
ar
X

iv
:2

11
2.

15
48

5v
1 

 [
cs

.S
E

] 
 3

1 
D

ec
 2

02
1

REST API Fuzzing by Coverage Level Guided

Blackbox Testing

Chung-Hsuan Tsai∗, Shi-Chun Tsai∗, and Shih-Kun Huang∗†

∗Department of Computer Science, †Information Technology Service Center

National Yang Ming Chiao Tung University

Hsinchu, Taiwan

{zx.c, sctsai, skhuang}@nycu.edu.tw

Abstract—With the growth of web applications, REST APIs
have become the primary communication method between ser-
vices. In order to ensure system reliability and security, software
quality can be assured by effective testing methods. Black box
fuzz testing is one of the effective methods to perform tests
on a large scale. However, conventional black box fuzz testing
generates random data without judging the quality of the input.

We implement a black box fuzz testing method for REST APIs.
It resolves the issues of blind mutations without knowing the
effectiveness by Test Coverage Level feedback. We also enhance
the mutation strategies by reducing the testing complexity for
REST APIs, generating more appropriate test cases to cover
possible paths.

We evaluate our method by testing two large open-source

projects and 89 bugs are reported and confirmed. In addition,
we find 351 bugs from 64 remote API services in APIs.guru.

The work is in https://github.com/iasthc/hsuan-fuzz.
Index Terms—OpenAPI, REST API, Test coverage level, Black-

box testing, Fuzz testing, Software quality

I. Introduction

Due to the limitation to exhaust possible input values of the

program, there still exists potential errors in normal operations,

and even leads to security concerns in the program. Software

testing can effectively reduce risks, but manual testing and

writing test cases are time-consuming, so we need to use

automated tools to resolve this problem. Fuzz testing is one

of the automated testing methods.

Fuzzing is very effective for triggering software errors. It

can find exceptions that the developer has not dealt with, and

identify whether the software has security issues. Fuzzing is

also a common method of finding software vulnerabilities. For

test targets with fixed binary formats (such as video and sound),

fuzz testing is effective. There are many studies on black box,

white box, or grey box test methods [1] [2]. However, network

and Web applications are with variants of formats, and it is

more difficult to use the same techniques as been used in

fuzzing binary programs.

Internet applications and related services are popular. REST

APIs have gradually become the primary communication

method between services, ranging from cloud SaaS (software

as a service) to IoT (Internet of Things) devices. If it can be

tested on a large scale, the quality of services will be improved.

The emergence of the OpenAPI specification [3] defines a

standardized interface for REST APIs, making automated

testing of a large number of REST APIs easier.

The current grey box fuzz testing in the REST API will track

code coverage through program instrumentation, and guide the

fuzzer to maximize code coverage, but it can only be applied

to the programming language supported by the tool, such as

Ruby [4] or Python [5]. The black box fuzz testing will try

to analyze and infer the dependencies between requests, and

test by replacing fixed parameter values, as much as possible

to combine the most API paths in each round of requests [6].

Random tests may be carried out with the goal of increasing

the coverage of status codes [7].

It can be seen from the above that grey box fuzzing can

guide the fuzzing process through the feedback of coverage

information, but it is limited by the specific programming

languages supported. In contrast, although black box fuzzing

has the advantage of not being restricted by the programming

language, blind, random, and divergent mutations will make

some paths hard to be triggered. In other words, if the black

box fuzz testing process can identify the effects of the mutation,

it can retain the advantages of not being restricted by the

programming language and perform more efficient testing.

We, therefore, propose to add “Test Coverage Level” [8]

with feedback to the REST API black box fuzz testing to

know whether the mutation effect and input are appropriate

and to improve the shortcomings of the ordinary black box

test that has no feedback from the testing results. Meanwhile,

we resolve the issues that may be encountered in testing REST

APIs and adopt different strategies to increase the speed and

chance of triggering errors. Finally, a proof-of-concept tool

is implemented that only requires OpenAPI specifications and

path dependencies to perform automated testing, which can

speed up the discovery of errors.

Our contributions:

• Propose a new strategy for black box fuzzing with esti-

mated code coverage.

• Implement a new black box fuzzer.

• Add “Test Coverage Level” as feedback for fuzzing.

• Resolve the issues of “request sequence”, “path depen-

dency”, “valid parameter” and “access token”.

• Use “pairwise testing” to reduce the combinations of test

parameters and speed up the testing process.

• Increase the chance of triggering errors through different

“mutation strategies”.

http://arxiv.org/abs/2112.15485v1


II. Background

We will explain “OpenAPI Specification”, as well as “Fuzz

Testing”, “Black Box Testing”, “Pairwise Testing” and “Test

Coverage Level” respectively.

A. OpenAPI specification

REST (Representational State Transfer) is a software archi-

tecture style for network applications. REST style is usually

used in HTTP, mainly because the characteristics of HTTP

are consistent with the definition of REST style, but it is not

actually bound to any communication protocol. The Web API

defined in this style is called RESTful API (hereinafter referred

to as REST API).

TABLE I
REST API and Non-REST API

Behavior Request Methods REST Non-REST

Create POST /Users /newUser

Read GET /Users/1 /getUser

Update PUT /Users/1 /updateUser

Delete DELETE /Users/1 /deleteUser

OpenAPI specification [3] (hereinafter referred to as Ope-

nAPI) is an interface description language, which is written

in YAML or JSON format, not limited to a specific pro-

gramming language so that REST API has a standardized

description method. By directly reading the document or using

the visualization tool [9], you can learn the path, parameters,

functions, and other information of the REST API, which is

convenient for developers to implement and test according to

the specifications.

B. Fuzz testing

Fuzz testing (Fuzzing) is a technique for automated software

testing, which generates random and unexpected inputs repeat-

edly in the hope of triggering errors in the target program.

It can effectively find program anomalies, logic errors, or

developer design flaws, thereby improving program reliability

and software quality. According to the obtained program

information, testing can be divided into kinds of black box,

white box, and grey box manner.

Black box testing usually refers to only understanding the

program’s input, output, and specifications, and not knowing

the internal behavior of the program. Compared with black

box testing, white box testing is with source code, which can

generate better test cases through more complex techniques

(such as symbolic execution), but it takes more time and cost.

Grey box testing is to have information about the speci-

fications and program runtime information, such as tracking

the code coverage achieved by each input through program

instrumentation, understanding the effect of each round of

mutation, and maximizing the code coverage. Most grey box

fuzz testing [10] [11] adopt this scheme, and use better

strategies such as seed selection and mutation methods to

optimize fuzzing processes.

Code coverage is a software metric that indicates how much

code is executed during the execution of a program. It provides

an assessment and measure of the effectiveness of the tests.

Compared to low code coverage, high code coverage has more

chances for errors to occur.

C. Pairwise testing

Pairwise testing is combinatorial testing, dedicated to using

fewer test cases to cover the paired combinations of multiple

parameters. Since the program usually triggers the error [12]

by the interaction of single or paired parameters, this method

can effectively reduce the number of tests. The minimum num-

ber of tests will be the product of the two most characteristic

parameters.

� = max
&

8=1
�8 × max

&

9=1, 9≠8
� 9

For example, if there are three different parameters of A,

B, and C, with two, three, and four attributes respectively, the

most comprehensive test combination needs to be executed 24

times (2×3×4). If a paired test is used, Only need to execute

12 (3 × 4) times.

D. Test Coverage Level

Martin-Lopez [8] et al. proposed a model for comparing test

technologies for REST API. By formulating ten test coverage

criteria, and combining them into eight test coverage levels

(hereinafter referred to as TCL) to overcome the inability

to automatically measure the effectiveness of test cases. To

achieve a specific TCL, all previous criteria must be met,

which can be evaluated from different perspectives (such as

API, path, or request method), and prove that TCL is correlated

with code coverage and failure detection rate positively.

Table II is “Test Coverage Model” and the test coverage

criteria that each TCL needs to include. We use TCL to

be estimated code coverage and as feedback to the fuzzing

process.

TABLE II
Test Coverage Model

TCL Input Criteria Output Criteria

0

1 Paths

2 Operations

3 Content-type Content-type

4 Parameters Status code classes

5 Parameters Status codes

6 Parameters Response body properties

7 Operation flows



III. Design and Implementation

This research proposes a new concept “REST API black

box fuzz testing based on coverage level guidelines”, which

uses TCL as feedback and guides the black box fuzzers to

improve the drawback of black box testing without knowing

the mutation effects. We summarize the problems encountered

when testing REST APIs, and design our method to resolve

the issues, and then explain our fuzzer “HsuanFuzz”.

A. Complexity of Testing

Functions in the application programs need to be called in

the correct order, and REST API is no exception. Only by

sending requests in the correct order can meaningful test cases

be generated, thereby increasing code coverage. Test cases that

are “deleted” and then “updated” are of little significance.

The highly structured REST API is also a problem. Paths are

interdependent. The response of path “A” may be a parameter

in the request of path “B”. If the path dependency problem is

not resolved, paths and methods cannot be tested completely,

and “404 Not Found” responses will be received.

The format of parameters is also one of the issues to be

resolved. Many parameter strings have specific formats, such

as email, date or uuid, etc. Randomly generated values can

easily lead to “400 Bad Request”.

The last part is about authorization. API services obtain

authorization methods in different ways, such as API key,

Bearer token, or OAuth. If we do not obtain authorization

correctly, we will get a response of “401 Unauthorized”, and

we will not be able to properly test the path that requires

authentication.

Based on the above observations, four issues must be

resolved: request sequence, path dependency, valid parameter,

and access token.

B. Architecture

The purpose is to add a guideline method to the black

box fuzzing to improve the disadvantage of not being able

to determine the effect of the mutation. We input OpenAPI,

path dependencies, and access information, and use TCL as

feedback to automate the testing of REST API. We also try to

resolve the issues mentioned in Section III-A.

“Grammar” phase in Fig. 1 analyzes the dependencies

between OpenAPI and paths to ensure the order between

paths and requests. To avoid incorrect parameter format, we

use OpenAPI example values or pre-defined default values as

initial values and store them in the corpus in the form of

ProtoBuf.

After reading the seed, it needs to go through the “parser”

phase to restore it to a grammar, replace the ID parameters to

resolve the path dependence problem. The “mutation” phase

mutates each request parameter in pairs. If authentication is

required, we first obtain an access token and then send it

along with the request in the “sender” phase. In addition, the

response to a successful request is recorded for subsequent

use.

In the “analysis” phase, the response of each path will be

checked. If the TCL of any path increases, it will be added to

the corpus. If the status code of any response is 500, an error

will be recorded. The seeds are then read from the corpus and

the steps above are repeated.

OpenAPI, Path Dependencies,

and Access Information

Grammar

Corpus

Parser

Mutator

Sender

Analyzer

Errors

Read

500 Internal Server Error

TCL decrement

or no changed

Next round

TCL increment

Save to corpus

Fig. 1. The API Fuzzing Architecture

C. Implementation

We have implemented a proof-of-concept tool and named it

“HsuanFuzz”, which can perform black box fuzz testing based

on coverage level guidelines on REST APIs. It can be executed

by importing YAML files such as OpenAPI specifications, path

dependencies, and access information (if required). We explain

the details in the following.

1) Setup of Initialization: In order to make the fuzzer

work correctly and efficiently, we need to enter some relevant

information manually.

a) Entering related information: “Path dependencies” re-

quires the tester to list the parameter dependencies of all paths,

fill in the ID parameter and source of the request, and predefine

the TCL operation flows, as shown in Listing 1.

In addition, the tester also needs to fill in the “access

information” to obtain the token for REST API, or directly

write the authorization key into the YAML file, as shown in

Listing 2.

b) Defining Corpus and Error: We use a map to create

storage areas to avoid repeated storage of the same grammar or

errors. The key is a hash of the path and request parameters,

and the value is the serialized grammar. This allows us to

restore the seed to grammar by deserialization.



paths:

/articles/{slug}:

items:

- key: "slug"

source:

path: "/articles"

key: "article[{slug}]"

posts:

/articles:

flow:

- method: GET

path: "/articles/{slug}"

- method: PUT

path: "/articles/{slug}"

Listing 1. Path Dependencies

url: 'https://localhost/token'

method: POST

content_type: application/json

body: '{"username": "user", "password": "12345"}'

name: access_token

in: header

key: 'bearer'

token: ''

hardcode: false

Listing 2. Token Authorization

2) Producing Seed Input: This phase has two parts. The

first part is to generate the grammar, analyze the OpenAPI and

solve the “request sequence” and “path dependency” problems.

The second part is to assign parameter values, using OpenAPI

examples or pre-defined default values.

a) Generating Grammar: The first execution will gen-

erate a grammar based on the defined data structure, and

serialize it as a seed for the subsequent generation of more

appropriate test cases. In order to analyze and calculate the

TCL, we minimize the test cases, and each request will send

the “number of response status code types” times.

syntax = "proto3";

package base;

import "google/protobuf/struct.proto";

message Info {

repeated Node nodes = 1;

}

message Node {

uint32 group = 1;

string path = 2;

string method = 3;

repeated Request requests = 4;

}

message Request {

string type = 1;

google.protobuf.Struct value = 2;

}

Listing 3. Seed in ProtoBuf format

b) Solving dependencies: The path itself has dependen-

cies. It cannot be correctly deleted without creating an object.

Paths are also dependent on each other. The value in the

request parameter of path “B” needs to be obtained through

the response of path “A”. We have tried automated analysis,

but found that the efficiency is low, because developers have

different methods for defining parameters, and the user’s ID

parameter may be defined as a different name or even a typo,

such as user_id, userId, or usersId. Manual input combined

with depth-first search can effectively improve the accuracy

of dependencies. For example, if one wishes to test the path

“/articles/{slug}/comments”, the order of the requests will be

the same as in Table III, which can resolve the “request order”

issue and overcome the “path dependency” problem.

TABLE III
Request Order of Dependent Path

* Method Path Description

1 POST /articles New Article

2 PUT /articles/{slug} Update an Article

3 GET /articles/{slug} Read an Article

4 POST /articles/{slug}/comments New Comment

5 GET /articles/{slug}/comments Read All Comments

6 DELETE /articles/{slug}/comments/{id} Delete a Comment

7 DELETE /articles/{slug} Delete an Article

3) Giving Values to Parameters: OpenAPI strings have

many different formats. Randomly generating strings that do

not conform to the format will result in “400 Bad Request”.

A good OpenAPI usually adds “examples” to the parameter

attributes, so we can generate a valid initial value based on

this information. If there is no example in OpenAPI, the initial

value is generated according to the defined rules, such as

Table IV.

TABLE IV
Default Values of Parameter Format

Format Default Values

date 2021–05–28

date-time 2021–05–28T10:00:00+08:00

time 10:00:00+08:00

email user@example.com

hostname localhost

ipv4 127.0.0.1

ipv6 0:0:0:0:0:0:0:1

uri https://tools.ietf.org/html/rfc3986

uuid 5bcafcb2–a669–11eb-bcbc–0242ac130002



D. Input Mutation

The mutation phase will give priority to the path with the

ID parameter, and then mutate according to the strategy. In

order to avoid that the ID field can never be mutated, we

put the mutation strategy behind it, that is, the ID parameters

also have a certain chance to mutate to increase the chance of

triggering errors.

1) Handling ID Parameter: Correctly handling the ID

parameters can greatly increase the number of successfully

explored paths. We take the value from the response body

through a defined method. Take Listing 1 as an example.

“key” represents the ID parameter, and the “path” and “key”

in the “source” are the data source of the ID parameter. For

example, “data[relationships{id}]” represents the “id” field of

the “relationships” object in the “data” array.

2) Processing Mutation Strategy: We use some methods of

Go-fuzz [13] to modify the string, such as “insert, duplicate,

remove a range of bytes”, “set, add, subtract a byte”, “exchange

two bytes”, “replace a multi-byte ASCII number” and “bit flip”.

In addition, to modify the string directly, we added our own

experience of writing REST API to the mutation strategy. If

the exception is not handled properly, giving the wrong type

or removing the necessary fields can easily cause the service

to trigger an error. Therefore, according to the characteristics

of the REST API, “replace data type”, “remove fields” and

“modify string” are randomly adopted.

However, mutating all parameters at the same time will eas-

ily lead to “400 Bad Request”. Combining different numbers

of parameters will cause the path to explode. Therefore, we

adopt the method of pairwise testing. In each round of fuzzing,

only two parameters of each request are changed to increase

the chance and speed of triggering errors.

E. Transferring Request

After completing the pre-work, information on paths, meth-

ods, and parameters can be obtained from the mutated gram-

mar. We set them to the correct fields, decode the string,

remove control characters, and send the request after obtaining

the access token. Lastly, we also record the response body of

a successful request for using in the following requests.

F. Analyzing Response

In order to evaluate the effectiveness of the test case, we

use the TCL mentioned in Section II-D as a feedback method

and use the input and output criteria to calculate the TCL of

each path. If the TCL of any path increases, it is defined as

“interesting” and stored in the corpus for use in the next round

of fuzzing. In addition, if the first digit of the response status

code is five, it means that an error has been triggered, and will

be recorded for later reproduction.

The maximum TCL of our implementation is 6 in general,

unless there is a pre-defined operation flows “Read Single”,

“Read All”, “Update”, “Delete” in the input path dependencies

(Listing1) and meet the behavior of Table III to reach TCL 7.

IV. Results and Evaluations

We have implemented the fuzzer called HsuanFuzz. In order

to be able to evaluate HsuanFuzz, based on the two different

aspects of “code coverage” and “error finding ability”, we

discuss whether the research objectives are achieved in the

form of research questions, and evaluate and present the results

of this research.

• RQ 1: Is it effective to add TCL (test coverage level)

guidelines to the REST API black box fuzz testing?

• RQ 2: Is it better than existing REST API black box

fuzzers?

• RQ 3: What other advantages does black box fuzzing

have?

Experimental Environment

Our devices are based on Ubuntu version 20.04 with In-

tel Core i7–10700 processor and 16 GB memory. We use

“HsuanFuzz based on black box coverage level guidelines”,

“HsuanFuzz without black box coverage level guidelines” and

black box fuzzer “RESTler version 7.3.0” [14] as comparisons.

It is evaluated whether it achieves better results in different

aspects according to the given time budget.

RQ 1: Guiding by TCL (Test Coverage Level)

In order to verify RQ 1, we selected the “RealWorld”

program of Go language implementation [15] as the test target.

We execute each fuzzer for 200 seconds and measure the code

coverage with the number of lines of code executed as a unit.

TABLE V
RealWorld Programs with Lines and Coverage

Components Lines of Code Ha Hb Rc

User 319 172 163 116

Article 544 438 413 36

Total 863 610 576 152

RealWorld [16] is a demonstration application that provides

a complete API specification and can use different front-end

and back-end implementations. There are two components:

“User” and “Article”, which can perform functions such as

register, login, post articles, and comment. There are 11 paths

and a total of 19 request methods.

We use OpenAPI provided by RealWorld, and test in the

default method of each fuzzer. Special attention is paid to

the fact that OpenAPI does not provide parameter examples.

HsuanFuzz can execute about 26 rounds during 200 seconds,

which means that there are 26 chances to generate new seeds,

while RESTler cannot define the number of requests for one

round.

a HsuanFuzz based on black box coverage level guidelines
b HsuanFuzz without black box coverage level guidelines
c RESTler



Fig. 2 shows that the code coverage of “HsuanFuzz based

on black box coverage level guidance” has only been executed

for about 26 rounds, and the code coverage rate increases

significantly faster than “HsuanFuzz without black box cov-

erage level guidance”. As to RESTler, after we adjusted

its “fuzzing_mode” setting, whether it was bfs, bfs-cheap or

random-walk, it was difficult to increase its coverage quickly.

0 50 100 150 200

0

200

400

600

Time (second)

L
in

es
o
f

C
o
d
e

Totala

Totalb

Totalc

Fig. 2. RealWorld Code Coverage Trend

Compared with “HsuanFuzz without black box coverage

level guidelines”, “User” in Fig. 3 can still increase code

coverage after a period of execution, while “Article” can

increase code coverage at a faster speed. It proves that black

box coverage level can guide the fuzzer effectively, converge

the direction of mutation, and mutate values of parameters

more quickly and properly to increase code coverage.

0 50 100 150 200

0

100

200

300

400

Time (second)

L
in

es
o
f

C
o
d
e

Usera

Userb

Userc

Articlea

Articleb

Articlec

Fig. 3. RealWorld Individual Code Coverage

RQ 2: Service Comparisons

We chose two open-source projects of e-commerce platform,

Spree Commerce [17] and Magento Community [18], as our

testee and defined status code 500 as an error to evaluate the

ability to find errors. The former is written in Ruby, the latter

in PHP, and both are great projects on GitHub with over 9,700

stars and a combined total of over 2,300 contributors. We

built Spree on version 4.2.1 and Magento on version 2.4.2

respectively in the experimental environment and entered two

YAML files (path dependencies and access information) for a

24-hour test.

1) Spree Commerce: Spree has 31 paths and a total of 35

request methods. Table VI lists these three fuzzers with errors

found in 24 hours.

TABLE VI
Errors of Spree Commerce in 24 hours

Method Path Ha Hb Rc

GET /order_status/{number} X

GET /products/{id} X

POST /account X X X

POST /account/addresses X X X

POST /cart/add_item X X X

PATCH /account X X X

PATCH /account/addresses/{id} X X

PATCH /cart/set_quantity X X X

PATCH /checkout X X X

DELETE d
X X

DELETE e
X X

d /cart/remove_coupon_code/{coupon_code}
e /cart/remove_line_item/{line_item_id}

HsuanFuzz does not include repeated errors in its design and

finds a total of 11 errors with different paths and parameters.

RESTler found 55 errors. After removing duplicate errors

based on the path, method, and parameters, there were a total

of 6 errors.

Table VI shows that with a small number of paths and

request methods and a long execution time, both HsuanFuzz

can find a similar number of errors, but not the same number

of errors, presumably due to the inability to converge the

direction of mutation. RESTler could not find the error of

“/account/addresses/{id}” path. We concluded that HsuanFuzz

was able to find this error because it had issued the path

dependency problem and adopted a good mutation strategy.

We also executed HsuanFuzz to find some additional er-

rors. A total of 14 errors were reported for two versions of

Spree [19] [20], which were confirmed to be bugs by the

project author. In addition, an error in the YAML file of

OpenAPI specification was reported [21].

2) Magento Community: Magento is a very large-scale

service. There are 312 paths and 395 request methods in

Magento Admin REST endpoints. A 24-hour test was also

performed to list the errors found in these three fuzzers.

Table VII reveals that HsuanFuzz can find more errors than

RESTler at the same time. However, RESTler cannot find an

error with the request method being GET. We judged that it

is because the id parameter of paths will not be mutated. The

number of errors found by HsuanFuzz with or without black

box coverage level guidance is similar because Magento errors



are mostly caused by data type changes or lack of fields, which

can be triggered after fuzzing has been conducted for a certain

period of time. It will be explained and compared in more

detail later.

We also reported the errors we found to the project author.

A total of 75 errors were reported in two versions [22] [23],

all of which were confirmed as bugs.

3) Analysis: After 24 hours of testing, HsuanFuzz and

RESTler were able to find 11 and 6 errors out of 14 known

errors for Spree, and 71 and 3 errors out of 75 known errors

for Magento, proving that HsuanFuzz is superior to RESTler

in terms of error finding ability.

If the comparison is made from the perspective of whether

“black box coverage level guidelines”, both HsuanFuzz can find

a similar number of errors in a long enough time. Therefore,

we use Fig. 4 and Fig. 5 to analyze the cutting time period.

In the early stage of fuzzing, HsuanFuzz will continue to

add seeds to the corpus, because there are constantly ways to

improve TCL, but after a period of time, it will stop adding

seeds because it cannot improve TCL. However, we found that

HsuanFuzz can still find new interesting seeds 2.5 hours after

starting to test Spree.

Also in Fig. 4, we found that it can continue to find new

bugs after a long period of operation. It means that our black

box coverage level guidelines are effective.

0 200 400 600 800 1,0001,2001,400

0

2

4

6

8

10

12

Time (minute)

E
rr

o
rs

HsuanFuzza

HsuanFuzzb

RESTler

Fig. 4. Spree Commerce Errors Trend

Both types of HsuanFuzz ended up with similar error results

in Magento. We found that we were unable to find new errors

after about two hours, and most of the error types were data

type changes or missing fields, which is exactly the strategy

we have defined for the REST API based on our experience.

In order to give RESTler more time to find the error, we also

test the same as Spree for 24 hours.

Fig. 5 shows the number of Magento errors found in the first

15 minutes. About 3 minutes earlier, both could find a similar

number of errors, and then “HsuanFuzz based on black box

coverage level guidance” clearly outperformed “HsuanFuzz

without black box coverage level guidance”. This shows that

the feedback and guidance we added and the idea of reusing

the seeds of interest are effective and that the black box fuzz

testing with guidance can find errors more quickly.

0 5 10 15

0

20

40

60

Time (minute)

E
rr

o
rs

HsuanFuzza

HsuanFuzzb

RESTler

Fig. 5. Magento Community Errors Trend

According to Fig. 6, HsuanFuzz has a good error finding

ability, while Fig. 4 and Fig. 5 show that the coverage level

guide is effective in finding new interesting seeds after a

certain period of time. Finally, Table VIII shows the type and

number of errors we reported.

Spree Commerce Magento Community

0

20

40

60

80

11

71

9

70

6
3

E
rr

o
rs
HsuanFuzza

HsuanFuzzb

RESTler

Fig. 6. Errors in 24 hours

RQ 3: Other Advantages

The grey box fuzzer requires program instrumentation and

has the drawback of programming language restrictions. For

black box testing, it does not need to understand the internal

behavior and the programming language used. Therefore, black

box fuzzing can be performed on a large scale, quickly and

effectively without having to set up a Web API server and

without having background knowledge of the target service’s

programming language.

APIs.guru [24] is committed to becoming a Web API

Wikipedia, and only public, persistent and useful Web APIs

will be included. It provides many different types of services,

most of which can be accessed directly, and some can be

browsed only with subscription or authorization. With the spec-

ifications of Swagger and OpenAPI versions, it can provide a

perfect entry point for black box testing.



TABLE VII
Errors of Magento Community in 24 hours

Method Path Ha Hb Rc

GET /. . . d
X X

POST /s X X X

POST e/w X

POST f /t X X

POST f /j X X

POST f /items X X

POST f /k X X

POST f /l X X

POST f /m X X

POST f /n X X

POST g/j X X

POST h/items X X

POST /categories X X

POST /coupons X X

d A total of 35 paths.
e /bundle-products
f /carts/mine
g /carts/{cartId}
h /carts/{quoteId}

Method Path Ha Hb Rc

POST /guest-s X X

POST i/t X X

POST i/j X X

POST i/items X X

POST i/k X X

POST i/l X X

POST i/m X X

POST i/n X X

POST /inventory/o X X

POST /invoices/ X X

POST /orders X X

POST /products X X

POST /salesRules X X

POST /taxRates X

i /guest-carts/{cartId}
j estimate-shipping-methods
k payment-information
l set-payment-information
m shipping-information
n totals-information

Method Path Ha Hb Rc

POST /p-validation/p X X

PUT u/q X X X

PUT v/q X X X

PUT e/options/{optionId} X

PUT e/w X

PUT /carts/mine X

PUT f /items/{itemId} X X

PUT g/items/{itemId} X X

PUT /categories/{id} X X

PUT r/variation X X

PUT i/items/{itemId} X X

PUT /orders/create X X

PUT /products/{sku} X X

o source-selection-algorithm-result
p vertex-address
q {amazonOrderReferenceId}
r /configurable-products
s address/cleanse
t billing-address
u /amazon-billing-address
v /amazon-shipping-address
w {sku}/links/{id}

We selected 936 YAML files with OpenAPI, a total of 768

services, and tested them without entering path dependencies

and access information. Finally, 465 responses with a status

code greater than “500” were found in 64 services, including

351 with the status code of “500 Internal Server Error” in 47

services.

We succeeded in finding the error of the remote target

service without knowing the API programming language. By

collecting relevant information in the response, it can be found

that the target service uses programming languages such as

Ruby, PHP, C#, and Java, which also proves that black box

testing has the advantage of not being restricted by languages.

Threats To Validity

Greybox fuzz testing has been proved to be effective in

discovering security bugs. However, programs either in source

or binary form need to be instrumented for coverage feedback.

We propose to take advantage of TCL (test coverage level)

in blackbox testing to be as a replacement of conventional

code coverage. It is the primary threat to our work. Since

TCL is only an approximation of test coverage, it relies on

the response and request through the OpenAPI specifications.

Currently, there are only seven levels of TCL and it is too

coarse to be as precise as the code coverage.

V. Related Work

RESTler [6] is currently a well-known REST API black box

fuzzer, proposed by Atlidakis et al. and as Microsoft’s open-

source project [14]. RESTler is a generation-based fuzzer that

uses a predefined dictionary to replace parameter values in

grammar and analyzes OpenAPI to infer dependencies between

paths statically. It is to lengthen the test case as much as

possible with most paths for a single round of requests. In

contrast, our research uses manual input to achieve a more

accurate path dependency. We also add TCL feedback to guide

the fuzzer and increase the chance of triggering errors through

mutation-based fuzzing and other strategies.

Pythia [4] is based on grey box fuzzing, also proposed by

Atlidakis et al., using the built-in functions of Ruby to get code

coverage. The initial seed is the execution result of RESTler,

and the mutation stage is improved by the machine learning

method, and the validity of the grammar is still maintained

after some noise is injected. Coverage-guided fuzzing in

Python-based web server [5] is modified from Python-AFL,

which is also one of the grey box fuzzing methods, which

can obtain code coverage from Flask. The grey box fuzzing

methods mentioned above have limitations, and the test targets

are limited by the programming language of the fuzzer.

EvoMaster has two methods: white box fuzzing [25] and

black box fuzzing [7]. The former needs to read the document



TABLE VIII
Type and Number of Errors

Target Type Number

Spree No Method Error 7

Spree SQL Exception 2

Spree Invalid URI 2

Spree Unknown Attribute 1

Spree Page Incalculable 1

Spree Type Error 1

Spree Column not found 27

Magento Property � does not have accessor method � 26

Magento Missing required argument � 7

Magento Failed to parse time string 3

Magento Amazon Pay could not process your request 2

Magento Request name � doesn’t exist 2

Magento � must be of type string 2

Magento Undefined offset # 2

Magento Invalid argument supplied for foreach () 1

Magento Expects parameter # to be array 1

Magento Class � does not exist 1

Magento Invalid scope type � 1

and write part of Java code for the test target in order to

generate a test case. It requires programming ability. The latter

is tested randomly, to maximize types of HTTP status codes,

and does not have an appropriate feedback mechanism.

QuickREST [26] is a property-based black box testing

method that can quickly verify and test OpenAPI but does

not send a request to the test target, so it may be different

from the developer’s implementation result. RestTestGen [27]

is also a black box test method, after executing an effective

test, try to trigger an error by violating restrictions and other

methods. In addition, customized rules such as renaming fields

or stemming are used to analyze the interdependence of paths.

In our research, the target is continuously tested, and the

strategy of adding variant strings increases the chance of

triggering errors, and the accuracy of path dependencies is

improved through manual input.

VI. Conclusions

This research has developed a proof-of-concept tool, a REST

API black box fuzzer based on coverage level guidelines.

The purpose is to produce more appropriate test cases for

black box fuzzing. In the case of avoiding incorrect requests,

meaningfully mutations are conducted to generate new values

and test every path as much as possible.

We add test coverage levels feedback to guide the fuzzer,

and resolves the drawback of black box testing that cannot

know the effect of the mutation. We also resolve the issues

of testing complexity for REST APIs and strengthen mutation

strategy to increase the chance of triggering errors.

Our research is inspired by AFL which provides feedback

based on code coverage. We uses input and output of specifi-

cations to approximate code coverage by test coverage levels.

We enter the appropriate OpenAPI, path dependencies, and

authorization information to automatically generate test cases

and perform black box fuzzing on the test target API. To our

best knowledge, this is the first research to apply test coverage

levels for REST API black box fuzzing.

It is important to note that this research is not a grey box

test, and does not require instrumentation of program or server.

One of the benefits of using black box testing is that it is not

restricted by any programming language and does not need

to understand the internal behavior of the program. Through

the OpenAPI that clearly defines the input and output, we can

test the remote target API more easily. Black box fuzzing with

feedback guidance currently seems to be the best way to test

a large number of REST APIs.

This study proves that the coverage level guidelines are ef-

fective in the estimated form of code coverage, and also proves

that both self-built and remote test targets can effectively find

errors. Finally, in two large-scale open-source projects, a total

of 89 errors were found and reported, and 351 errors were

also found in 64 remote services provided by APIs.guru.

Future Work

1) Increasing Coverage Level: There are a total of 8 test

coverage levels used in this research, ranging from level 0 to 7,

which can be measured from multiple aspects of the API, and

the relative relationship with code coverage can be obtained. If

more levels are added, whether the test coverage can be more

accurate and easier to find errors, is worth further research and

discussion.

2) Manual Analysis and Automatic Identification: When

recording errors of the remote test target, we found that some

servers would return version information, such as “Tomcat

8.5.60” and “Tomcat 9.0.39”. However, these versions have

CVEs (CVE-2021–25122, CVE-2021–25122, and CVE-2021–

25329).

We can use this research as the first stage to conduct

large-scale testing. After finding out the possible weaknesses

or vulnerabilities in the system, the second stage of manual

analysis or automatic identification can be carried out to reduce

the cost of manually verifying the test targets one by one.

3) Supporting IoT and CoAP: CoAP has a REST style and

has the advantages of low power consumption. It is designed

to be used on devices with relatively insufficient resources to

meet the needs of the Internet of Things and the requirements

for the use of networked devices.

Since it is similar to HTTP, it is worth further study by

modifying the test coverage standard and using it on CoAP.

We expect to extend this research to CGI, IoT communica-

tion protocol to identify weaknesses and try to find out the

vulnerabilities of firmware components.



TABLE IX
Test Results of Remote APIs

Test Target 500s

rest.zuora.com 3

api.logoraisr.com/rest-v1 3

apirest.isendpro.com/cgi-bin 1

rest.ably.io 3

ibl.api.bbci.co.uk/ibl/v1 1

apps.gov.bc.ca/pub/bcgnws 1

api.beezup.com 2

bikewise.org/api 3

www.bungie.net/Platform 110

rest-api.d7networks.com/secure 2

dev.to/api 5

api.presalytics.io/doc-converter 1

api.open511.gov.bc.ca 1

exude-api.herokuapp.com 1

api.figshare.com/v2 10

apps.gov.bc.ca/pub/geomark 4

Test Target 500s

apps.nrs.gov.bc.ca/gwells/api/v1 1

oralquestionsandmotions-api.parliament.uk 1

api.interzoid.com 1

go.netlicensing.io/core/v2/rest 6

marketcheck-prod.apigee.net/v2 51

nsidc.org/api/dataset/2 3

v2.namsor.com/NamSorAPIv2 2

ntp1node.nebl.io 17

www.neowsapp.com 7

api.oceandrivers.com 5

osdb.openlinksw.com/osdb 1

demo.orthanc-server.com 10

api.paylocity.com/api 23

peertube2.cpy.re/api/v1 1

phantauth.net 5

api.pocketsmith.com/v2 5

Test Target 500s

randomlovecraft.com/api 2

connect.squareup.com 5

api.stoplight.io/v1 3

api.parliament.uk/search 2

api.up.com.au/api/v1 4

api.icons8.com 1

api.sandbox.velopayments.com 4

vocadb.net 18

worldtimeapi.org/api 2

ws.api.video 1

api.ideaconsult.net/nanoreg1 3

geodesystems.com 2

api.cloudmersive.com 12

smart-me.com 1

api.spoonacular.com 1

Acknowledgment

This work was supported in part by the Ministry of Sci-

ence and Technology (MOST107-2221-E-009-030-MY3 and

MOST-110-2218-E-A49-011-MBK), and the Cybersecurity

Center of Excellence project at Taiwan’s National Applied

Research Labs.

References

[1] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on

Offensive Technologies (WOOT), Aug. 2020.
[2] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “

redqueen: Fuzzing with input-to-state correspondence,” in 26th Annual

Network and Distributed System Security Symposium (NDSS), vol. 19,
Jan. 2019, pp. 1–15.

[3] The Linux Foundation. Openapi specification. [Online]. Available:
https://spec.openapis.org/oas/v3.0.3

[4] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray,
“Pythia: grammar-based fuzzing of rest apis with coverage-guided feed-
back and learning-based mutations,” CoRR, vol. abs/2005.11498, 2020.

[5] S. T. Liu, “Coverage guided fuzzing in python-based web server,” M.S.
thesis, National Chiao Tung University, Hsinchu, Taiwan, 2019.

[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), Aug. 2019, pp. 748–758.

[7] A. Arcuri, “Automated black- and white-box testing of restful apis with
evomaster,” IEEE Software, vol. 38, no. 3, pp. 72–78, 2021.

[8] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria
for restful web apis,” in Proceedings of the 10th ACM SIGSOFT

International Workshop on Automating TEST Case Design, Selection,

and Evaluation, Aug. 2019, p. 15–21.
[9] Redocly LLC. Redoc. [Online]. Available: https://redocly.github.io/redoc

[10] Google LLC. American fuzzy lop. [Online]. Available:
https://github.com/google/AFL

[11] LLVM. libfuzzer. [Online]. Available:
https://llvm.org/docs/LibFuzzer.html

[12] R. Black, Pragmatic software testing: Becoming an effective and efficient
test professional. John Wiley & Sons, 2016.

[13] D. Vyukov. Randomized testing for go. [Online]. Available:
https://github.com/dvyukov/go-fuzz

[14] Microsoft Corporation. Restler. [Online]. Available:
https://github.com/microsoft/restler-fuzzer

[15] Thinkster. Realworld with golang & gin. [Online]. Available:
https://github.com/gothinkster/golang-gin-realworld-example-app

[16] ——. Realworld. [Online]. Available:
https://github.com/gothinkster/realworld

[17] Spree. Spree commerce. [Online]. Available:
https://github.com/spree/spree

[18] Magento. Magento community. [Online]. Available:
https://github.com/magento/magento2

[19] Chung-Hsuan Tsai. Issue #10647, spree. [Online]. Available:
https://github.com/spree/spree/issues/10647

[20] ——. Issue #10971, spree. [Online]. Available:
https://github.com/spree/spree/issues/10971

[21] ——. Pull request #10626, spree. [Online]. Available:
https://github.com/spree/spree/pull/10626

[22] ——. Issue #31551, magento. [Online]. Available:
https://github.com/magento/magento2/issues/31551

[23] ——. Issue #32784, magento. [Online]. Available:
https://github.com/magento/magento2/issues/32784

[24] APIs.guru. Openapi directory. [Online]. Available:
https://github.com/APIs-guru/openapi-directory

[25] A. Arcuri, “Restful api automated test case generation,” in 2017 IEEE

International Conference on Software Quality, Reliability and Security

(QRS), Aug. 2017, pp. 9–20.
[26] S. Karlsson, A. Causevic, and D. Sundmark, “Quickrest: Property-based

test generation of openapi-described restful apis,” in 2020 IEEE 13th In-

ternational Conference on Software Testing, Validation and Verification

(ICST), Oct. 2020, pp. 131–141.
[27] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: Automated

black-box testing of restful apis,” in 2020 IEEE 13th International

Conference on Software Testing, Validation and Verification (ICST), Oct.
2020, pp. pp. 142–152.

https://spec.openapis.org/oas/v3.0.3
https://redocly.github.io/redoc
https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://github.com/dvyukov/go-fuzz
https://github.com/microsoft/restler-fuzzer
https://github.com/gothinkster/golang-gin-realworld-example-app
https://github.com/gothinkster/realworld
https://github.com/spree/spree
https://github.com/magento/magento2
https://github.com/spree/spree/issues/10647
https://github.com/spree/spree/issues/10971
https://github.com/spree/spree/pull/10626
https://github.com/magento/magento2/issues/31551
https://github.com/magento/magento2/issues/32784
https://github.com/APIs-guru/openapi-directory

	I Introduction
	II Background
	II-A OpenAPI specification
	II-B Fuzz testing
	II-C Pairwise testing
	II-D Test Coverage Level

	III Design and Implementation
	III-A Complexity of Testing
	III-B Architecture
	III-C Implementation
	III-C1 Setup of Initialization
	III-C2 Producing Seed Input
	III-C3 Giving Values to Parameters

	III-D Input Mutation
	III-D1 Handling ID Parameter
	III-D2 Processing Mutation Strategy

	III-E Transferring Request
	III-F Analyzing Response

	IV Results and Evaluations
	IV-1 Spree Commerce
	IV-2 Magento Community
	IV-3 Analysis


	V Related Work
	VI Conclusions
	VI-1 Increasing Coverage Level
	VI-2 Manual Analysis and Automatic Identification
	VI-3 Supporting IoT and CoAP


	References

