
CONFUZZION: A Java Virtual Machine Fuzzer for
Type Confusion Vulnerabilities

William Bonnaventure
SnT, University of Luxembourg

Luxembourg, Luxembourg
william.bonnaventure@gmail.com

Ahmed Khanfir
SnT, University of Luxembourg

Luxembourg, Luxembourg
ahmed.khanfir@uni.lu

Alexandre Bartel∗
Department of Computing Science

Umeå University, Sweden
alexandre.bartel@cs.umu.se

Mike Papadakis
SnT, University of Luxembourg

Luxembourg, Luxembourg
michail.papadakis@uni.lu

Yves Le Traon
SnT, University of Luxembourg

Luxembourg, Luxembourg
yves.letraon@uni.lu

Abstract—Current Java Virtual Machine (JVM) fuzzers
aim at generating syntactically valid Java programs, without
targeting any particular use of the standard Java library. While
effective, such fuzzers fail to discover specific kinds of bugs or
vulnerabilities, such as type confusion, that are related to the
standard API usage. To deal with this issue, we introduce a
mutation-based feedback-guided black-box JVM fuzzer, called
CONFUZZION. CONFUZZION, as the name suggests, targets
security-relevant object-oriented flaws with a particular focus
on type confusion vulnerabilities. We show that in less than
4 hours, on commodity hardware and without any predefined
initialization seed, CONFUZZION automatically generates Java
programs that reveal JVM vulnerabilities, i.e., the Common
Vulnerabilities and Exposures CVE-2017-3272. We also show
that state-of-the-art fuzzers or even traditional automatic testing
techniques are not capable of detecting such faults, even after 48
hours of execution in the same environment. To the best of our
knowledge, CONFUZZION is the first fuzzer able to detect JVM
type confusion vulnerabilities.

Index Terms—Fuzzing, vulnerability, Java Virtual Machine

I. INTRODUCTION

The Java Virtual Machine (JVM) is a piece of software
that runs programs, on different computing architectures,
represented as Java bytecode. JVMs are widely used in
backend and frontend applications, such as Apache spark,
desktop and mobile applications, which unfortunately are
at risk if the JVM used is vulnerable. For instance, some
JVM versions contain type confusions which are critical
vulnerabilities allowing attackers to escape the Java sandbox
and execute arbitrary code.

In the past 5 years, at least 5 Common Vulnerabilities
and Exposures (CVE), such as CVE-2017-3272, allowed
performing a type confusion in Java [1], [2], [3], [4],
[5]. Therefore, we focus our research on finding such
vulnerabilities inside the JVM. A popular technique to exploit
type confusion vulnerabilities in Java is to set the Security
Manager to null. This allows bypassing the Java sandbox

∗At the time this research was conducted Alexandre Bartel was at the
University of Luxembourg and the University of Copenhagen.

and getting arbitrary code execution on the host machine with
the privileges of the JVM process [6].

A type confusion vulnerability permits breaking the object
encapsulation and thus allows reads and writes on object fields
that may not be permitted otherwise. While this allows to
break out of the sandbox, it also enables to hide control flow
from static analyzer tools which assume that the principle
of object encapsulation is respected in the programs they
analyze. Therefore, type confusion vulnerabilities could also
be exploited to hide control flows and thus bypass vetting
mechanisms such as the ones preventing malicious Android
applications from entering the Google Play store 1.

A potential approach to discovering type confusion is
manual code analysis and testing. However, this approach is
time consuming, error prone and requires that the analyst has
deep knowledge of the target program. Another approach is to
use an automated testing approach such as fuzzing which helps
at generating corner cases. Fuzz testing refers to a technique
that pseudo-randomly generates and executes test inputs with
the intent to trigger crashes and reveal issues in a program.
Fuzzing techniques are frequently used to automatically
uncover bugs and potential security vulnerabilities. In recent
years, AFL [7] has been the reference fuzzer for C and C++
programs. Though, fuzzers are becoming more popular in all
kind of languages: C, C++, and Java [8], [9], [10], [11], [12],
[13], [14], [15], [16].

Type confusion is usually caused by missing checks, on
the JVM, allowing attacker controlled objects in either the
C++ or the Java code of the JVM. Therefore, to uncover such
vulnerabilities one needs to check whether the Java code of
the JVM has any missing checks. Therefore, fuzzers have to
generate Java programs that are syntactically valid and use
the standard Java API in such a way that checks all API-
related entry points. In other words, the semantics of the
programs generated by the fuzzers need to explore the different
combinations of the Java API usages. This, of course, defines

1Android apps are written in Java and rely on the Java Class Libraries.

a very large space for the fuzzer.
Current research on Java fuzzers [14] [17] [15] [16] is

focusing on testing Java programs and not the JVMs. This
means that existing fuzzers are mutating or generating test
inputs of a Java program that runs on a JVM. For example, if
the Java program processes XML documents, the Java fuzzer
generates XML documents. As a side effect of testing Java
programs, current Java fuzzers only partially and indirectly test
a subset of the JVM methods. They are thus highly unlikely
to test all possible JVM method calls and situations that may
lead to a type confusion.

JVM fuzzers do not generate inputs for Java programs, but
for the JVM. That is to say they generate Java programs which
are given as input to the JVM. State-of-the-art JVM fuzzers,
such as ClassFuzz [18] or ClassMing [19], mainly target the
Java parser and the language features but not the Java API.
Thus, by design, they lack mutation operators that add JVM
method call instructions limiting the exploration of the API
usage. Of course, this is happening in order to allow them
to focus on the language features and avoid spending time on
JVM method combinations. They also rely on user-defined sets
of test cases (frequently called seeds), that define the program
ingredients to be used when generating tests. Unfortunately,
these two choices, by design, limit the ability of these fuzzers
to discover type confusion vulnerabilities when starting from
scratch.

CONFUZZION creates Java programs through successive
mutations starting from a – potentially empty – seed program.
At each iteration, a new Java program is tested and executed
inside the JVM in order to generate a syntactically and
semantically valid complex program that may contain a type
confusion. In essence we evolve a Java program by searching
for possible valid JVM method call combinations that may
lead to a type confusion. This is a fundamental difference
from existing approaches and one way to address the problem
of revealing type confusion vulnerabilities.

All-in-all our approach aims at testing the semantic usage of
APIs within Java programs, with particular focus on the Java
API and type confusion bugs. Another important characteristic
of our approach is that it can be used to test the JVM evolution.
In particular, one can define a list of JVM classes and methods
that have been changed/evolved since the last release, which
will be used by the fuzzer, i.e., they will be instantiated and
tested on different combinations of statements. This allows
reducing the space of programs that the fuzzer will target and
direct testing towards the most risky method invocations.

Overall, CONFUZZION is the first tool, to our knowledge,
that targets the semantic usage of Java APIs wrt type
confusion. Since CONFUZZION generates programs, it is
conceptually close to compiler testing [20]. Though, our target
is the JVM and not the Java compiler. Nevertheless, according
to Chen et al. [20] very few compiler testing techniques focus
on Java and none of those target type confusion.

In this paper we make the following contributions:
• We design Confuzzion, a novel black-box JVM Fuzzer

able to find type confusion vulnerabilities. Confuzzion

is a solid open-source code base for future development
in the field of Java security research. To the best of our
knowledge, Confuzzion is the first Fuzzer of its kind.

• We compare the Fuzzer to state-of-the-art JVM Fuzzers
and automated testing tools targeting the JVM.

• We evaluate the Fuzzer and show that it can find
real-world vulnerabilities in a reasonable amount of
time (hours). CONFUZZION finds, for example, the type
confusion known as CVE-2017-3272 [4] with a median
time of 4 hours.

II. MOTIVATION

A type confusion is a wrong assumption of an object’s type
at execution time. This means that the object’s type at runtime
is incompatible with the object’s type at compilation time.
In Java, type confusions are critical vulnerabilities since they
allow to disable the security manager and thus evade the Java
sandbox [6].

A. Type confusion vulnerabilities are a major issue in Java

Type confusion vulnerabilities in Java are prominent. To
demonstrate this fact, we examined the extend to which the
100 most recent public Java releases/updates have confusion
type vulnerabilities. In particular, we checked the extend to
which 5 known confusion vulnerability CVEs, listed in Tables
II, affect the Java versions and updates from 1996 to 2020.
Java versions range from 1.6 to 14, i.e., version 1.6 update
1 to update 45, version 1.7 update 0 to update 80, version
1.8 update 5 to update 251, version 9 update 0 to update
4, version 10 update 0 to update 1, version 11 update 0 to
update 6, version 12, version 13 update 0 to update 2 and
version 14 update 0 to update 1. Interestingly, we found that
76% of the above Java releases are affected by at least one of
these 5 CVEs. This is alarming as it suggests that the sandbox
mechanism can be completely bypassed on at least 76% of
the Java releases. Moreover, the actual percentage is probably
much higher, as we only considered CVEs which we know
for sure are type confusion vulnerabilities.

B. Existing fuzzers are not designed to find type confusion
vulnerabilities

State-of-the-art JVM fuzzers such as ClassFuzz [18] or
ClassMing [19] aim at testing the Java parser and the
generic functionality of the JVM thus they do not explore
the conformance of the Java API usage within programs.
This is because these fuzzers do not search for combinations
of method invocations, i.e., the mutation operators they use
do not include any operator that adds invoke instructions.
Moreover, existing fuzzers heavily rely on the properties of
user defined sets of test cases, called seeds. Unfortunately, this
reliance introduces a risk of missing vulnerabilities contained
on methods that are not called by the user defined tests/seeds.
Even when seeds contain calls to the vulnerable method(s), the
fuzzers are still unlikely to recreate the triggering conditions
since they do not explore different method call combinations.
In other words, seeds are unlikely to have the right triggering

Input Target

Fuzzer Disk
1. generates 2. executes 3. feedback

4. log

Fig. 1. Generic Design of a Fuzzer

set of method invocations (typically includes multiple different
method invocations).

State-of-the-art JVM fuzzers are also limited by the way
they operate. In particular, existing fuzzers rely on differential
testing. This means that they test the two JVMs and contrast
their results. Though, if the two JVMs contain the same
vulnerability 2 they will not detect it because the output would
be the same. This situation calls for the development of a new
approach to detect subtle vulnerabilities in the JVM.

With CONFUZZION, we are able to create Java programs
from scratch to call any method of the JVM and create the
right conditions to trigger the vulnerability. Furthermore, we
add post-conditions in every generated Java program to check
if there is a type mismatch. This enables to automatically flag
any type confusion vulnerability that is triggered during the
execution.

In the next section, we provide the necessary background
on fuzzers technologies.

III. BACKGROUND

In this section, we describe the required background related
to fuzzers as well as the JVM environment. In Section III-A,
we briefly describe what fuzzers are and the different flavors
of fuzzers. Then, in Section III-B, we explain the architucture
of the Java virtual machine and its environment as well as the
difference between Java fuzzers and JVM fuzzers.

A. Fuzzers

The general goal of a fuzzer is to generate test inputs,
based on random changes, to identify corner cases on a target
program. Figure 1 describes a typical feedback-guided fuzzer
workflow. The fuzzer first generates an input (step 1). The
fuzzer then executes the target program with the generated
input (step 2). It then takes feedback from the execution of
the target program into account (step 3) to generate a new
input (back to step1). If a bug is detected, the corresponding
input and all the necessary information to reproduce the bug
are logged (step 4). The fuzzer continuously runs until, for
instance, a certain amount of time has elapsed.

1) Generator-based fuzzers: Generator-based fuzzing
ensures the generation of inputs that verify specific structures
and rules to restrict the fuzzing effort to a targeted property
or level of the system under test. This further maps to
Grammar-based fuzzing if the generator is following a given
grammar. Similarly, model-based fuzzing refers to a generator
following a model of specifications. In every iteration, the

2Vulnerabilities usually have a long life-cycle and typically affect multiple
releases [21]

generator constructs inputs by taking a sequence of selection
decisions.

A mutation-based fuzzer starts with a potentially empty
seed. At each iteration, the fuzzer applies one or more
mutations to generate the next input. Frequently used mutation
operators include bit-flip and adding/removing bytes. The
fuzzer either finds a new interesting input that crashes the
program or uses the new input as the next seed.

In the case of generator-based fuzzers, the mutation is
applied on its sequence of decision. So instead of mutating
the final generated input we mutate the sequence inferring
it according to the guidance and its sensors (coverage,
exceptions, etc.). In the end, the seed controls the random
behaviour of the generator but not directly the end result that
is created according to the generator rules.

CONFUZZION is a mutation-based fuzzer since it keeps the
same inputs and continuously change them using mutation
operators.

2) White, Grey and Black-box fuzzers: The color code
represents the visibility of the target program’s code from
the fuzzer’s perspective. A white-box fuzzer has complete
knowledge of the source code of the target program. A grey-
box fuzzer has partial knowledge of the source code. Finally,
a black-box fuzzer has no knowledge of the source code. The
intermediate ’grey-box fuzzer’ terminology is often used when
only the compiled binary of the target program is available. In
this case the fuzzer has no direct knowledge of the source code.
This type of fuzzing allows to instrument the binary target
program to have, for instance, code coverage information on
closed-source programs. CONFUZZION is a black-box fuzzer
since it has no knowledge of the source code of the target
JVM.

3) Feedback: After execution of the target program on a
generated input, the fuzzer has access to feedback information.
This could, for instance, be code coverage (has the new test
covered more code than the previous test?) or information
about the execution state (has the target program crashed?
which function has crashed?). This information is used by
the fuzzer to, for instance, rank inputs and/or generate new
inputs. If a fuzzer relies on the code coverage it implies that
this is a white-box fuzzer. CONFUZZION relies on method
crash feedback to generate new inputs.

4) Smart: A fuzzer can be considered as smart [22] if it
knows the input structure expected by the program before-
hand. Sometimes smart-fuzzing is used to generate inputs that
are complex as they need to satisfy a set of syntactic and/or
semantic rules prior to be submitted to the target program.
In fact, classic ’non-smart’ fuzzing is really appropriate on
binary files but when the structure becomes more restrictive
like a grammar-based structure then the fuzzer may take a
long time just to generate a basic valid input. That is why
smart-fuzzing is useful to generate mostly valid inputs which
should be accepted by the program but that can trigger errors
as they are covering corner cases. CONFUZZION is a smart
fuzzer since it knows the structure of Java class files and
generates valid class files.

Input Java program JVM/JCL

to generate get feedback untouched

Java program JVM/JCL

to generate get feedback

Fig. 2. Java Program Fuzzer (top) and JVM Fuzzer (bottom)

B. Java and the JVM

1) The Java Environment: A Java program consists of one
or more .class files. The entry point of the program is
the main method. A Java program runs on a Java virtual
machine (JVM) which is written in C++. A Java program
and the JVM rely on a set of basic Java classes called
Java Class Library (JCL). The JCL is shipped with every
JVM. The JCL contains classes such as java.lang.Class,
java.lang.String and java.io.File: it provides a
basic layer to access the filesystem, the network, cryptographic
primitives, etc. Together, they form the Java Runtime
Environment (JRE). The JVM loads class files through a class
loader. The class loader checks the structure of the class files
as well as syntactic and semantic properties of their code.

2) Java Program Fuzzers: A Java fuzzer aims at testing the
implementation of a Java program. As illustrated in Figure 2
(top), a Java fuzzer generates input to a Java program, executes
the target program with the generated input and analyzes
feedback information from the execution of the Java program.
Kelinci [15] and JAVA-AFL [16] are examples of Java fuzzers.
They instrument the bytecode of the target program to extract
coverage information.

3) JVM Fuzzers: A JVM fuzzer aims at testing the
implementation of a target JVM. As illustrated in Figure 2
(bottom), a JVM fuzzer does not generate input for a Java
program. Instead, it generates input to a JVM. This input is
actually a Java program. The JVM fuzzer then executes the
generated Java program on the JVM and analyzes feedback
information from the execution of the JVM running the Java
program. ClassFuzz [18] and ClassMing [19] are examples of
JVM fuzzers. Moreover, they are differential fuzzers for the
JVM. This means that a given generated input is executed
on a reference JVM and on the target JVM. If the feedback
of the two executions differs, an inconsistency is detected.
CONFUZZION is also a JVM fuzzer.

IV. THE CONFUZZION APPROACH

CONFUZZION is a mutation-based, feedback-guided black-
box smart fuzzer. Its overall architecture is illustrated in
Figure 3.

It operates by evolving a single program, hereafter referred
to as the master program. Initially, the master program is an
empty one or the user defined seed program. The process
is then entering a loop where, at each iteration, additive
mutations, i.e., mutations that add instructions, are applied
to the master program. In order to evolve valid programs, at

1 Mutator

Seed
Program
(optional)

2 .class
files

3 Executor

4 Method
crash

generates

Fig. 3. Confuzzion overview. The fuzzer – with an optional seed – relies on
mutation operators (1) to generate an input program (2). The execution of the
input (3) sends feedback information about method crashes (4) back to the
fuzzer which use it when generating new inputs.
each step of the process, the mutations that result in invalid
programs are discarded, this is done through compilation.
We also discard mutations that do not conform to some
additional checks; we check some basic semantic properties
of the mutations, such as the number of arguments given
as parameter to a method, and their runtime behaviour,
i.e., returning errors and type confusions appearing during
execution at the target JVM. To increase diversity, escape
from stacking points, i.e., programs that hang on almost
all mutations, and avoid bloating [23] we set checkpoints
(a predefined threshold number of iterations) at which we
backtrack to a previous state. This is happening by selecting
a random number of the latest applied mutations, which are
reverted. This means that whenever we reach this threshold
number of mutations, we backtrack to the master program
that appeared before applying this randomly chosen number
of mutations and continue the evolution cycle from there.

A. Evolving the master program

1) Generating programs: To reveal type confusions inside
the JVM we need to generate programs that are syntactically
correct and run properly in the JVM. This is challenging
because of the following two reasons: a) the JVM expects
highly structured inputs and b) fuzzing requires non-trivial,
semantically diverse class files.

To bypass these problems, we generate programs from
Jimple [24], which is an intermediate language between Java
and Class files. We use Jimple because it is simple, compared
to bytecode, and works well together with Soot [25], a popular
code analysis framework. Soot provides semantic information
about the programs we evolve and thus, it provides vital
feedback that helps evolving our test programs.

Another advantage of using Jimple is that it allows
generating programs that are semi-valid, i.e., they can run in
the JVM but they involve “unusual” constructs and operations,
which may be hard to generate using the Java compiler. This
is because the Jimple to Class compiler is generally more
permissive and generates different bytecode structures than the
Java compiler. Interestingly, generating semi-valid programs
allows testing the JVM outside the comfort zone shaped by
the Java compiler, i.e., Java compiler restricts JVM inputs to
only those Class files that can be produced by the compiler.
We argue that this can be particularly important because JVM
inputs that are not produced by the Java compiler might target
part of the JVM which are naturally less tested and can reveal
corner cases that attackers may exploit.

TABLE I
SUMMARY OF CONFUZZION’S MUTATION OPERATORS.

Category Mutation operator Description

Program AddClassMutation generates a new Java class.

Class AddFieldMutation adds a new field to an
existing class.

AddMethodMutation adds a new method to an
existing class.

Method AddLocalMutation adds a new local variable and
generates a corresponding object.

AssignMutation assigns an existing value
to a new variable.

CallMethodMutation adds a method call and generates
the necessary arguments.

2) Mutations and objects: A Mutation is defined as an
addition of code inside the master program. Table I enumerates
the list of all mutations used in CONFUZZION. For example
AddLocalMutation, a MethodMutation that occurs
at the Method level, will add a new local variable with a
random type and assign a value. If it is a reference type
then it will call the class constructor to build an object and
assign its reference to the local variable. With those types of
mutations we can build objects and reuse local variables in
subsequent mutations. Thus, it will build a complex ordered
list of statements inside method bodies.

There are two other types of mutations : Class-level
mutations and Program-level mutations. For example, Add-
FieldMutation adds a new field inside a class and this
impacts a whole class and not only a method. AddClass-
Mutation adds a new class to the Program. We define a
Program as a list of Classes. This is mainly because some of
the type confusions are triggered by the use of new classes
that inherit from JCL classes. Thus, to be exhaustive, we need
to support Program and Class levels of mutations.

B. Guiding the Search

1) Restricting the Search Space: Proof-of-concepts 3 have
shown that type confusion in Java is caused by the use of
specific packages of the Java Class Library and by some
invalid semantic checks of the JVM. This means that in order
to reveal such vulnerabilities we need to use particular classes
that will be instantiated and tested on different combinations
of statements.

CONFUZZION takes advantage of the above observation
and restricts the search in classes that are most important, as
specified by the user. This provides decisive advantages in our
approach as it allows to thoroughly test specific API classes
and to drastically restrict the search space to the points of
interests. For instance, one can focus on the classes that were
changed in the last release in order to ensure that no new
vulnerabilities have been introduced.

2) Handling test bloat: Since all mutations we use are
additive, the master program will grow and the fuzzer speed
will decrease. This is mainly due to the time needed to compile

3a proof-of-concept, or PoC, is a code that exploits a vulnerability.

and execute the program that increases linearly with the size
of the program. Therefore, we designed CONFUZZION to be
able to revert mutations. As we already discussed, we revert
a random number of mutations each time the number of
mutations hits a predefined threshold number of mutations.
This rewind in time allows us to take a different path of
mutations with a different behaviour while keeping a portion
of the knowledge acquired with the remaining mutations. That
is thanks to the stochastic nature of the process, when reverting
a different path in the evolution tree of mutations.

3) Test Feedback and Search Guidance : In every iteration,
CONFUZZION takes a sequence of decisions to generate a new
input. First, it randomly selects one mutation operator then, it
selects the location inside the master program where to apply
it.

To better guide the search, CONFUZZION leverages the
information gained by the previous executions. In particular,
from every execution, CONFUZZION collects the list of
called methods and records the frequency that a method was
responsible in causing a crash. Then, whenever the fuzzer
decides to mutate one of the seed’s method-body, it will
exclude the ones not being executed and will select one
among that list. Once a method-body is selected, the fuzzer
may decide to extend it by adding another instruction. Here,
the choice of which method to call/invoke depends on its
frequency of causing the program to crash, in the previous
iterations.

Once CONFUZZION decides to mutate the program with an
instruction addition, it selects a method to call from the target
classes defined by the user or any other method generated by
previous mutations. It favors the selection of complex methods
over simple ones, based on the assumption that methods that
lead more often the program to crash are more complex, thus
more interesting to fuzz, than the ones that always execute
successfully. In other words, a method that requires a specific
combination of complex arguments is more appealing to re-
execute with different parameters than toString()-like
methods, which are not very meaningful for objects.

For this purpose, we define a crash density di of a method
i as a value between 0.0 and 1.0 representing the number of
crashes caused by the method over the number of times it was
executed. In the initial state, all the densities are equal to 1.
We also define D, the sum of all densities:

D =

n∑
i=1

di

We define pi the probability that a method will cause a
crash or eventually reveal a vulnerability, thus the probability
to be selected for invocation by CONFUZZION. As our fuzzing
iterations describe a series of Bernoulli trials [26], we expect
the results to follow a binomial distribution. The computed
pi reflects the complexity of the method i while remaining
always above 0:

pi =
UCB(di, 95%)

D
This way, our approach respects the following criteria: (c1)

1 if r2 == null goto label1;
2 z0 = r2 instanceof java.lang.String;
3 if z0 != 0 goto label1;
4 r3 = new ContractCheckException;
5 specialinvoke r3.<ContractCheckException: void

<init>()>();↪→
6 throw r3;
7 label1:
8 nop;

Listing 1: Jimple code to detect a type confusion on a local
variable r2.

A method with observed crash density d should be chosen
twice as often as a method with a density of d/2. (c2) If
the crash density of two methods is equal, they should be
chosen with equal probability. (c3) Methods with no observed
crashes should be kept with a probability more than 0 in order
to not kill the possibility of choosing them. (c4) Between two
methods with 0 observed crashes, the one with fewer trials
should be preferred over the other. We know less about the
one with fewer trials and thus may find some new crashes.

The above definitions are borrowed from a technical report
of Householder et al. [27]. Unlike the technical report, we do
not aim at prioritising seed files but methods. We however,
do not use an additional Poisson Distribution approximation
because our crashing frequency per method is not as rare as
in their case.

C. Vulnerability Detection Checks

To detect a type confusion we add Jimple code at the end
of the current modified method by the mutation (if any) and
then let the program run. We define a specific Contract [28]
for Type Confusion. For each Contract we have a checker that
can be added to the code. In order to differentiate between
all other types of exceptions, we throw a special type of
exception ContractCheckException that declares a true
contract violation inside this program. This notion of Contract
is helpful in the case we want to check other types of properties
on the generated code.

Listing 1 is a Jimple implementation of a contract
responsible to check that a local variable r2 is of type
String as expected. Such contract is added to check that
the runtime types of the variables correspond to the build time
ones.

D. Implementation

CONFUZZION’s Java implementation represents 30 classes
and 3000 lines of code. It relies on Soot 3.3.0, slf4j-simple
1.7.26, Apache Commons CLI 1.4 and Math3 3.6.1.

One major technical contribution of the proposed approach
is its multi-threading capability, which ensures a relatively
high fuzzing speed in terms of number of iterations per second.
In fact, instead of creating a new JVM instance for every
iteration, CONFUZZION operates with only one by running
the generated programs in different threads.

The principal configuration possibilities of our current
implementation are:

• Binomial or Uniform: defines the algorithm of
methods selection as a binomial or uniform distribution
on the crashes observed. (see IV-B3)

• Seed (optional): defines a starting seed program to
mutate.

• TargetClasses: defines the JVM classes which the
fuzzer will use when generating the input programs. (see
IV-B1)

These parameters may impact the performance of the fuzzer,
which we will discuss further in the sections V and VI.

CONFUZZION 4 source code will be published as an open-
source project that can be used by the community to discover
future vulnerabilities and to extend its capability.

V. EVALUATION

In this section, we evaluate our approach efficiency
in finding historical confusion types in the corresponding
vulnerable JVMs. We explain the best tradeoffs to detect such
flaws and compare CONFUZZION with some state-of-the-art
automated testing techniques.

To examine the performance of CONFUZZION we design
a case study aiming at answering the following research
questions:

• RQ1: How efficient is CONFUZZION at detecting Type
Confusion Vulnerabilities?

• RQ2: How efficient is the Binomial Method Selection
used by CONFUZZION?

• RQ3: What is the impact of small changes in the set of
targeted classes by CONFUZZION?

• RQ4: How does CONFUZZION compare with state-of-the-
art fuzzers?

• RQ5: How does CONFUZZION compare with Randoop in
terms of type confusion revealing?

RQ1 aims at investigating the ability of CONFUZZION
to detect known type confusion vulnerabilities. We simulate
a scenario where developers test the JVM versions using
CONFUZZION just before their release. In our analysis, we
also consider the time needed to detect these vulnerabilities
and highlight the importance of the used seed in shortening
this time. RQ2 aims at showing that the efficiency of
CONFUZZION’s method selection compared to an alternative
uniform selection. RQ3 shows the impact of the selection of
the JVM classes to target by CONFUZZION wrt vulnerability
detection efficiency. RQ4 aims at showing the strengths of
our approach wrt the current state-of-the-art on JVM fuzzing
and assesses CONFUZZION’s speed in terms of iterations per
second, while RQ5 wrt test generation tools for Java. This
last comparison aims at checking whether traditional test
generation techniques could work in the particular scenario
we investigate.

Experimental setup: All experiments in this section are
run on a server with an Intel E5-2430@2.20GHz processor
featuring 24 cores, 100 Gb of RAM and running Debian.

As we expect our approach to be continuously used, in
a real world JVM developing workflow, after every code
change (commit), we narrow down the fuzzing search-space

4reviewers can anonymously access the tool here: https://www.
dropbox.com/s/868pc27vqblzpuy/Confuzzion.zip?dl=1. The source code of
CONFUZZION will be made available once the paper is accepted.

https://www.dropbox.com/s/868pc27vqblzpuy/Confuzzion.zip?dl=1
https://www.dropbox.com/s/868pc27vqblzpuy/Confuzzion.zip?dl=1

TABLE II
TARGETED CLASSES BY CVE (CIC)

CVE-2014-0456 CVE-2015-4843 CVE-2016-3587 CVE-2017-3272 CVE-2018-2826
java.lang.System java.nio.DirectByteBuffer$1 java.lang.invoke.MethodType java.util.concurrent.atomic.AtomicLongFieldUpdater java.lang.invoke.MethodType

java.nio.DirectIntBuffer{RS,RU,S} java.lang.invoke.MethodHandle java.util.concurrent.atomic.AtomicIntegerFieldUpdater java.lang.invoke.MethodHandles
java.nio.Direct{Char,Double,Float,Long,Short}Buffer{RS,RU,S,U} java.lang.invoke.MethodHandles java.util.concurrent.atomic.AtomicReferenceFieldUpdater java.lang.invoke.MethodHandleImpl

java.lang.invoke.MethodHandles.Lookup java.lang.invoke.MethodHandle

by reducing the code-under-test (CUT) to the changed classes
instead of exhaustively fuzzing all the classes and methods
of the JVM. Thus, for every targeted CVE in our data-set, we
collected the list of classes impacted by this latter’s introducing
commit. These classes are listed in Table II.

A. RQ1: How efficient is CONFUZZION at detecting Type
Confusion Vulnerabilities?

To illustrate how CONFUZZION can detect type confusion
vulnerabilities, we perform two experiments to find CVE-
2016-3587 [3] and CVE-2017-3272 [4]. Despite being generic,
the current implementation of CONFUZZION has some
limitations preventing it to be evaluated on the other three
CVEs (CVE-2014-0456 [1], CVE-2015-4843 [2] and CVE-
2018-2826 [5]). This is further detailed in section VI.

For each CVE, We first launch the fuzzer using as seed
the corresponding complete public Proof-of-Concept (PoC)
on a vulnerable JVM to make sure the type confusion is
immediately detected. Then, we launch the fuzzer on the PoC
without the last line to make sure that CONFUZZION can
generate a program triggering the type confusion vulnerability
through mutations. Finally, we launch the fuzzer on an empty
seed, to observe the time that CONFUZZION takes to trigger
the vulnerability without PoC. POC, POC-1 and POC-* are
the corresponding Proof-of-Concept classes when removing
nothing, one line, or all lines. POC-* is equivalent to an empty
seed that corresponds to an empty program. We launch 10
fuzzer instances in parallel and select the binomial method
selection for mutations.

CVE-2016-3587 makes the JVM unstable. In fact, executing
its revealing program (POC) on it, leads the JVM to crash.
Thus, the CONFUZZION post-execution-check is not executed.
In a real case scenario of JVM fuzzing, inducing a crash
is a desired behaviour and the capital objective, because it
reveals a bug or a vulnerability. In this experiment, we are only
interested in finding a specific vulnerability. For this reason we
check manually the crash stack-trace, to identify if this targeted
CVE was revealed or not. We give an example of a program
generated by CONFUZZION that reveals CVE-2016-3587 and
explain how to go from the crash to exploit, in our anonymous
reproduction package 5.

The obtained results are presented in Table III. We first
observe that all fuzzers have immediately identified a type
confusion in the complete PoC. We observe also that all
fuzzers require less than 20 seconds to find the last line of
POC-1 for CVE-2017-3272 and around 11 minutes for CVE-
2016-3587. Finally, we observe that – with an empty seed – all
fuzzers can generate a program to expose the type confusion
vulnerability in less than 30 hours and with a median time of

5Appendix A file in: https://www.dropbox.com/s/868pc27vqblzpuy/
Confuzzion.zip?dl=1

less than 4 hours for CVE-2017-3272, but requires longer to
find CVE-2016-3587, so at least 365 hours.

TABLE III
TIME IN SECONDS TO FIND CVE-2017-3272 AND CVE-2016-3587 WITH

DIFFERENT SEEDS AND A BINOMIAL METHOD SELECTION

CVE-2016 CVE-2017
Run POC POC-1 POC-* Run POC POC-1 POC-*

1 0 276 365h 1 0 8 11334 (3.1h)
2 0 1068 - 2 0 8 104063 (28.9h)
3 0 2818 - 3 0 5 75530 (21h)
4 0 836 - 4 0 11 13226 (3.7h)
5 0 329 - 5 0 14 21012 (5.8h)
6 0 557 - 6 0 9 14101 (3.9h)
7 0 84 - 7 0 16 6558 (1.8h)
8 0 1212 - 8 0 18 3951 (1h)
9 0 310 - 9 0 2 7097 (2h)

10 0 1100 - 10 0 20 17883 (5h)
Median 0 696.5 - Median 0 10 13663.5 (3.8h)

We extended this experiment for CVE-2016-3587 by
launching 10 instances with each of these seeds: POC-2, POC-
3, ..., POC-6. For each seed we stop when one of its 10 running
instances crashes the JVM. The obtained results are presented
in Table IV .

TABLE IV
TIME TO CRASH THE JVM WHEN TARGETING CVE-2016-3587

Seed POC-2 POC-3 POC-4 POC-5 POC-6
Time 2m (0.033h) 2,16m (0.036h) 114h 6h 87h

We observe that the fuzzer is able to crash the JVM for POC,
POC-1, POC-2 and POC-3 in minutes. For POC-4 onwards,
the fuzzer needs hours to crash the JVM. By looking at the
code of the PoC, we notice that POC-4 removes the line INV
responsible for invoking the invokeBasic method through
a MethodHandle with a target method as parameter. This
code is quite complex to generate for the fuzzer.

So in addition to the random nature of fuzzing, the time to
discovery varies not only by the number of removed lines
but also by the generation complexity of these ones. This
highlights the advantage of using a strong seed when running
the tool. For instance, the practitioners could create a seed
program calling the targeted classes, to eventually fasten the
fuzzing campaign.

Furthermore, the time to discovery depends a lot on
the employed computing resources and can be significantly
decreased by running multiple instances of CONFUZZION in
parallel. For instance, starting with an empty seed PoC-*,
CVE-2017-3272 is found in 1 hour by the 8th run, which
is a significantly shorter time-budget compared to the almost
29 hours spent by the 2nd run (instance 8 and 2 in Table III).

B. RQ2: How efficient is the Binomial Method Selection?

To understand if there is a difference in the time to find a
vulnerability between the binomial method selection described
in Section IV-B3 and the uniform method selection, we re-run

https://www.dropbox.com/s/868pc27vqblzpuy/Confuzzion.zip?dl=1
https://www.dropbox.com/s/868pc27vqblzpuy/Confuzzion.zip?dl=1

TABLE V
TIME IN SECONDS TO FIND CVE-2017-3272 WITH A BINOMIAL METHOD

SELECTION AND A UNIFORM METHOD SELECTION.

Fuzzer instance POC-* (binomial) POC-* (normal)
1 11334 (3.1h) 24912 (6.9 h)
2 104063 (28.9h) 131469 (36.5 h)
3 75530 (21h) 108887 (30.2 h)
4 13226 (3.7h) 141210 (39.2 h)
5 21012 (5.8h) -
6 14101 (3.9h) -
7 6558 (1.8h) -
8 3951 (1h) -
9 7097 (2h) -

10 17883 (5h) -
Median 13663.5 (3.8 h) 120173 (33.4 h)

10 instances of the fuzzer to generate a PoC for CVE-2017-
3272 with this latter selection method. Results are presented
in Table V.

We observe that there is a significant reduction of the
median time needed to find the type confusion with our custom
binomial method selection (column 2) over the classic uniform
method selection (column 3). There is also a more consistent
probability of success with the binomial one. Indeed, many
runs lead to effectively finding the type confusion with a
median of four hours, whereas with uniform selection six runs
did not find it in less than 48 hours.

C. RQ3: What is the impact of small changes in the set of
targeted classes by CONFUZZION?

To answer this question, we compare the time needed for
CONFUZZION to find CVE-2017-3272, with different given
target classes. We run the same experiment as in RQ1 for POC-
1, with an extended set of classes to fuzz, selected randomly
from the JVM library. These sets of classes are compound
of all the classes impacted by the commit introducing the
CVE listed in Table II (not just the classes introducing the
vulnerability), plus a certain number X of random classes: 1,
2, 5, 10 and so on until 50, with a step of 5 classes. We note
CIC the classes impacted by the commit introducing the CVE
and CIC+X the set containing these classes plus X number of
extra randomly selected JVM classes. To reduce arbitrariness
due to the stochastic nature of CONFUZZION, we select 10
samples of each CIC+X and run the experiment 10 times for
every sample, so a total of 1200 runs. We present, in Figure 4,
the box-plots of the time in seconds spent by CONFUZZION
to find the CVE for every experiment.

Interestingly, we observe that the fuzzer could in all cases
find the CVE. The results also show that the more classes we
target, the bigger the space to search, hence the slower the
detection. Nevertheless, we can see that up-to 15 additional
classes, the detection time remains relatively low, compared to
bigger sets. The time-budget increases considerably, from an
average of 143s for CIC+15 to 433s for CIC+20, then remains
relatively unchanged or grows slowly with the following
additions of classes. These results confirm the importance of
reducing the search space of such fuzzing campaigns and that
CONFUZZION is well suited for a continuous use, such as
every 1 or more commits.

D. RQ4: How does CONFUZZION compare with state-of-the-
art fuzzers?

1) Efficiency to detect Type Confusion vulnerabilities::
Recently Chen et al. proposed fuzzing tools to detect JVM
anomalies, Classfuzz [18] and Classming [19]. Both tools are
based on a differential testing approach that compares a JVM
to test with a reference one which is considered stable (another
JVM or a different version of the same JVM). While Classfuzz
fuzzing effort is focused on finding errors in the JVM’s startup
process, Classming is designed to target deeper ones, that
can only be detected by a valid Java program. As far as we
know, Classfuzz compares only the files loading and not the
execution of the Java programs. Therefore, Classming is the
only JVM fuzzer able to find complex corner-case faults such
as type confusions.

Classming error finding efficiency, same as Classfuzz,
depends on the initialization Java program (seed) which is the
origin of all the testing inputs (Java programs generated by
mutation) generated by the fuzzer. Considering also the fact
that its set of mutation operators limits the input generation to
Java programs having only the same set of methods invoked in
the initialisation program, its chances are limited to detect type
confusion vulnerabilities since these would probably require
creating/invoking new classes and making several method
invocations. In fact, Classming mutates the given seed by
inserting or removing a Jimple instruction and its required
labels from the following 5 ones, called Hooking Instructions
(HI): (1) goto, (2) return, (3) throw, (4) lookupswitch, and
(5) tableswitch. So, even in a perfect case scenario, with a
seed that is very close to a type confusion revealing program,
which contains a call to a method exposing the vulnerability,
such tool would fail to automatically infer a type confusion
revealing program, at all or at least in a reasonable amount of
time.

Furthermore, our study of the type confusions exposed
by JVMs in the 5 last years showed that the same type
confusion persists from a version to another through the JDK
updates. For instance, the vulnerability CVE-2014-0456 [1]
was introduced in the Java version 1.6.0-14, persisted in
the following 44 publicly released versions of the JDK,
to be finally discovered and fixed in the version 1.7.0-55.
Both ClassFuzz and ClassMing’s algorithms detect faults
by differential testing operated under the strong assumption
that the chosen JVM of reference is stable. Therefore, they
would only discover such a persistently hidden flaw if they
test a vulnerable JVM version (i.e. 1.7.0-51) against a JVM
version prior to the vulnerability introduction one, the version
1.6.0-14. While in a real case scenario, before discovering
a vulnerability, it is unknown which JVM is vulnerable and
which one can be used as reference to reveal it. Thus, it is
unlikely for a differential testing approach to discover such
flaw, unless exhaustively executing each generated program
with all previous JVM versions one by one, as the reference
JVM which would considerably slow down the approach. Our
approach does not make such an assumption since it bases its

CIC + 1 CIC + 2 CIC + 5 CIC + 10 CIC + 15 CIC + 20 CIC + 25 CIC + 30 CIC + 35 CIC + 40 CIC + 45 CIC + 50
0

1,000

2,000

3,000

Fig. 4. Impact of small changes in the size of the target classes set on the time (in s) to find CVE-2017-3272 from POC-1

detection on confusion type post-check conditions.
We excluded Java application fuzzers from this experiment

because of the following two reasons. First, they are designed
to test Java programs instead of generating Java programs to
test JVMs. Second, they crash, hang or fail to execute normally
when they target the JVM classes.

2) Fuzzing speed:: To answer this research question, we
show that the speed of CONFUZZION is relatively similar to
the state of the art java application fuzzers: Java-AFL [16],
Kelinci [15] and JQF. Being not able to fuzz a JVM, we run
these reference fuzzers against a Java program that reads a
given file as an image with the javax.imageio.ImageIO
class. In every iteration, the fuzzers execute the program with
an input file, aiming to reveal an unexpected behaviour.

In Table VI, we illustrate the speed of the above
mentioned fuzzers as well as the speed of CONFUZZION under
two different configurations of its multi-threading feature:
disabled and enabled with 2 threads, which we note
correspondingly as Conf-JVM and Conf-2thr.

TABLE VI
COMPARISON OF CONFUZZION’S JVM-FUZZING SPEED (ITERATIONS PER

SECOND) WITH JAVA FUZZERS SPEED IN FUZZING AN IMAGE LOADING
PROGRAM.

Fuzzer Conf-JVM Conf-2thr. Java-AFL Kelinci JQF
Speed 10 100 10 10 1000

We observe that JQF is by far the fastest among all
compared tools with a speed achieving 1000 iterations per
second. This is mainly due to the fact that the CUT and the
test to fuzz remain unchanged during the fuzzing campaign.
Thus, it loads and instruments the java program on startup,
then executes the same JUnit test with different inputs in every
iteration. Although the JVM-fuzzing task is more resources-
consuming (code generation, compilation and execution)
compared to the image loading fuzzing one, CONFUZZION-
JVM has a similar speed as conventional fuzzers such as Java-
AFL and Kelinci. Enabling the multi-threading feature makes
CONFUZZION-2thr. 10 times faster than those fuzzers.

E. RQ5: How does CONFUZZION compare with Randoop in
terms of type confusion revealing?

Research in automated test generation lead to the creation
of a solid state-of-the-art collection of generators, such as
Randoop [29], Evosuite [30], JTExpert [31] and T3 [32]. These
tools generate executable sequences of instructions followed
by optional validation assertions targeting specific methods
or classes to test. Operating in a white-box manner, they are
able to capture the behaviour of the internal methods of the

given code under test (CUT), and not just of the software as a
whole. Thus, we think that such tools might be able to discover
confusion types by generating a sequence of instructions that
contains the right order and combination of JVM core method
calls with the adequate parameter values.

Randoop [29] and Evosuite [30] are commonly used in
research as the continuously maintained mature state-of-the-art
automated test generators [33] [34]. Unlike Randoop, Evosuite
operates only under the assumption that the given CUT is
stable (does not present any fault) thus creates only valid tests
that are useful for regression and does not output any error
revealing tests. Thus, as we aim at comparing CONFUZZION
against automated test generators in terms of type confusion
finding, we only select Randoop as our baseline to answer this
research question.

Randoop is a feedback guided generator operating with
an Incremental Random Search algorithm to construct valid
sequences that can cover the most of the code under test. In
every iteration, a sequence of instructions is generated then
executed, in order to be classified as either an error-revealing
or regression one to output, or as redundant or invalid to
discard. Only regression sequences are kept as valid sources
of arguments for the following generation iterations. Once
the given time-budget is consumed, the test generator outputs
the regression and error-revealing sequences in well formatted
executable JUnit [35] test suites, one for each type. Confusion
Type flaws are not detectable by default in the post-check
execution of Randoop, thus sequences revealing confusion
types execute normally on a vulnerable JVM and are classified
as valid regression ones.

To enable Randoop to detect the targeted JVM flaws, we
added a dedicated post-checking predicate that compares the
result type of every instruction with the expected one. Because
of Randoop’s post-check customisation limitation, we had to
modify its source-code responsible for checking the generated
sequences execution, in order to add an extra predicate that
prints a message in the terminal, every time a confusion type
is revealed. Our changes have been applied on the current
master branch 6, then tested and validated with a manually
crafted sequence that reveals a type confusion.

Randoop is not able to find CVE-2014-0456 as it fails to
run on JVMs of version 7 and prior. We execute it for 24
and 48 hours on the 4 left CVEs corresponding vulnerable
JVM versions 10 times with different seeds in parallel on
the same environment as the experiments driven in V-A, V-B

6commit 4400200f7f0f4321610a8d042da52fffedbaa74c

and V-C, with different configuration parameters of: time-
budget, classes to generate tests for and enabling/disabling
multi-threading. In all cases, Randoop fails either to find
any confusion type or to execute properly. To exclude the
possibility that our confusion type post-check is responsible
for these failures, we execute these configurations with the
original current released version of Randoop, 4.2.4.

For a fair comparison with CONFUZZION, we started by
passing only the CIC classes as code-under-test (CUT), same
as in V-A and in V-B. Because of Randoop’s disability to
generate tests for abstract classes, it quits directly the test-
generation runs for CVE-2017-3272. This is not the case for
the other CVEs, where only few or none of the changed classes
are abstract. We decide then to pass all the JCL classes as CUT.
This made Randoop crash or fail because of memory issues.

Another attempt to overcome the limitations of
instrumentation and abstract classes testing was to enlarge
the input CUT to the classes exposing the vulnerability and
their dependent classes (collected using jdeps [36]). This lead
Randoop to crash with similar issues, as when passing the
whole JVM as CUT.

The multi-threading feature caused Randoop to fail before
the expiration of the allocated budget-time, so we decided to
disable it.

With the only working configuration, passing only the
CIC as CUT and disabling the multi-threading, Randoop run
successfully until time-budget expiration, on the vulnerable
JVMs 1.8.0u25, 1.8.0u92 and 9. However, it did not find any
type confusion.

To guide Randoop even further towards such a flaw
discovery, in addition to limiting the targeted CUT to the
CIC, we added to its initialization String variables the value
"invokeBasic" so that it could use it directly as a parameter
in its method calls and eventually create a sequence similar to
the PoC. Even in such a perfect case scenario and after 48h
of execution, Randoop failed to reveal any type confusion.

VI. DISCUSSION

Unfortunately, CONFUZZION has limitations which prevents
it from detecting all type confusion vulnerabilities. These
limitations are not only present in CONFUZZION but are, for
the most of them, well known limitations of testing tools
targeting Java applications or the JVM.
Handling Exceptions. As far as we know, none of the current
fuzzers for the JVM generate try/catch blocks. CONFUZZION
has some basics mutations such as calling a method or adding
a new field, but does not currently support try/catch blocks
either. Efficiently handling try/catch block is a challenging
open problem. Indeed, for a given Java program with n
instructions, there are n(n+1)

2 possibilities to adding a single
try block. Thus, the search space, which is already huge,
explodes. Unfortunately, this prevents current tools including
CONFUZZION from detecting certain vulnerabilities such as
CVE-2014-0456.
Loops. Loops are, similarly to try/catch blocks, increasing
significantly the search space. Vulnerabilities which require

to execute some instuction blocks multiple times might not
be detected by confusion. However, at least theoretically,
CONFUZZION is able to generate a code equivalent to the
unrolled version of the code to detect the vulnerability.
Java version 9 and above. CONFUZZION currently only
targets Java version 8 and below and cannot generate programs
with features from Java 9 or above. Thus, it currently cannot
find type confusions in features that have been added to the
Java API since version 9. For instance, the vulnerability of
CVE-2018-2826 relies on a new API method introduced in
Java 9 and cannot, therefore, be detected by CONFUZZION.
Handling JIT. The JVM optimizes code that runs often using
different compilers such as the C1 or C2 compilers [37] [38].
Our approach does not aim at triggering compiler C1 or
C2. CONFUZZION might thus not be unable to discover
type confusion vulnerabilities which rely on bugs in these
compilers. As far as we know, none of the other JVM fuzzers
target these compilers either.
Compiling Input Programs. Our implementation currently
relies on Soot to generate .class files. Improving speed by
enabling faster program compilation is a key matter for future
use of the fuzzer.
Intermediate Representation. CONFUZZION relies on
Jimple to generate input programs. While this intermediate
representation allows to generate any .class file that can
be generated from Java source code, it cannot generate all
.class files that a tool based on mutation at the bytecode
level could generate. However, bytecode level mutation have a
high chance of producing an invalid class file. Their execution
on the JVM would thus mainly test the code responsible from
class loading. With confuzzion we avoid generating invalid
class files as we aim at testing the code behind class loading.

Incremental compilation. CONFUZZION compiles the
intermediate representation mutant into an executable class
file. One can think of incremental compilation [39] as a more
effective way of adding code mutations to the mutant. For
now, CONFUZZION does not use incremental compilation but
it could be a performance improvement (number of mutants
compiled per second). However, as the generated mutants are
rather small, it may not bring a decent improvement over a
standard complete compilation.

VII. RELATED WORK

A. Fuzzing tools

CONFUZZION is a fuzzer as it tries many inputs into a target
program, the JVM. These inputs are obtained through high
level Jimple mutations compared to AFL bit-level mutations.
It also uses the seed concept as it can take a predefined input
before execution and then applies mutations on it.

The genetic aspect of fuzzers is not used by CONFUZZION
because combining programs is not the same task as
combining binary files. Also, because CONFUZZION is mainly
blinded over the current score of a mutant, it cannot rank the
different mutants to select and apply a genetic algorithm as
AFL does.

While AFL [7] and CONFUZZION are based on mutations
regarding a set of seed files, there exist generation-based
fuzzers that are not using mutations but instead are constantly
generating a new input. JQF [14] is an effective Java fuzzer
that uses a generator-based structured fuzzing approach that
can be guided by AFL or Zest [17]. This means the seed
that feeds the generator will mutate according to the guidance
and its sensors (coverage, exceptions, ...). In the end the seed
controls the random behaviour of the generator but not directly
the end result that is created according to generator rules.
Kelinci [15] is another Java fuzzer but uses only AFL on
an instrumented Java program. The instrumentation is similar
to the AFL one, except that it is on Java bytecode. Here an
intermediate program called Driver is used to link between
AFL and Kelinci (C and Java) in order to transfer coverages
and inputs. JAVA-AFL [16] is another mutation-based fuzzer
for Java. It has many caveats according to its creators but
it is one of the few fuzzers available for Java. Like Kelinci,
JAVA-AFL brings AFL-like instrumentation to Java programs.
CONFUZZION is faster than JAVA-AFL and Kelinci because of
the absence of coverage that means no instrumentation needed.

B. Random test generation

Randoop [40] uses a list of public methods available
for each class. When generating sequences, Randoop reuses
previous sequences that are valid. CONFUZZION also uses a
list of targets that corresponds to some classes, but it does
not use the Randoop concept of sequences. In fact, sequences
are defined within a simple method body, but CONFUZZION is
working in a multi-level context where a value may come from
a complex previous sequence like a field, a return value or a
specific parameter. Inside CONFUZZION a sequence cannot be
used independently as Randoop does.

Thanks to our approach that does not use sequences,
CONFUZZION is less dependent on the seed for the result thus
the Feedback-Controlled [41] approach is not used as-is by
CONFUZZION. However, the fuzzer uses a similar approch to
select the next method to call based on the number of previous
crashes.

C. JVM implementation testing

Research on testing JVM implementations is at an advanced
level with ClassFuzz [18] and ClassMing [19] being quite
powerful. These tools aim at general JVM bugs, which can
be found efficiently when targeting only the language features
and not the related API. In contrast CONFUZZION aims at a
specific class of bugs that is outside the scope of ClassFuzz
and ClassMing. At the same time, CONFUZZION follows the
work line of ClassFuzz and ClassMing and uses successive
mutations on class files with Soot, but with different mutations.
Another difference is that CONFUZZION does not require an
initialisation seed and does not need a reference JVM enabling
higher flexibility when testing. Interestingly, these approaches
could be combined providing an interesting avenue for future
research.

D. Test-program generation

In addition to JVM implementation testing, test-program
generation is commonly used in compiler testing literature
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51]. The
main goal of this line of work is to stress the compiler
and reveal corner cases, typically in compiler optimization or
parsing features of the compilers. To do so, most of the studies
focus on the use of the language features, syntax and supported
structures, while CONFUZZION focuses on the core language
API and its semantics at the JVM implementation level.
Another difference is that CONFUZZION aims at the checking
of the program’s semantic at run-time, after compilation.

VIII. CONCLUSION

Thanks to Confuzzion we now have a tool to generate
complex programs at decent speed in order to find flaws
inside the JVM such as type confusions or other object related
issues. We measured a significant improvement in binomial
method selection based on the failure rate over the classic
uniform method selection. This leads to a faster finding of type
confusions by concentrating efforts on those complex methods.

We believe that Confuzzion is the beginning of a global
thinking about how type confusion can be detected inside the
Java Virtual Machine. Although it seems primitive, it is also
quite efficient when targeting specific classes. As such, to find
unknown type confusions, we can list all modified classes
since previous release and target each one (or a combination
of some of them) in order to reduce the search space.

Also, the current median time needed to find a type
confusion (4 hours for CVE-2017-3272) is small enough (<
24 hours) to be useful in practice. This is a direct consequence
of the mean speed we achieved at more than 100 execs/s
where exec represents the whole association of: applying a
new mutation, adding a type confusion detector, compiling
the entire program and finally executing it.

ACKNOWLEDGMENT

This work was supported by the Luxembourg National
Research Fund (FNR) ONNIVA Project, ref. 12696663 and
TestFast Project, ref. 12630949. This work was partially
supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

REFERENCES

[1] “CVE-2014-0456.” Available from MITRE, CVE-ID CVE-2014-
0456, Dec. 12 2013, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0456.

[2] “CVE-2015-4843.” Available from MITRE, CVE-ID CVE-2015-
4843, Jun. 24 2015, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-4843.

[3] “CVE-2016-3587.” Available from MITRE, CVE-ID CVE-2016-
3587, Mar. 17 2016, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-3587.

[4] “CVE-2017-3272.” Available from MITRE, CVE-ID CVE-2017-
3272, Dec. 06 2016, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-3272.

[5] “CVE-2018-2826.” Available from MITRE, CVE-ID CVE-2018-
2826, Dec. 15 2017, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-2826.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3587
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3587
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2826

[6] A. Bartel and J. Doe, “Twenty years of escaping the java
sandbox,” Phrack, 2018, http://www.phrack.org/papers/escaping_the_
java_sandbox.html.

[7] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2017.

[8] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[9] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy, 2018.

[10] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2123–2138.

[11] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 49–64.

[12] C. Lemieux and K. Sen, “Fairfuzz: Targeting rare branches to rapidly
increase greybox fuzz testing coverage,” CoRR, vol. abs/1709.07101,
2017. [Online]. Available: http://arxiv.org/abs/1709.07101

[13] S. Groß, “Fuzzil: Coverage guided fuzzing for javascript engines,”
Master’s thesis, Karlsruhe Institute of Technology, 2018.

[14] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-guided property-
based testing in java,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019.

[15] R. Kersten, K. S. Luckow, and C. S. Pasareanu, “Poster: Afl-based
fuzzing for java with kelinci,” in ACM Conference on Computer and
Communications Security, 2017.

[16] J. Judin, “Java-afl,” https://github.com/Barro/java-afl, 2019.
[17] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon, “Zest:

Validity fuzzing and parametric generators for effective random testing,”
CoRR, vol. abs/1812.00078, 2018.

[18] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 85–99.

[19] Y. Chen, T. Su, and Z. Su, “Deep differential testing of jvm
implementations,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 1257–1268.

[20] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, pp.
4:1–4:36, 2020. [Online]. Available: https://doi.org/10.1145/3363562

[21] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. L. Traon,
and M. Harman, “The importance of accounting for real-world
labelling when predicting software vulnerabilities,” in Proceedings of
the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019,
M. Dumas, D. Pfahl, S. Apel, and A. Russo, Eds. ACM, 2019, pp.
695–705. [Online]. Available: https://doi.org/10.1145/3338906.3338941

[22] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software
vulnerabilities by smart fuzzing,” in 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation. IEEE,
2011, pp. 427–430.

[23] G. Fraser and A. Arcuri, “Handling test length bloat,” Software Testing,
Verification and Reliability, vol. 23, no. 7, pp. 553–582, 2013.

[24] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for
analyses and transformations.” Citeseer, 1998.

[25] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), vol. 15, 2011, p. 35.

[26] J. Bernoulli, Ars conjectandi, opus posthumum: accedit tractatus de
seriebus infinitis, et epistola Gallice scripta de ludo pilæ reticularis.
Impensis Thurnisiorum Fratrum, 1713.

[27] A. Householder and J. Foote, “Probability-based parameter selection for
black-box fuzz testing,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2012-TN-019, 2012.

[28] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[29] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” Proceedings - International Conference on
Software Engineering, pp. 75–84, 2007.

[30] G. Fraser and A. Arcuri, “EvoSuite,” Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering - SIGSOFT/FSE ’11, no. September 2011, p.
416, 2011.

[31] A. Sakti, G. Pesant, and Y. G. Guéhéneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, vol. 41, no. 3, 2015.

[32] I. S. Prasetya, “Budget-aware random testing with T3: Benchmarking
at the SBST2016 testing tool contest,” Proceedings - 9th International
Workshop on Search-Based Software Testing, SBST 2016, pp. 29–32,
2016.

[33] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track, ICSE-SEIP 2017, pp. 263–272, 2017.

[34] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges,” Proceedings -
2015 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, pp. 201–211, 2016.

[35] “Junit.” [Online]. Available: https://junit.org/
[36] “Oracle jdeps.” [Online]. Available: https://docs.oracle.com/javase/9/

tools/jdeps.htm
[37] B. Evans, “Understanding java jit compilation with jitwatch,

part 1,” https://www.oracle.com/technical-resources/articles/java/
architect-evans-pt1.html, 2014.

[38] OpenJDK, “Hotspot glossary of terms,” http://openjdk.java.net/groups/
hotspot/docs/HotSpotGlossary.html, 2006.

[39] Y. Liang and L. Yansheng, “An incremental compilation algorithm for
the java programming language,” in 2012 7th International Conference
on Computer Science Education (ICCSE), 2012, pp. 1121–1124.

[40] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for java,” in Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
2007, pp. 815–816.

[41] K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden, “Feedback-
controlled random test generation,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: ACM, 2015, pp. 316–326.

[42] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator
for java jit compiler test system,” in Third International Conference on
Quality Software, 2003. Proceedings. IEEE, 2003, pp. 20–23.

[43] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-program
generation,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 305–316.

[44] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[45] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for c compiler bugs,” ACM SIGPLAN Notices, vol. 47,
pp. 335–346, 08 2012.

[46] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” ACM SIGPLAN Notices, vol. 47, p. 283, 08 2012.

[47] A. Boujarwah and K. Saleh, “Compiler test case generation methods: A
survey and assessment,” Information and Software Technology, vol. 39,
pp. 617–625, 09 1997.

[48] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2017, pp. 347–
361.

[49] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
B. XIE, “Coverage prediction for accelerating compiler testing,” IEEE
Transactions on Software Engineering, vol. PP, pp. 1–1, 12 2018.

[50] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler bug
isolation via effective witness test program generation,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 223–234.

[51] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 65–76,
2015.

http://www.phrack.org/papers/escaping_the_java_sandbox.html
http://www.phrack.org/papers/escaping_the_java_sandbox.html
http://lcamtuf.coredump.cx/afl/
http://arxiv.org/abs/1709.07101
https://github.com/Barro/java-afl
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3338906.3338941
https://junit.org/
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html
http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

	Introduction
	Motivation
	Type confusion vulnerabilities are a major issue in Java
	Existing fuzzers are not designed to find type confusion vulnerabilities

	Background
	Fuzzers
	Generator-based fuzzers
	White, Grey and Black-box fuzzers
	Feedback
	Smart

	Java and the JVM
	The Java Environment
	Java Program Fuzzers
	JVM Fuzzers

	The Confuzzion Approach
	Evolving the master program
	Generating programs
	Mutations and objects

	Guiding the Search
	Restricting the Search Space
	Handling test bloat
	Test Feedback and Search Guidance

	Vulnerability Detection Checks
	Implementation

	Evaluation
	RQ1: How efficient is Confuzzion at detecting Type Confusion Vulnerabilities?
	RQ2: How efficient is the Binomial Method Selection?
	RQ3: What is the impact of small changes in the set of targeted classes by Confuzzion?
	RQ4: How does Confuzzion compare with state-of-the-art fuzzers?
	Efficiency to detect Type Confusion vulnerabilities:
	Fuzzing speed:

	RQ5: How does Confuzzion compare with Randoop in terms of type confusion revealing?

	Discussion
	Related work
	Fuzzing tools
	Random test generation
	JVM implementation testing
	Test-program generation

	Conclusion
	References

