can verify that the optimization
mechanism is working well by performing the training
process over a controlled sample data set. Following the
recommendations of Karpathy [1], one can turn off regular-
ization techniques and train the DNN on a tiny subset of data
(i.e., a few data points for each class), and then verify that
it achieves zero loss under these circumstances. A failure
to achieve this performance would signal a minimization
problem.

2) Zero loss : The training process of DNNs relies on data

minimization to adapt optimally the neurons parameters, in
a way that fits well the training distribution, while being
capable of generalization on unseen data provided from
the same distribution. When the loss minimization process
reaches a zero value, it is an indication that the model overfits
the training data, and that its prediction ability could be low
on unseen data. The optimization process aims to learn the
high-level patterns in order to ensure a good differentiation
between the classes.
Verification routine. To detect zero loss issues, Goodfel-
low et al. [11] recommend to verify the training program
directly, as it is (including regularization), checking that it
sufficiently fits the controlled data sample, while keeping its
loss different from zero.

3) Slow or Non decreasing loss: After multiple training
iterations, if the model still has non-decreasing or a very
slow decreasing loss, it is likely to display a poor perfor-
mance because of a low learning capacity. This low learning
capacity issue could be due to a deficiency of the optimizer
or an implementation mistake.

Verification routine. One can verify that the loss is smoothly
decreasing by computing the decreasing loss rate (3) and
verifying that this rate is mostly higher than a predefined
threshold.

current_loss_value

loss_rate = - 3)
previous_loss_value

4) Diverging loss: Due to a high learning rate or inad-
equate loss function, the minimization process can trans-
formed to a maximization process, in the sense that the loss
value can start increasing wildly at certain point.
Verification routine. To detect diverging loss issues, one
should keep track of the loss to make sure that it doesn’t
start increasing after a certain number of iterations. This
verification can be done automatically by initializing and
updating a reference variable containing lowest_loss_value.
Using this variable, one can compute the absolute loss rate
to check if the last computed losses are diverging from

this previously obtained minimum value.

current_loss_value
abs_loss_rate = 4@
lowest_loss_value

5) Loss fluctuations: A highly fluctuating loss during the
training phase of a DNN may indicate an inappropriate
learning rate that prevents the convergence of gradient-
based optimizers to the minimum and keeps jumping it
with relatively large updates. Besides, mini-batch stochastic
gradient-based optimizers risk encountering a fluctuating loss
when the batch size is relatively small, so the loss would be
noisy without an evolution trend during multiple iterations.
Verification routine. Fluctuations in the loss functions can
be identified by the presence of successive loss increases and
decreases; so the loss rate (3) alternates between values that
are either higher and lower than 1.

6) Unstable Gradients: Due to poor weights initialization
and bad choices of hyperparameters, DNNs can be exposed
to the unstable gradient problem, which could manifested in
the form of vanishing or exploding gradients as described
below.

Vanishing Gradient: In this case, the gradient tends to have
smaller values when it is back-propagated through the hidden
layers of the DNN. This causes the gradient to be almost zero
in the earlier layers and consequently would be transformed
to undefined values such as Not-a-Number(NaN) caused
by underflow rounding precision during discrete executions
on hardware. The problem of vanishing gradient can lead
to the stagnation of the training process and eventually
causing a numerical instability. As an illustration, we take the
example of a DNN configured to have sigmoid as activation
function and a randomly initialized weight using a Gaussian
distribution with a zero mean and a unit standard deviation.
The sigmoid function returns a maximum derivative value of
0.25 (i.e., the derivative of sigmoid when the input is equal
to zero) and the absolute value of the weights product is
less than 0.25 since they belong to a limited range between
[—1, 1]. Generally, the gradient of a given hidden layer in
a NN would be computed by the sum of products of all
the gradients belonging to the deeper layers and the weights
assigned to each of the links between them. As a result,
the deeper the gradient is back-propagated over the hidden
layers, the more there are products of several terms that are
less or equal to 0.25. Hence, it is apparent that earlier hidden
layers (i.e., closer to the input layer) would have very less
gradient and would be almost stagnant with less weights
changes during the training process.

Exploding Gradient: The exploding gradient phenomenon
can be encountered when, inversely, the gradient with respect
to the earlier layers diverges and its values become huge.
As a consequence, this could result in the appearance of
—/ + oo values. Returning to the previous DNN example,
the same NN can suffer from exploding gradients in case
the parameters are large in a way that their products with
the derivative of the sigmoid keep them on the higher side
until the gradient value explodes and eventually becomes
numerically unstable.



Verification routine. One can detect unstable gradient issues
by examining the first and the last gradients, which corre-
spond respectively to the last, and the first hidden layer (to
make the computation cheaper). More specifically, one can
check if their 25" percentiles (lower quartiles) are not NaN
or less than a minimum threshold and their 75" percentiles
(upper quartiles) are not Inf or higher then a maximum
threshold; this could indicate the presence of diminishing or
exploding values through backpropagation. Softer tests can
be performed by comparing the ratio of absolute average
magnitudes of the last gradient by the first gradient to
some predefined tunable thresholds(i.e. min and max in the
inequation [5), indicating the maximum tolerable growth or
decline of back-propagated gradients.

mean(abs(last_gradients))

min < log, ( ) < maz (5)

mean(abs(first_gradient))
V. TFCHECK : A TENSORFLOW LIBRARY FOR TESTING
ML PROGRAMS

To assist users in debugging and testing the code im-
plementation of their TF ML programs, we developed a
library implementing the issues detection routines described
in Section We choose to focus on TF programs because
of the popularity of TF in the ML community. Nevertheless,
the ideas implemented in this library could be adapted for
other frameworks. In the following, we describe each module
in more details.

A. Setting Up the Testing Session

The testing of a DNN training program can be more
complicated than for traditional programs because of its non-
deterministic aspect. Indeed, it is difficult to investigate and
detect training issues when the program exhibits a novel
behavior and returns different output for each execution.
However, the testing task can be much easier when we
guarantee that the ML program always produces the same
outputs given the same inputs. To avoid stochastic ML
program’s execution, we analyzed the different aspects of
ML implementations that could result in non-deterministic
behavior.

(1) Randomness: The stochastic nature of the training
program is induced by the facts that the model parameters
are initialized randomly, mini-batch optimizers select random
batches of training data at each iteration until convergence.
This results in the final parameters being slightly different
between multiple execution times, and recent regularization
techniques such as dropout, introduces randomness when it
eliminates a number of neurons from training with respect
to pre-defined probability.

(2) Parallelism: TF relies heavily on parallelism to achieve
high performance through multicores CPU and GPU. Multi-
threading execution makes it extremely hard to get perfectly
reproducible results. To illustrate this point, suppose that two
parallel operations (noted a and b) are executed simultane-
ously by two threads, depending on how fast each thread
runs, operation a may finish before or after operation b.
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Fig. 1. Example of result difference caused by operators order change

That’s not a problem as long as the outputs of these opera-
tions are used in a deterministic order, but if they are pushed
to the same queue, then the order of the items may change at
each single run, and consequently, the downstream operations
also change. Although mathematically the result should be
the same using real numbers, program may not return the
exact same results since the execution environments perform
computation using floats with limited precision as illustrated
in Figure [T} During training, these tiny differences will ac-
cumulate and generate different outputs in the end. To make
ML program deterministic, we first turn off multi-threading
execution on CPU and GPU. However, this would be done
only for the testing phase since the single thread program
execution would be much slower in terms of running time.
To ensure the reproducibility of the DNN training program
under test, the sefup() method in our TFCheck library turns
off almost all the potential sources of variability by fixing
the seeds for all the computational libraries used, such as
TF, Numpy and Python built-in random library. TFCheck
can also deactivate the parallelism with GPU depending on
the usage of the tester, i.e., whether he prefers more the
determinism or the rapidity of execution of the different
verification routines in a parallel environment.

B. Monitoring the Training Program Behavior

TFCheck performs the verifications described in Sec-
tion using values of tensors fetched before running
training operations and the results obtained after running the
training operations. Thus, given the number of verifications
that should be performed once in a while, between the
session.run() calls, we use the monitored session and hooks
mechanism to handle all this additional processing injected
in the training program. This allows us to keep the code
of our library elegant, maintainable, and easy to extend. To
develop and use session hooks in our library, we need to
perform two steps:

1) Create one or more Hooks that inherits from the
SessionRunHook class and implement methods re-
quired to perform the check, essentially we implement
before_run and after_run that execute pre-and post-
processing to each session.run() call.

2) Create a MonitoredSession and attach to it the imple-
mented session hooks by setting the hooks parameter
to a list of session hooks instances.

TFCheck implements all the verification routines described
in Section [[V] as well as a Hooks module that contains the
different session hooks for the different verification routines.
Those hook objects access values obtained for activations,
parameters, and gradients w.r.t parameters, with the aim
of applying the verification routines on them. Since the
training program runs consecutive session.run() calls, most



tensors such as activations and gradients do not survive past
a single execution of the graph and the parameters of the
model such as weights and biases are updated continuously.
Therefore, those hook objects generally store the last values
of chosen parameters or previously obtained value to enable
the execution of the necessary comparisons.

C. Logging for any Detected Issue

Once TFCheck finds an issue, it reacts depending on the
configuration defined by the tester. The current available
configurations are : “log warning message explaining the
detected issue” or “stop the testing process and raise an
exception”. The Logging and Exceptions module contains
different exceptions related to the issues tested and meaning-
ful warning messages aimed at helping testers understand the
issues of their training programs and helping them identify
their root causes.

VI. EVALUATION OF TFCHECK

To assess the effectiveness of TFCheck at detecting errors.
We replicate the training of 4 buggy TensorFlow programs
identified by Zhang et al. [2] and of 7 mutants generated
and verified by Dwarakanath et al. [12]. Besides, we create
4 synthetic training codes that imitate known issues to com-
plement the evaluation of TFCheck. Table [VI|summarizes the
results and following, we describe in detail the issues found
and the TFCheck verification routines that detected them.

A. Real-world Training Programs

In the empirical study on TF Bugs [2], We found programs
in which the reported bugs are related to an Incorrect Model
Parameter or Structure (IPS). We choose this type of bugs
because they often manifest themselves during the training
phase of the models, and therefore allow for early detection.
These bugs are mainly caused by inappropriate modeling
configurations that lead to erroneous behaviors during the
training phase. Zhang et al. claim that the major symp-
tom of these bugs is low effectiveness, i.e., low accuracy.
However, we believe that TFCheck can generate more fine-
grained feedbacks whenever such issue is encountered by
ML developers; which will help for its early detection and
for understanding its root cause.

To verify our hypothesis, we replicate these buggy TF
programs. Then, their executions using a monitored training,
incorporated with TFCheck hooks allowed us to detect the
existing issues in 4 programs.

In IPS 4, the neural network use inadequate loss function
that, first, triggers an unstable parameters learning issue;
because parameters seem to be changing slowly and the
model seems unable to learn patterns. Over time, this caused
the non-decreasing of the loss issue and its stagnation at a
relatively high value.

In IPS 5, the predict variable is a continuous variable and
the loss function is MSE. However, the sample training data
used contained outputs that are relatively big and the use of
gradient descent optimizer with a high learning rate (i.e., 0.1)
caused the unstable parameters learning issue in the sense

that weights changed wildly with relatively high update steps,
then, the exploding of gradients issue occured.

In IPS 15, the weights are poorly initialized in a way that
contain a constant value, which is not small enough to not
diverging through backpropagation of gradients. Therefore,
TFCheck displayed the Umnbreaking Symmetry issue from
the first iteration. Then, it triggerred the exploding weights
issue when one of the DNN’s weights starts containing huge
values.

In IPS 17, the learning rate was high in a way that caused the
unstable parameters learning issue, with remarkable bigger
update weights ratio and, then, this ended up turning into a
diverging loss issue. These results suggest that TFCheck
can successfully help developers detect training issues;
resulting from misconception or poor choices of DNN’s
configuration spots.

B. Mutants of Training Programs

Dwarakanath et al. [12] created mutants of training pro-
grams that represent a TF training program with one bug.
They adopted a systematic approach of changing a line of
code, at once, in the original source code and repeatedly
generated multiple source code files with intentionally in-
duced faults. To perform a large-scale generation, they used
the MutPy tool [13], from the Python Software Foundation,
to generate the mutants. From their mutants analysis and
dataset, we extracted non-crashing mutants that contain a
subtle bug in the training code in order to see if TFCheck
can trigger adequate warnings for each issue.

In Mutant-29, a random change of the mathematical operator
in the loss function causes its deficiency. TFCheck was
able to kill this mutant during the testing process when it
triggered the Zero Loss issue warning, indicating that the
loss reached a zero value, which is a suspicious value. In
fact, if we continue the training execution, the mutant will
even return negative values. In Mutant-30-31-32, different
deformations in the regularization term causes its defective-
ness in a way that it becomes a non-regularization term
that would guide the optimizer to increase the value of
weights in opposite with regularization objective. TFCheck
identified this training issue by, first, alerting for the Unstable
parameters learning issue caused by high weights’ updates
steps and second, triggering a warning related to the presence
of the high fluctuations on the loss issue; showing that
the optimizer encounters a difficulty finding the minimum
under the given circumstances. In Mutant-43-44-45, some
intentionally induced faults in the formula that generates the
schedule of different learning rates enhance the weirdness
of computed values and the deficiency of the corresponding
training session. For this mutant, TFCheck was able to detect
those incorrect learning rate schedules through the resulting
unstable parameters learning verification routine. Besides,
TFCheck alerted also for the vanishing gradient issue when
the gradients became smaller and smaller, to adapt the update
step given those high learning rates.

These results show that TFCheck can successfully detect
training issues caused by coding mistakes.



TABLE I
OVERVIEW ON THE TESTED NEURAL NETWORKS

Neural Network Issue

Fired Checks

1PS-4 Inadequate Loss function Unstable parameters learning(slow), non-decreasing loss
IPS-5 Inefficient Optimization Unstable parameters learning(high), Exploding gradients
IPS-15 Poor weight Initialization Unbreaking Symmetry, Exploding Weights
1PS-17 High learning rate Unstable parameters learning(high), Diverging Loss
Mutant-29 Incorrect loss function Zero Loss
Mutant-30 Incorrect regularization term Unstable parameters learning(high), Loss Fluctuations
Mutant-31 Incorrect regularization term Unstable parameters learning(high), Loss Fluctuations
Mutant-32 Incorrect regularization term Unstable parameters learning(high), Loss Fluctuations
Mutant-43 Incorrect learning rate schedule Unstable parameters learning, Vanishing Gradient
Mutant-44 Incorrect learning rate schedule Unstable parameters learning, Vanishing Gradient
Mutant-45 Incorrect learning rate schedule Unstable parameters learning, Vanishing Gradient

Synthetic-1 Very deep NN with sigmoid activations

Saturated Neurons

Synthetic-2

Random bias initialization with Huge negative values

Dead Neurons

Synthetic-3 Disconnected layers

Untrained parameters

Synthetic-4

Deactivate a layer (Remove the activation function)

Activation out of range

C. Synthetic Training Programs

We complemented the evaluation of TFCheck using syn-
thetic code examples. For the saturation neurons issue, we
constructed a fully connected NN with ten layers including
each 100 neurons with Sigmoid as activation function for
the MNIST digits classification (i.e., input images 28 x 28
and 10 predicted classes). This neural network risks the
saturation from early training iterations as explained in the
Glorot and Bengio [14]. For the problem of dead neurons,
we also implement a ReLU-based fully connected NN that
contains a biased initializer that introduces huge negative
bias in random neurons. This NN is at risk of dead neurons,
since their linear computation could give almost zero or less,
because of the huge negative bias. Inspired from a buggy
TF code snippet found in githu we developed a training
program that contains disconnected layers from others in the
computation graph; so they did not depend on the train-
ing operation. TFCheck successfully detected these known
mistakes (it reported about the existence of parameters that
are permanently untrained by the DNN during the training
session). Regarding activation layer issues, we removed the
activation function from the layer definition in order to
mimic the situation when the outputs of a newly designed
activation function are not as expected. TFCheck triggered
the activation are out of their valid range warning. These
results further reinforce previous findings that TFCheck
can successfully detect training issues in ML programs.

VII. CONCLUSION

In this paper, we introduce a list of verification rou-
tines that can be used by developers to detect errors in
the implementation of ML models. We implemented these
verification routines in an automated testing library for ML
programs developed using TensorFlow. Evaluation results
show that using our library, developers can successfully
detect training issues in their ML program implementations.
In the future, we plan to expand this library to include the
verification of advanced activation and loss functions through
property-based testing [1] (to validate their conformity), and

Ihttps://gist.github.com/Thenerdstation/
1c333b33e587859e37476109b44491cl#file-convnet-py.
numerical-based testing [1] (to check the correctness of their

gradient automatically inferred by automatic differentiation).
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