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Abstract— More than eight million smart contracts have been
deployed into Ethereum, which is the most popular blockchain
that supports smart contract. However, less than 1% of deployed
smart contracts are open-source, and it is difficult for users to
understand the functionality and internal mechanism of those
closed-source contracts. Although a few decompilers for smart
contracts have been recently proposed, it is still not easy for
users to grasp the semantic information of the contract, not to
mention the potential misleading due to decompilation errors. In
this paper, we propose the first system named STAN to generate
descriptions for the bytecodes of smart contracts to help users
comprehend them. In particular, for each interface in a smart
contract, STAN can generate four categories of descriptions,
including functionality description, usage description, behavior
description, and payment description, by leveraging symbolic
execution and NLP (Natural Language Processing) techniques.
Extensive experiments show that STAN can generate adequate,
accurate and readable descriptions for contract’s bytecodes,
which have practical value for users.

Index Terms—Smart contract, Ethereum, Program compre-
hension

I. INTRODUCTION

Since its inception, blockchain technology has shown
promising application prospects from cryptocurrency to a
variety of forms, such as medicine [1] [2] and cloud com-
puting [3] [4]. As the program deployed and executed in
blockchain, smart contract is the core technology in the 2.0
era of blockchain [5]. Through developing smart contracts,
developers can realize rich logic and greatly expand the capa-
bilities of blockchain system. As the most popular blockchain
system that supports smart contract, Ethereum can complete
one million transactions per day [6]. More than eight million
smart contracts have already been deployed in Ethereum, while
only less than 1% are open-source [7].

Unfortunately, facing the bytecodes of deployed smart con-
tracts, it is difficult to quickly and comprehensively understand
their details [8] [9], which leads to two issues. First, when
users encounter a deployed contract, they usually do not know
exactly how to use it, because users do not know the inter-
faces (i.e., external/public functions) of the bytecodes or the
specific functionalities of its interfaces; Second, although some
contracts are open-source, the blockchain system only stores

¶ The corresponding author.

the runtime bytecodes of them [10]. Usually common users
cannot easily comprehend the contracts’ sources published on
websites (e.g., Etherscan [11]), not to mention the bytecodes
of these contracts. Note that all the bytecodes mentioned in
this paper refer to runtime bytecodes.

The root cause of above problems is the lack of tools to
comprehensively summarize the functionalities of contract’s
bytecodes. Although a few decompilers for smart contracts
have been recently proposed to turn contracts’ bytecodes into
user-defined IR (Intermediate Representation) [8] or Solidity
sources [12], it is still not easy for users to grasp the semantic
information of the contract, not to mention the potential
misleading due to decompilation errors. Some other studies
leverage symbolic execution [13] [14], static analysis [15]
[16], dynamic analysis [17], [18], or formal methods [19] [20]
to analyze smart contracts for detecting security issues, whose
purposes are different from this paper.

0x606060405260043610610083576000357c01f168063095ea7b314610088
57806318160ddd146100e257806323b872dd1461010b57806341c0e1b5146
1018457806370a0823114610199578063a9059cbb14...//contract bytecodes

0x3ccfd60b  //one interface's descriptions
Functionality Description: Owner can withdraw contract funds.  //FD
Usage Description: You can call this interface as withdraw().  //UD
Behavior Description: In this interface, it transfers ETH to another address. In this 
interface, it calls another user-defined contract.  //BD
Payment  Description:  This interface  is payable and you can send ETH to this 
interface.  //PD

Fig. 1: The runtime bytecodes of one
closed-source contract (address at Mainnet:
0x68854ed29d6feca85242a9b5c00b9e93895a5403) and
the descriptions for one interface generated through STAN.

In this paper, we propose and implement a system named
STAN (deScribe byTecodes of smArt coNtract), which can
analyze the runtime bytecodes of smart contract and auto-
matically describe its interfaces in natural language, enabling
users to quickly and thoroughly understand closed-source
contracts. One motivating example of STAN’s descriptions for
a smart contract is shown in Figure 1. Given the address of
target contract, STAN can automatically acquire its runtime
bytecodes and describe every interface from four aspects.
The functionality description summarizes the interface’s func-
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tionality, and usage description tells the user how to call
this interface. The behavior description describes message-call
related behaviors within the interface, and payment description
describes whether the interface can receive ETH.

The main contributions of this paper are as follows:
(1) To the best of our knowledge, we conduct the first re-

search of describing the bytecodes of smart contracts in natural
language. For closed-source contract’s bytecodes, STAN can
generate four categories of descriptions for each interface.

(2) We leverage program analysis and NLP techniques to
describe bytecodes. We analyze bytecodes through symbolic
execution and generate readable descriptions following stan-
dard workflow of NLG (Natural Language Generation) system.

(3) We evaluate the generated descriptions from three as-
pects. We develop a tool named SCANS, which statically ana-
lyzes contract sources to evaluate descriptions’ adequacy and
accuracy. We also evaluate descriptions’ readability through
questionnaires and statistical methods.

II. BACKGROUND

This section briefly introduces necessary background.

A. Ethereum

Ethereum has two types of accounts, namely EOA (Ex-
ternally Owned Account) and contract account [21]. Users
can create EOAs and store ETH (native cryptocurrency in
Ethereum). Users can send transactions using the private key
associated to the EOA address, including ETH transfers and
contract calls [22]. The contract account is created by EOA or
another contract account. Besides ETH, the contract account
contains the bytecodes and storage variables of smart contract.

B. Smart Contract

In Ethereum, each node runs an EVM (Ethereum Virtual
Machine), and the bytecodes of contract are executed in
EVM [23]. Smart contract can be developed through several
Turing complete languages, such as Solidity (the recom-
mended language), Serpent, and Vyper [23]. Therefore, smart
contract can implement complex logics.
Contract Interface: It denotes functions that can be called
externally by EOA or other deployed contract. “external” or
“public” functions can be invoked by others. If a contract
is open-source in Etherscan [11], the most popular Ethereum
block explorer, users can retrieve contract’s ABI (Application
Binary Interface) to get its interface information.
Contract Invocation: After a smart contract is deployed to
Ethereum, its interfaces can be called through transac-
tions [24]. Gas is the basic unit of resource consumption for
transactions in Ethereum. Invoking smart contracts through
transactions requires a certain amount of gas [25]. When a
smart contract is running in EVM, each opcode consumes
some gas, whose value is defined in the Yellow Paper [10].
Message-call: There are two kinds of transactions in Ethereum,
namely normal transaction (i.e., sent from EOA) and internal
transaction (i.e., sent from contract). Through message-call,
smart contract can interact with other EOAs or contract

accounts, which typically cause internal transactions. One nor-
mal transaction may include several internal transactions, and
message-call usually comes with the occurrence of sensitive
behaviors. For example, through exploiting recursive message-
call vulnerability, the criminals stole more than 60 million
dollars from smart contract THEDAO [26]. We analyze four
different message-call related behaviors in this paper.
DevDoc: Ethereum NatSpec (Natural Specification) [27] pre-
scribes the writing specifications of DevDoc (Developer Doc-
umentation) in the contract’s sources. For example, with the
annotation field ‘details’, contract developers can explain the
functionality of the interface.
ERCDoc: In EIP (Ethereum Improvement Proposal) [28], there
is ERCDoc (ERC Documentation), which prescribes standard
interfaces for tokens in Ethereum. For example, ERC20 is the
most popular token standard and there already exist more than
238,000 deployed ERC20 tokens [29].

III. STAN SYSTEM

The overview of STAN’s architecture is shown in Figure 2,
which mainly consists of five modules:

(1) Functionality analysis module (Section III-A): STAN
conducts contract-oriented analysis through NLP techniques
to generate functionality related phrases for interfaces. Note
that the functionality of STAN is to describe closed-source
contracts’ bytecodes, and we analyze open-source contracts
and metadata to provide help for bytecodes’ analysis through
discovering identical bytes signatures.

(2) Usage analysis module (Section III-B): STAN extracts
function bytes signatures from function dispatcher and reverse
them into corresponding text signatures. From text signature
(e.g., transfer(address, uint256)), users can know func-
tion’s name and parameter’s configuration, which are used to
call the interface.

(3) Behavior analysis module (Section III-C): STAN ana-
lyzes external/public functions to generate intermediate infor-
mation for message-call related behaviors leveraging symbolic
execution. Through analyzing opcodes and operands, we rec-
ognize four kinds of sensitive message-call behaviors (e.g.,
ETH transfer, contract deployment, contract call).

(4) Payment analysis module (Section III-D): STAN ana-
lyzes external/public functions to generate intermediate infor-
mation for payment feature through symbolic execution. We
construct CFG (Control Flow Graph) to recognize two kinds of
payment patterns, indicating whether the interface is payable.

(5) NLG module (Section III-E): STAN generates the final
readable interface descriptions leveraging the results of pre-
vious four modules. The NLG process follows the standard
workflow of NLG system, i.e., document planner, micro-
planner, and surface realizer.

A. Functionality analysis module

1) DevDoc and ERCDoc analysis: In this section, we
analyze DevDoc and ERCDoc to generate phrases that summa-
rize interfaces’ functionalities. The result is stored in STAN’s
database and will be used to facilitate the describing of
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Fig. 2: Overview of STAN’s architecture (best viewed in color). A is functionality analysis module; B is usage analysis module;
C is behavior analysis module; D is payment analysis module; E is NLG module.

bytecodes. In the next section, we analyze interfaces without
DevDoc or ERCDoc.

Through SCANS’ static analysis for 129,737 open-source
contracts, there are 5.36% (6,954) sources with DevDoc. We
show the process of DevDoc analysis through a function,
whose text signature is ‘totalSupply()’, which is divided into
four steps. First, we leverage SCANS to perform static analysis
of sources and parse their DevDocs, to extract all the ‘details’
annotations for functions with signature ‘totalSupply()’.

Second, we aggregate the ‘details’ annotations of functions,
whose signatures are the same and appear in different con-
tracts, into a single paragraph. Note that we only intercept the
first sentence in each function instance’s ‘details’ annotations,
as it is most closer to the goal of describing interfaces’
functionalities. In addition, we pre-process the aggregated
paragraph. In detail, we remove non-English sentences, iden-
tical sentences, meaningless special symbols, etc. After pre-
processing, we obtain 53 different sentences, and all of them
are written by the developer to describe the functionalities of
‘totalSupply()’.

W (Vi) = (1−
Damping factor︷︸︸︷

df )+df×
∑

Vj∈In(Vi)

Weight of Eji︷︸︸︷
wji∑

Vk∈Out(Vj)
wjk

W (Vj)

(1)

where: In(Vi) is the set of vertices that point to Vi,
Out(Vj) is the set of vertices that Vj points to.

Third, we summarize the paragraph T through TextRank
Model. TextRank is a ranking model for natural language [30]
mainly used to unsupervised keywords extraction for texts.
We conduct word segmentation (segmented by spaces), part-
of-speech tagging on the paragraph, and filter out stop words.
Then we build the keyword graph G = (V, E) through TextRank
Model, whose vertice set is composed of word ti. If two
different tis appear in a window of length k, they have the co-
occurrence relationship and there is an edge between the cor-
responding two vertices with specified weights. Vi’s weight is
computed using Formula 1. We sort all the vertices according
to their weights, to get several words with top weight values as

keywords. At last, we extract key phrases (i.e., keywords with
co-occurrence relationship) as summarization of the paragraph.

Similarity(Si, Pj) =
|{

Words in sentence and phrase︷︸︸︷
wm |wm ∈ Si ∩ wm ∈ Pj}|
|{wn|wn ∈ Si ∪ wn ∈ Pj}|

(2)

TABLE I: Part of the statistics of ranked sentences in ‘details’
paragraph for function signature ‘totalSupply()’. ID represents
position ordinal of sentence in the ‘details’ paragraph.

ID MinHash Jaccard index Sentence
?47? ?0.183017870949962? ?‘Total supply of tokens.’?

36 0.161335751783794 ‘Returns the total token supply.’
43 0.140755293788616 ‘Function to access total supply of tokens.’
2 0.139558685183205 ‘Total Supply.’
1 0.114068411467280 ‘Retrieves total supply.’
40 0.091591782314505 ‘Obtain total number of tokens in existence.’

Fourth, to get the significance weight for different sen-
tences in the paragraph, we calculate Jaccard index (shown
in Formula 2) of each sentence Si to extracted key phrases
Pj through MinHash algorithm [31]. At last, we sort the
sentences according to their weight values, as shown in Table I,
and select the highest weighted sentence (marked with ?)
as the functionality phrase for the function with signature
‘totalSupply()’.

Furthermore, we find that token-related function signatures
have very high occurrence frequencies. Through SCANS’ static
analysis for 129,737 open-source contracts, there are 67.56%
(87,652) sources with contract names that contain the keyword
‘erc’. In other words, approximately 67.56% contracts imple-
ment the ERC standard token interfaces. Therefore, we get
ERCDocs from EIPs and analyze standard token interfaces, to
obtain token-related function signatures and their correspond-
ing functionality phrases.

Because the writing structure of ERCDocs is not standard-
ized or unified, it is difficult to parse their content automat-
ically. First, we analyze the ERCDocs manually, extracting
function signatures and their corresponding annotations de-
fined in the documents. We have analyzed 12 popular token-
related ERCDocs, and their relevant statistics are shown in
Table II. Second, we combine different annotations of the same
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TABLE II: Quantity statistics of token interfaces defined in
ERCDocs. ? marks ERCDocs that extend ERC20. For exam-
ple, ERC827 inherits 9 functions from ERC20 and defines
3 new functions. Note that the ERC1132 is also ERC20’s
extension; however, it only describes its 9 new functions. For
all ERCDocs, we only extract external/public functions.

Documentation Defined interfaces Documentation Defined interfaces
ERC20 9 ERC918 9
ERC721 17 ERC998 25
ERC777 15 ERC1080 8

ERC827? 9+3 ERC1132? 0+9
ERC884? 6+11 ERC1203? 6+4
ERC900 10 ERC1410 12

function signature into one paragraph. Third, we summarize
functions’ paragraphs through TextRank model separately,
to generate functionality phrases for interfaces defined in
ERCDocs. Eventually, we generate 115 different function sig-
natures and their corresponding functionality phrases, which
will be loaded into STAN’s database.

2) SWUM analysis: In this section, we generate function-
ality related phrases through SWUM for interfaces without
DevDoc or ERCDoc, whose process is divided into three steps.

SWUM (Software Word Usage Model) is used to extract
linguistic information from program statements, including
words in different parts of speech and the language relation-
ship between them [32]. We use some examples to interpret
the process. First, for functions that follow standard naming
conventions, we segment their text signatures through specific
rules. We analyze three types of naming conventions, i.e.,
Camel case (e.g., ‘isPresaleReady()’), Pascal case (e.g., ‘Give-
BlockReward()’), and Snake case (e.g., ‘claimed tokens()’).
For those functions that do not follow standard naming con-
ventions, we leverage Zipf’s law [33] to conduct word segmen-
tation. After word segmentation, we tag the words in part-of-
speech to get a set of nouns, verbs, and so on. For example, the
function signature ‘isPresaleReady()’ is segmented into (‘is’,
‘presale’, ‘ready’) and tagged as (‘VBZ’, ‘NP’, ‘ADJP’).

ROOT

SINV

VBZ NP

is NP ADJP

NN JJ

presale ready

ROOT

FRAG

VP

VBZ VP

is VBN

finished

ROOT

S

VP

VB NP

register VBN

investor

VBN

account

ROOT

NP

NN NN

gas price

isPresaleReady() isFinished() registerInvestorAccount() gasPrice()

Fig. 3: Four types and examples of syntax tree for function sig-
nature. SINV represents inverted declarative sentence; FRAG
represents fragment; S represents simple declarative clause;
NP represents noun phrase.

Second, we analyze the linguistic relationship between the
segmented words, such as subject-verb, verb-object, passive

Algorithm 1: Phrase generation through syntax tree
1) Input: Sf ← signature of function f
2) Listf ← WordSegmentation(Sf ) Bthrough Camel, Pascal,

Snake cases, or Zip’f law
3) Listf ← Part-of-speech(Listf )
4) STf ← StanfordParser(Listf ) Bconstruct syntax tree
5) Switch(Type(STf )):
6) Case SINV : Binverted declarative sentence
7) V E ← VerbSelector(STf )
8) TPf ← TemplateSelector(STf )
9) Pf ← PhraseConstructor(Listf , STf , V E, TPf )

10) Case FRAG: Bfragment
11) OB ← ObjectSelector(STf )
12) TPf ← TemplateSelector(STf )
13) Pf ← PhraseConstructor(Listf , STf , OB, TPf )
14) Case S: Bsimple declarative clause (no need to add new

elements or select templates, because Listf can be fully
constructed into a phrase, and the sentence structure is fixed)

15) Pf ← PhraseConstructor(Listf , STf )
16) Case NP : Bnoun phrase (no need to select templates,

because the sentence structure is fixed)
17) V E ← VerbSelector(STf )
18) Pf ← PhraseConstructor(Listf , STf , V E)
19) Output: Pf

relations, etc. Leveraging Stanford parser [34], we construct
syntax tree of the text signature to analyze its linguistic rela-
tionship. We analyze four types of syntax tree, including SINV
(inverted declarative sentence), FRAG (fragment), S (simple
declarative clause), and NP (noun phrase). The structures and
examples of these four syntax trees are shown in Figure 3.

Third, the functionality phrase is generated using the anal-
ysis results from the previous two steps, and the process is
shown in Algorithm 1. In the algorithm of phrase generation,
we analyze the structure of syntax tree, then select artificially
designed verbs and templates to be assembled as phrases.
For example, the function ‘isPresaleReady()’ is classified as
SINV type of syntax tree, and then we depth-first traverse the
syntax tree, looking for the noun subject. Afterward, we select
verb ‘check’ and template ‘whether the NP VBZ ADJP’, and
generate the functionality phrase for this function as ‘Checks
whether the presale is ready’.

TABLE III: Quantity statistics of deployed open-source smart
contracts (? marks Testnets).

Network name Transactions Block depth Open-source contracts
Mainnet 506,822,407 8,234,086 50,017
Kovan? 23,994,109 12,485,019 8,622

Rinkeby? 38,609,478 4,807,975 19,527
Ropsten? 106,730,113 6,073,746 51,571

3) Database construction: We have crawled total of
129,737 deployed open-source contracts from Etherscan,
whose statistics are shown in Table III. Through DevDoc
and ERCDoc analysis, we have generated 12,993 and 115
different function signatures and their corresponding func-
tionality phrases respectively. Leveraging SCANS, we to-
tally extract 2,860,798 function text signatures from 129,737
sources’ ABIs. As supplements, we obtain 147,724 from EFSD
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(Ethereum Function Signature Database) [35], which is a
public signature database that anyone can updates. Then we
combine the text signatures extracted from ABIs and EFSD,
removing duplicates, and use Keccak-256 hash algorithm to
calculate bytes signature for each item. Eventually, we obtain
202,995 different text signatures and corresponding bytes
signatures, which are used in SWUM analysis and usage
analysis (Section III-B). We publish the above analysis results
data on https://figshare.com/articles/dataset/11650734. To the
best of our knowledge, it is the most comprehensive Ethereum
function signature public dataset.

Note that we do not leverage code clone techniques in
this paper because we only analyze open-source contract’s
function signature, not its function body. STAN can describe
bytecodes that do not have corresponding sources. The STAN’s
database is used to reverse bytes signature and help to generate
functionality and usage descriptions. Behavior and payment
descriptions’ generation does not use the database at all. We
also use two different bytecodes datasets, one has correspond-
ing sources and the other one does not have, to fully evaluate
STAN in Section IV.

We construct contract database for STAN, and import these
function-related data to assist in describing bytecodes of
closed-source contracts. If one function’s bytes signature in
bytecodes can be retrieved in the database, we can use its
related data to generate functionality and usage descriptions.
We use MongoDB [36] to implement the database, and fully
import the datasets published in the above URL into database
to help describe bytecodes. When the final functionality de-
scriptions are generated for one interface, we set specific
priority rules to decide which field is used, which are presented
in Section III-E. The results of SWUM analysis are not loaded
into database, because STAN directly generates descriptions
from function signatures through SWUM if their DevDoc-
related or ERCDoc-related phrases cannot be retrieved in
database. Note that if one function’s bytes signature in byte-
codes cannot be retrieved in the database, its functionality and
usage descriptions may not be generated properly.

B. Usage analysis module

In this section, we analyze the runtime bytecodes to recog-
nize external functions’ signatures, further to generate inter-
mediate information for usage descriptions.

The usage analysis is divided into three steps. First, leverag-
ing OYENTE [13], which is a symbolic execution engine, we
construct CFG of the runtime bytecodes. Second, we recognize
function dispatchers in the CFG. The function dispatcher is
used to compare the bytes signature encoded in transaction pa-
rameter with signatures in runtime bytecodes, to decide which
function to execute exactly. There exist two different types of
function dispatchers in bytecodes, and we use the bytecode
snippet of one closed-source contract (Address at Mainnet:
0x50e57ada51fa82b5a3de6ebae3d21f88c8d3a672) (shown in
Figure 4) to interpret their patterns. For the first type, which is
usually located in the opcode block of initial entrance, it reads
the first 32 bytes of the transaction’s input data as IN0. After

… //stack and arithmetic operations
0x32 CALLDATALOAD
0x33 DIV
0x34 PUSH4 0x06fdde03
0x39 DUP2 
0x3a EQ 
0x3b PUSH2 0x008a
0x3e JUMPI
0x3f DUP1 
0x40 PUSH4 0x18160ddd
0x45 EQ 
0x46 PUSH2 0x00e6
0x49 JUMPI

ܫ 0ܰ, ,ሻݏ݁ݐݕሺ4ܾݐ݌݁ܿݎ݁ݐ݊ܫ ܫ 0ܰ
′

ܫ 0ܰ
′ , ܤሼ݈ܽݑݍܧ 1ܵሽ, ሾݐ, ݂ሿ

ሾݐ, ݂ሿ, ,1ሽܴܦܦܣሼ݌݉ݑܬ ܲܿሼ1ܴܦܦܣ, ܿ݌ߤ ൅ 1ሽ 

,ܫܵ ,ሽ݊ܵܤሼ݈ܽݑݍܧ ሾݐ, ݂ሿ

ሾݐ, ݂ሿ, ,ሽܴ݊ܦܦܣሼ݌݉ݑܬ ܲܿሼܴ݊ܦܦܣ, ܿ݌ߤ ൅ 1ሽ 

Fig. 4: Bytecode snippet of two different types of function
dispatcher (best viewed in color). Opcodes in program counter
0x32 to 0x3e belong to dispatcher type one, and opcodes in
counter 0x3f to 0x49 belong to dispatcher type two.

intercepting the first 4 bytes of IN0 into IN
′

0, it compares
IN

′

0 with the first bytes signature in bytecodes BS1. If IN
′

0

equals BS1, the program counter will be changed to ADDR1,
which is the opcode block corresponding to function BS1.
Otherwise, the program counter will be changed to µpc + 1.
For the second type of function dispatcher, it reads SI , which
is the bytes signature of the transaction’s target function, from
the stack directly. Then it compares SI with one of bytes
signature in bytecodes BSn. If SI equals BSn, the program
counter will be changed to ADDRn. Otherwise, the program
counter will be changed to µpc + 1.

Third, we extract function bytes signatures from
function dispatchers (i.e., (BS1, 0x06fdde03) and
(BSn, 0x18160ddd)) and retrieve their corresponding
text signatures through the contract database. Note that
it may fail to retrieve text signatures, whose adequacy is
evaluated in Section IV-B. Eventually, the extracted function
bytes signatures and their corresponding text signatures (i.e.,
(0x06fdde03, name() and (0x18160ddd, totalSupply()) act
as intermediate information to be transferred to the NLG
module (in Section III-E) to generate usage descriptions.

C. Behavior analysis module
In this section, we analyze four kinds of message-call behav-

iors in interface, further to generate intermediate information
for behavior descriptions. The behavior analysis is divided into
two steps. First, for every execution path in function body,
we record the occurrence of message-call related opcodes
and their corresponding operands through symbolic execution.
Second, we analyze the recorded information of message-call
related opcodes and operands, and summarize it into four
different categories of interface behaviors listed in Table IV.

For ETH transfer behavior, there are two scenarios. In the
first scenario, CALL or CALLCODE is bound to appear during
function body execution. Further, we analyze their value field
operand Pv , to check whether Pv is a non-zero constant or
symbolic value. If Pv is a non-zero constant, it indicates
the existence of a fixed amount of ETH transfer. If Pv is
a symbolic value, it indicates the existence of a non-fixed
amount of ETH transfer, whose specific value is determined

5
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TABLE IV: Four different categories of interface behaviors
through message-call, and their corresponding opcodes and
operands to be analyzed. ? marks the behaviors that cause
internal transactions.

Interface behavior Analyzed opcode Analyzed operand

ETH transfer? CALL, CALLCODE Pv

SELFDESTRUCT 7
Pre-compiled contract call CALL Pa

User-defined contract call? CALL Pa

CALLCODE, STATICCALL,
DELEGATECALL 7

Contract deployment? CREATE 7

by function’s input parameter or contract’s storage. In the
second scenario, SELFDESTRUCT is bound to appear and
we do not need to analyze its operand. The occurrence of
SELFDESTRUCT indicates that there is ETH transfer during
contract’s self-destruction. For PRE contract call behavior,
CALL is bound to appear, and we analyze its target address
field operand Pa, to check whether Pa is a constant value
from 0x1 to 0x8. From version Metropolis [10], Ethereum
implements eight different PRE contracts.

For user-defined contract call behavior, there are two sce-
narios. In the first scenario, CALL is bound to appear during
function body execution, and its operand Pa is not any
of the addresses of PRE contracts. In the second scenario,
CALLCODE or STATICCALL or DELEGATECALL is bound
to appear during function body execution. We do not need to
analyze their operands in this scenario, and the presence of
any of them can prove the existence of user-defined contract
call behavior.

For contract deployment behavior, CREATE is bound to
appear during function body execution, and we do not need
to analyze its operands. The occurrence of CREATE indicates
that there is inline assembly or call to its constructor in the
function body, to deploy new contracts. At last, the target
interface’s specific message-call behavior category will act as
intermediate information to be transferred to the NLG module
to generate behavior descriptions.

D. Payment analysis module

In this section, we analyze whether the target interface is
ETH payable, further to generate intermediate information
for payment feature descriptions. When we develop smart
contract with Solidity, a function needs to be decorated with
modifier payable in order to receive ETH through transactions.
If users call a non-payable interface with ETH, the transaction
execution will fail and waste user’s gas.

We recognize payment operations’ patterns in the CFG of
the target function body, to detect whether the interface is non-
payable. We use two different bytecode snippets (contract A
at Mainnet: 0x6ab6aac6a6f844e322a6c42b3185e1bc4cf56e42,
and B at Mainnet: 0xa3ed88f7c9bf7df33b7549bb8c5a889b60
49504c) to interpret payment patterns as shown in Figure 5.

It acquires transaction’s value field Tv , and determine
whether Tv equals 0. If Tv equals 0, the program counter
will be changed to ADDRf , which is the initial execution

0x149 CALLVALUE
0x14a ISZERO
0x14b PUSH2 0x0150
0x14e JUMPI
0x14f INVALID

0x35 CALLVALUE
0x36 ISZERO
0x37 PUSH2 0x003f
0x3a JUMPI
0x3b PUSH1 0x00
0x3d DUP1
0x3e REVERT

ݒܶ , ,ሼ0ሽ݈ܽݑݍܧ ሾݐ, ݂ሿ 

ሾݐ, ݂ሿ, ܦܦܣ൛݌݉ݑܬ ݂ܴൟ, ܲܿ൛ܦܦܣ ݂ܴ , ܿ݌ߤ ൅ 1ൟ 

ܲܿ, ܿ݌ߤ൛ݐ݁݃ݎܽܶݏ݅ ൅ 1ൟ,  ሻࢀሺ࢝࢕࢘ࢎࢀ

ݒܶ , ,ሼ0ሽ݈ܽݑݍܧ ሾݐ, ݂ሿ 

ሾݐ, ݂ሿ, ܦܦܣ൛݌݉ݑܬ ݂ܴൟ, ܲܿ൛ܦܦܣ ݂ܴ , ܿ݌ߤ ൅ 1ൟ 

ܲܿ, ܿ݌ߤ൛ݐ݁݃ݎܽܶݏ݅ ൅ 1ൟ,  ሻࢀሺ࢚࢘ࢋ࢜ࢋࡾ

Fig. 5: Bytecode snippet of two different types of payment
operations (best viewed in color). Opcodes in program counter
0x149 to 0x14f (in function 0x66117276) belong to non-
payable type one, and opcodes in counter 0x35 to 0x3e (in
function 0x62c06767) belong to non-payable type two.

block’s address of behaviors within function. If Tv is not equal
to 0, the program counter is changed to µpc + 1, which is
the address of next execution block. In the execution block
that started from µpc + 1, it throws or reverts the transaction
due to different compiler SOLC [37] versions. Before SOLC
version 0.4.12, it throws the transaction through INVALID
(0xfe in bytes). In this scenario, it rolls back all state changes
and consumes the remaining gas. For example, one transaction
(Hash at Rinkeby: 0x128907301beff5c56af8234e3c92556735
2696defffc89e453313e33ae73ac5d) failed with invalid opcode
error, and it consumed all the 4,707,786 gas from the user.
After SOLC version 0.4.12 (including v0.4.12), it reverts the
transaction through REVERT (0xfd in bytes). In this scenario, it
rolls back all state changes and returns the remaining gas to the
user. For example, one transaction (Hash at Mainnet: 0x037a
08b19bc3255e2feca42f6e08294ab8f7daa26e400d998b2a1368
159216f2) failed with inverted error, and it consumes 22.53%
(22,525/100,000) of the gas given by the user. Therefore, in
both scenarios, transaction will fail and cause the user’s gas
wasted. Note that either of our detected pattern’s occurrence
indicates that the target interface is non-payable.

At last, the result of interfaces’ analysis, (0x66117276, [
Nonpayable, T rue]) and (0x62c06767, [Nonpayable, T rue]
), act as intermediate information to be transfered to the NLG
module respectively to generate feature descriptions.

E. NLG module

In this section, we generate the final readable interface
descriptions leveraging the results of previous four analysis
modules. The NLG module mainly consists of three steps,
which are shown in Algorithm 2.

The first step is document planner for content determination
and document structuring. After importing four categories
of intermediate information IFf,u,b,p for the target interface,
we give them four different weights to determine the order
in which the descriptions appear. Note that specific weight
values of WIF are set depending on the degree of IF ’s
importance, which will be used to determine paragraphs’
order. For example, we give IFf the highest weight and
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Algorithm 2: Description generation through NLG module
1) Input: IFf,u,b,p Bintermediate information of functionality,

usage, behavior, and payment descriptions
2) Step 1: document planner
3) WIF ← WeightAssign(IFf,u,b,p)
4) For Element in IFf,u,b,p:
5) WIFf,u,b,p ← WeightAssign(Element)
6) Step 2: micro-planner
7) For Pd,s,e in IFf :
8) CGd,s,e ← NLGFactory-CreateClause(Pd,s,e)
9) For Element in IFu,b,p:

10) TPu,b,p ← TemplateSelector(Type(IFu,b,p))
11) C

′′
U,B,P ← NLGFactory-CreateClause(TPu,b,p,Element)

12) C
′
U,B,P ← Aggregator(C

′′
U,B,P )

13) Step 3: surface realizer
14) CF ← WeightHighest(CGd,s,e ,WIFg)
15) CU,B,P ← WeightSort(C

′
U,B,P ,WIFu,b,p)

16) DF,U,B,P ← NLGFactory-CreateParagraph(CF,U,B,P )
17) Di ← GrammarChecker(WeightSort(DF,U,B,P ,WIF ))
18) Output: Di

functionality description will appear first among the four kinds
of descriptions. Similarly, we traverse specific elements in
IFf,u,b,p and weight them, which will be used to select
elements to generate sentences, and to determine the order
of sentences within paragraphs.

The second step is micro-planner for lexicalization and
aggregation. Through IFf , we parse three different kinds of
functionality phrases Pd,s,e, which represent DevDoc-based,
SWUM-based, and ERCDoc-based phrases. Leveraging NL-
GFactory APIs in SIMPLENLG [38], which is a package used
for language generation, we create complete sentences CGd,s,e

of functionality descriptions from Pd,s,e. Then we traverse
specific elements in IFu,b,p and select sentence template
TPu,b,p according to the category of IFu,b,p. Using specific
TPu,b,p and Element, we create complete sentences for
usage, behavior, and payment descriptions C

′′

U,B,P . Because
there might exist sentences that are highly similar or identical
in C

′′

U,B,P , we set rules to aggregate these sentences. For
example, when there are two ETH transfers in the same IFb,
we describe them only once.

The third step is surface realizer for linguistic and structure
realization. For the three kinds of sentences CGd,s,e

, we select
the highest weighted sentence to act as the interface’s func-
tionality description. In NLG module’s implementation, we
set the highest weights for ERCDoc-based sentences because
their IFf are artificially analyzed and extracted from EIPs
in Section III-A1, which are more accurate than the other two
kinds of sentences. For the sentences in C

′

U,B,P , we determine
their appearance order according to their weight values in
WIFu,b,p. Then we create four different paragraphs DF,U,B,P

from the four kinds of sentences CF,U,B,P , leveraging NL-
GFactory APIs. After we adjust paragraphs’ order of DF,U,B,P

according to their weight values in WIF , we check their
language grammar through LANGUAGECHECK [39]. At last,
Di is output as the final descriptions for the target interface.

IV. EVALUATION

We conduct a series of experiments to evaluate STAN, which
are used for answering the following research questions:

RQ1 Adequacy: How many contracts’ bytecodes can be
successfully described through STAN?

RQ2 Accuracy: To what extent can STAN accurately de-
scribe contracts’ bytecodes?

RQ3 Readability: How is the readability of the generated
descriptions for users?

A. Datasets and Experimental Overview

TABLE V: Quantity statistics of two kinds of contract byte-
codes’ datasets for evaluation.

DS Network Bytecode Destructed Identical Analyzed
1 Mainnet 6,920,465 N/A 6,803,635 116,830

2

Mainnet 50,017 725 1,398 47,894
Kovan 8,622 79 514 8,029

Rinkeby 19,527 228 269 19,030
Ropsten 51,571 626 998 49,947

In order to fully evaluate STAN, we create two kinds of
bytecodes’ datasets, which are shown in Table V. For DS1,
we crawl 42,115,551 different accounts’ information in 28
days from Mainnet. We resolve all crawled accounts, with
6,920,465 accounts containing bytecodes, indicating that these
are contract accounts and they are not self-destructed. After
deleting all accounts containing duplicate bytecodes, we obtain
116,830 different runtime bytecodes. For DS2, we crawl open-
source contracts’ bytecodes from Mainnet and three public
Testnets. Then we delete accounts that contain empty byte-
codes, which means that they are already self-destructed, and
accounts containing duplicate bytecodes. All the bytecodes
in DS2 can retrieve corresponding source codes through
Etherscan, which can facilitate us to evaluate the accu-
racy and readability of their descriptions generated from
bytecodes. The statistics also show that only less than 1%
(50,017/6,920,465) contracts are open-source.

Considering that the symbolic execution consumes time
and hardware resources, we run experiments through 4 cloud
instances. These instances are all configured with Intel Xeon
E312x 2.60GHz CPU and 8G RAM, running 64-bit Ubuntu
18.04. We randomly extract 800 runtime bytecodes from DS1
to constitute DS1’, and 200 from each network (total of 800) in
DS2 to constitute DS2’. We have checked all the bytecodes
in DS1’ and they are not verified with source codes in
Etherscan.

Before the evaluation, we run STAN to generate descriptions
for DS1’ and DS2’, which include a total of 1,600 contracts’
bytecodes. As a first step, we run the OYENTE [13] engine
on the datasets alone, in 25 hours, to remove those contracts
that encounter timeout exception. There are 651 contracts’
bytecodes, 357 in DS1’ and 294 in DS2’, executed without
timeout. Second, we generate descriptions for these 651 con-
tracts’ bytecodes through STAN, with an average analysis time
of 87.4s (including symbolic execution) per contract.
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B. RQ1 Adequacy

TABLE VI: Quantity statistics of the success rate of normally
describing or tagging bytecodes. Note that we tag two kinds
of insecure contracts, i.e., NF (No Function) contracts, and JE
(Jump Exception) contracts.

DS Bytecodes Described NF tagged JE tagged Success rate
1’ 357 292 (81.8%) 62 (17.4%) 3 (0.8%) 100%
2’ 294 294 (100%) 0 0 100%

In this section, we evaluate how many bytecodes can be
successfully described through STAN. The quantity statistics
of the success rate of normally describing or tagging bytecodes
are shown in Table VI.

For DS1’, there are 292 (81.8%) bytecodes described nor-
mally through our NLG module. The other 65 bytecodes are
tagged as insecure contracts, i.e., NF (No Function) contracts
or JE (Jump Exception) contracts, which are advised not to be
called. The NF contract has no external/public function and
executes the same opcode snippet for each invocation. For
example, one tagged NF contract (Address at Mainnet: 0x517
0E3C93df0605F3b02b00d8C3D9a7235fcD1Ef) is a honeypot
contract, and it executes the same useless operations for each
invocation. It wastes users’ gas and can maliciously receive
users’ ETH attached in the transaction. Therefore, we tag
this contract’s bytecodes as “ALERT: This is an insecure NF
contract!” The JE contract has invalid jump destination(s)
in its opcodes, which may encounter jump exception and
exhaust users’ gas. For one tagged JE contract (Address at
Mainnet: 0x6a5dffaAdBCbeF3359a017cc5100908630364aB
F), regardless of which interface is called, it will encounter a
runtime exception, which exhausts users’ gas. Therefore, we
tag this contract’s bytecodes as “ALERT: This is an insecure
JE contract!”

For DS2’, all the 294 (100%) contracts’ bytecodes are nor-
mally described and no bytecodes tagged as insecure contracts.
We can conclude that contracts with corresponding verified
source codes are generally more secure.

TABLE VII: Quantity statistics of interfaces described nor-
mally, and the success rate of four kinds of descriptions.

DS Interfaces FD UD BD & PD
1’ 3,179 (N/A) 2,231 (70.2%) 2,979 (93.7%) 3,179 (100%)
2’ 4,180 (100%) 3,023 (72.3%) 4,180 (100%) 4,180 (100%)

We further evaluate STAN’s adequacy from the level of
interfaces, whose statistics are shown in Table VII. For the de-
scribed 292 contracts’ bytecodes in DS1’, 3,179 interfaces are
analyzed. There are 2,231 (70.2%) interfaces’ functionalities
successfully described. Some interfaces are failed to generate
functionality description because they are not included in De-
vDoc and ERCDoc analysis. In the meanwhile, they cannot be
analyzed perfectly through SWUM, which are mainly reflected
in two aspects. First, some functions are highly irregularly
named. For example, function caps(address) cannot be
recognized through Stanford parser [34] because “caps” is

not a complete word or standard abbreviation. Second, some
functions’ syntax structure cannot be analyzed. For example,
function MAX_INVESTMENTS_BEFORE_CHANGE() cannot
be classified into the four syntax trees we detect. There are
2,979 (93.7%) text signatures recognized through our usage
analysis and contract database. To the best of our knowledge,
we already construct the most comprehensive function signa-
ture dataset. For the other 6.3% functions, there is currently
no viable way to identify their text signatures.

For the 294 contracts’ bytecodes in DS2’, by using SCANS,
we acquire their corresponding source codes and totally ex-
tract 4,180 external/public functions statically. As shown in
Table VII, 100% of these interfaces are analyzed and identified
text signatures through usage analysis. Similar to DS1’, 72.3%
interfaces’ functionalities successfully described.

Answer to RQ1 (Adequacy): STAN can successfully de-
scribe or tag 100% of the bytecodes in two datasets. Further-
more, 100% of interfaces can be successfully described by
two description modules (i.e., BD, PD). More than 93.7% of
interfaces’ usage descriptions can be successfully generated,
and more than 70.2% of interfaces’ functionalities can be suc-
cessfully described. STAN can adequately describe bytecodes
of smart contracts.

C. RQ2 Accuracy

TABLE VIII: Quantity statistics of STAN’s accuracy of tagging
insecure bytecodes, FD (functionality description), UD (usage
description), and PD (payment description).

DS Result Accuracy DS Result Accuracy
1’ NF tag 623 / 07 2’ UD 4,1803 / 07
1’ JE tag 33 / 07 2’ PD non-payable 2,5463/07
2’ FD 2173 / 12; / 17 2’ PD payable 1,6343/07

In this section, we evaluate to what extent can STAN
accurately describe bytecodes. We first evaluate the insecure
contracts’ bytecodes tagged in DS1’, and FD/UD/PD in DS2’,
whose statistics are shown in Table VIII. Unlike DS1’, all
bytecodes in DS2’ have corresponding source codes, which
makes it possible for us to evaluate the accuracy of their
FD/UD/PD/BD through sources’ review and static analysis.

By using DISASM [40], which is a disassembler tool, we
acquire all 62 tagged NF bytecodes’ corresponding opcodes
and retrieve operation PUSH4 in them. No matter which type
of runtime function dispatcher, there is bound to exist PUSH4
operation. However, PUSH4 is not retrieved in the 62 tagged
NF contracts. To further validate our conclusion, we analyze
all history transactions of these 62 NF contracts. Only 2 of
these 62 contracts were invoked after creation. All the 10
history transactions of one contract (Address at Mainnet: 0
x84161a5491D9A9348ED48d44b2c717C9ab92B4F3) were
reverted, which wastes users’ gas, and the other contract
(Address at Mainnet: 0xbB38048902107b62A680db6bA69d
6d356D6A8014) maliciously received user’s ETH attached in
transaction. For the 3 tagged JE contracts’ bytecodes, only
1 contract (Address at Mainnet: 0x9C88d1967fE2653da893B
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Fig. 6: Quantity statistics of readability scores for 10 inter-
faces’ annotations, which are written by developers in their
source codes.
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Fig. 7: Quantity statistics of readability scores for 10 in-
terfaces’ descriptions, which are automatically generated
through STAN.

742aDa960D6570592b7) was invoked after creation, which
encountered error “Bad jump destination”. For the other 2
contracts, we re-deploy them in our private local chain and
invoke them, the same error was encountered as a result.

For the FD, we randomly select 20 bytecodes from DS2’ and
totally get 230 interfaces with their FDs generated by STAN.
To avoid the threat of inter-rater reliability, we ask three differ-
ent people to evaluate their accuracy. Through manual sources’
review, we discover that 217 (94.3%) interfaces’ FDs are
accurate, while 12 (5.2%) interfaces’ FDs are inaccurate and 1
(0.4%) interface’s FD is wrong. Inaccurate and wrong FDs are
mainly due to that there are incomprehensible abbreviations in
some FDs. For example, FD of function getBlockNM() is
“Gets block nm”.

To evaluate the accuracy of UD, leveraging SCANS, we
acquire all of the 4,180 functions’ text signatures from their
source codes. Then we use Keccak-256 hash algorithm to cal-
culate bytes signature for each of them. Verified by comparison
with bytecodes’ descriptions, 100% of the 4,180 functions’
text signatures in UD are correct.

For the PD, we first acquire ABIs of all the bytecodes’
corresponding Solidity sources in DS2’ from Etherscan. Lever-
aging SCANS, we statically analyze the payable field (True
or False) of every external/public function in ABIs. Then
we compare the results to the payment descriptions generated
through STAN. As a result, 100% of 2,546 non-payable and
1,634 payable interfaces, which are all described from runtime
bytecodes through STAN, are correct.

We further evaluate STAN’s accuracy of BD (behavior
description). STAN totally detects and describes 72 different
interfaces with message-call behaviors, whose statistics are
shown in Table IX. Leveraging SCANS, we statically analyze
the AST of those functions’ corresponding Solidity sources,
trying to detect Solidity statements corresponding to these spe-
cific message-call behaviors. For the other described interfaces
without message-call behavior, there is no related statement
detected. Note that the user-defined contract call behavior
has no fixed Solidity statement, and we check the 26 cases
manually through source review.

TABLE IX: Quantity statistics of STAN’s accuracy of message-
call behaviors’ description in BD. ? marks pre-compiled
contract calls.

DS Result Accuracy Evaluated statement
2’ ETH transfer 20 3 transfer()/call.value()/selfdestruct()
2’ ?ECDSA sig recovery 16 3 ecrecover(bytes32,uint8,bytes32,...)
2’ U-defined contract call 26 3 N/A
2’ ?SHA-256 hash 2 3 sha256(bytes)
2’ ?RIPEMD-256 hash 1 3 ripemd160(bytes)
2’ Contract deployment 7 3 new CONTRACT

Answer to RQ2 (Accuracy): 100% of the insecure con-
tracts are correctly tagged, and more than 94.3% of gener-
ated functionality descriptions are correct. 100% of generated
usage/payment/behavior descriptions are correct. STAN can
accurately describe bytecodes of smart contracts.

D. RQ3 Readability

In this section, we evaluate the readability of descriptions
generated through STAN. First, from the 4,180 described
interfaces in DS2’, we randomly select 10 interfaces and make
sure that they all have annotations written by developers in
their corresponding Solidity sources. Then we try to evaluate
the readability of these 10 interfaces’ descriptions generated
through STAN from their bytecodes, and their annotations
written by developers. Second, we design a questionnaire
through SURVEYMONKEY [41]. We set a screening question
only to accept those who have ever used Ethereum before.
Furthermore, we set four readability scores and options (4:very
difficult, 3:difficult, 2:easy, 1:very easy) in 20 evaluation
questions. Also, if the responder thinks the annotations or
descriptions difficult to read, we set open questions to input
their reasons.

Third, we publish the questionnaire in BlockFlow [42],
which is a blockchain development forum. During 4 days,
we totally receive 38 responses. However, 2 responses are
incomplete, and 2 responses do not meet the screening criteria.
Therefore, the completion rate of the questionnaire is 95%
(34/38). Quantity statistics of readability scores and their cor-
responding response numbers are shown in Figure 8. For total
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340 evaluation responses (34 complete questionnaires for 10
interfaces), 72.9% (248/340) responses think the annotations
written by developers are (very) difficult to read, while 96.5%
(328/340) responses think the descriptions generated through
STAN are (very) easy to read.
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Fig. 8: Quantity statistics of readability scores evaluated
manually and their corresponding response number. Note that
we totally receive 340 evaluation responses for developer’s
comments and STAN’s descriptions, respectively.

We also analyze the reasons that responders provide why
they think some items (very) difficult to read. We further
analyze and compare the readability scores distributions of
developers’ annotations and STAN’s descriptions, whose quan-
tity statistics are shown in Figure 6 and 7. For the descrip-
tions generated through STAN, one responder suggests giving
Solidity snippet example to call the bytecodes’ interface,
which is out of scope of this paper. For the annotations
written by developers, there are mainly 3 different reasons.
There are 103 responders think the annotations are too simple
explanation for interfaces, 36 responders think there exist
syntax errors in annotations, and 29 responders think some
vocabulary cannot be understood. Through manually checking
the corresponding specific content of developers’ annotations,
function 0x13af4035’s annotation only has 3 words (“Change
owner address”), which 21 responders think is too simple.
For function 0xa9059cbb’s annotation (“Check if the sender
has enough. Add the same to the recipient.”), 16 responders
think it has syntax errors. For function 0xa9059cbb’s annota-
tion (“SafeMath.sub will throw”), 12 responders think some
vocabulary cannot be understood.

Leveraging SCIPY [43], we further analyze the statistical
distributions of the readability scores through two kinds of
non-parametric tests, whose statistics are shown in Table X.
First, we compare the AVG (average) and STD (standard
deviation) values of the readability scores for the bytecodes’
descriptions generated through STAN and annotations written
by developers. As a result, all of STAN’s descriptions per-
form better than their corresponding developers’ annotations

in AVG. Even compared to the best AVG of developer’s
annotation (i.e., 2.118), STAN’s descriptions are all received
better scores. For STD, all of the most significant three values
are appeared in developers’ annotations. That is to say, the
annotations written by different developers, as well as different
responders for the same annotations, there exist significant
differences.

Second, we conduct Kolmogorov-Smirnov Z and Mann-
Whitney U tests to detect whether the two sets of scores have
the same statistical distribution. If the p value is less than 0.05,
which is a relatively strict threshold, the result hypotheses
value will be 1, and the two sets’ statistical distributions are
different. As a result, except for interface ID-9’s KSZ test, all
results show that the two sets of scores have different statistical
distributions. Through manual checking, we discover that the
annotations of ID-9 perform the best in the 10 samples, which
receive scores closest to those of STAN’s descriptions.

Answer to RQ3 (Readability): Compared with the in-
terfaces’ annotations written by developers, 96.5% manual
responses think the descriptions generated through STAN are
(very) easy to read. Furthermore, STAN can generate more
stable and readable descriptions than developers’ annotations.

V. LIMITATIONS AND SOLUTIONS

In this section, we discuss some limitations and the corre-
sponding solutions, which are as follows:

(1). As described in Section IV-A, we run the symbolic
execution engine alone on two datasets to discover that many
contracts’ bytecodes encounter timeout exception. In future
work, we will improve cloud instance’s configuration, and use
more significant timeout threshold to reduce the number of
timeout cases.

(2). We analyze every execution path and some opcodes
symbolic values to describe interfaces accurately and compre-
hensively, with an average analysis time of 87.4s per contract.
In future work, we may consider improving STAN’s perfor-
mance with faster static analysis techniques and evaluating
STAN with more comprehensive bytecodes datasets.

(3). As described in Section IV-B, some functions’ signa-
tures cannot be analyzed perfectly through SWUM. In future
work, we will build more and better syntax trees, and add more
common word abbreviations in Ethereum to Stanford parsers
rule libraries to improve SWUM analysis.

(4). STAN can generate four categories of descriptions for
each interface, as well as tag two kinds of insecure contracts’
bytecodes. In future work, we will conduct more features’ and
behavior’ analysis to improve STAN’s functionalities.

VI. RELATED WORK

Loi et al. [13] proposed OYENTE, which uses symbolic
execution to detect security bugs in smart contracts. Although
STAN uses OYENTE as its symbolic execution engine, our
analysis of bytecodes is not related to the security bugs studied
in [13]. There are some other symbolic execution engines for
detecting vulnerable in smart contracts [14] [44] [45] [46] [47]
[48] [49], whose purposes are different from ours.
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TABLE X: Statistics of two kinds of non-parametric tests (Kolmogorov-Smirnov Z and Mann-Whitney U) for the readability
value of STAN’s descriptions. We compare the bytecodes’ descriptions generated through STAN, and annotations in their
corresponding Solidity sources written by developers. Note that AVG and STD mean average and standard deviation.

Interface
ID

Function
Bytes signature

AVG value
Developer / STAN

STD value
Developer / STAN

p value
Kolmogorov-Smirnov Z

h value
KSZ

p value
Mann-Whitney U

h value
MWU

1 0xe724529c 2.500 / 1.647 0.697 / 0.477 3.118425 * e-05 1 7.142322 * e-07 1
2 0x42966c68 2.971 / 1.471 0.514 / 0.554 7.693612 * e-12 1 5.764868 * e-12 1
3 0xa9059cbb 2.941 / 1.588 0.338 / 0.589 7.327250 * e-13 1 3.956494 * e-12 1
4 0xa9059cbb 2.676 / 1.529 0.468 / 0.543 5.118627 * e-07 1 4.887877 * e-10 1
5 0x4bb278f3 2.176 / 1.531 0.381 / 0.499 8.952478 * e-04 1 6.089033 * e-07 1
6 0x18160ddd 2.676 / 1.441 0.527 / 0.497 5.118627 * e-07 1 1.067191 * e-10 1
7 0xd73dd623 3.118 / 1.764 0.322 / 0.546 1.601234 * e-16 1 2.134156 * e-13 1
8 0xb602a917 2.735 / 1.617 0.609 / 0.594 8.662292 * e-06 1 8.142437 * e-09 1
9 0x74a8f103 2.118 / 1.794 0.322 / 0.471 3.067583 * e-01 0 1.129570 * e-03 1
10 0x13af4035 2.853 / 1.792 0.809 / 0.583 2.204947 * e-06 1 2.625890 * e-07 1

Sergei et al. [15] proposed SMARTCHECK, a static tool
that examines contracts’ Solidity sources to detect security
bugs. However, it cannot analyze bytecodes directly. There
are many other static analysis tools [16] [50] [51] [52] [53]
[54] for detecting different kinds of security issues in smart
contracts. Some studies [19] [20] [55] [56] [57] employ formal
methods to verify security properties of smart contracts and
EVM, whose purposes differ from our paper.

Matt [12] proposed POROSITY, a decompiler for contracts’
bytecodes. However, there are still many challenges to gen-
erate accurate and readable source codes. Similarly, there
are some research [8] [50] [58] [9] [59] [60] decompiling
contracts’ bytecodes into user-defined intermediate languages,
to improve the readability of runtime bytecodes and to facili-
tate the analysis of smart contracts. Some other studies (e.g.,
gas optimization [61] [62] [63]) have different purposes. In
summary, these studies provide us with valuable inspiration to
conduct the first research of describing contracts’ bytecodes.

VII. CONCLUSION

In this paper, we propose STAN, which leverages symbolic
execution and NLP techniques to describe runtime bytecodes
of smart contracts. STAN can generate four categories of
descriptions in natural language for every interface of byte-
codes deployed in Ethereum. We also develop static tool
SCANS to facilitate us to construct the database for STAN, and
facilitate us to evaluate the generated descriptions. Extensive
experiments show that STAN can generate adequate, accurate,
and readable descriptions for bytecodes. In future work, we
will explore other techniques (e.g., deep learning [64]) to
generate better descriptions.
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