
Exception-Driven Fault Localization for Automated
Program Repair

Davide Ginelli, Oliviero Riganelli, Daniela Micucci, Leonardo Mariani
University of Milano - Bicocca, Milan, Italy

{davide.ginelli, oliviero.riganelli, daniela.micucci, leonardo.mariani}@unimib.it

Abstract—Automated Program Repair (APR) techniques typi-
cally exploit spectrum-based fault localization (SBFL) to identify
the program locations that should be patched, making the
effectiveness of APR techniques dependent on the effectiveness
of fault localization. Indeed, results show that SBFL often does
not localize faults accurately, hindering the effectiveness of APR.

In this paper, we propose EXCEPT, a technique that addresses
the localization problem by focusing on the semantics of failures
rather than on the correlation between the executed statements
and the failed tests, as SBFL does. We focus on failures due to
exceptions and we exploit their type and source to localize and
guess the faults. Experiments with 43 exception-raising faults
from the Defects4J benchmark show that EXCEPT can perform
better than Ochiai and ssFix.

Index Terms—automatic program repair, fault localization,
SBFL, exceptions

I. INTRODUCTION

Automated Program Repair (APR) techniques have been
extensively studied as approaches that can assist developers
during the debugging and bug fixing tasks [1], [2]. Although
often limited to the simplest bugs, APR has already demon-
strated its effectiveness with large-scale industrial systems [3].

APR techniques offer a range of strategies to repair code.
For example, generate-and-validate techniques (e.g., Gen-
Prog [4] and AE [5]) discover plausible fixes by exploring a
space of potential patches, while semantics-driven techniques
(e.g., SemFix [6] and NOPOL [7]) synthesize fixes from a
representation of the repair problem directly derived from the
faulty application.

APR techniques share the challenge of identifying the fix
locus, that is, the program location(s) that should be modified
to produce a fix. Indeed, it is hard or even impossible to repair
a fault without selecting a good location for the fix [8].

The larger the program size, the more difficult it is to
identify the correct location(s) in which to apply the fix.
Focusing on the wrong locations may waste significant com-
putational resources, since each location can be modified in
many different ways in the attempt of obtaining a fix [9].
Even worse, choosing the wrong location multiple times can
dramatically impact performance and even the feasibility of
the repair process.

APR techniques address the problem of identifying the fix
locus using Spectrum-Based Fault Localization (SBFL) [10],
which can heuristically compute a suspiciousness score asso-
ciated with each program location: the higher the score, the
higher the probability that the program location is faulty. The

suspiciousness scores of the statements is derived from the
information about the number of passing and failing test cases
that execute them. Intuitively, the more a statement is executed
by failing executions only, the more suspicious it is.

The suspiciousness scores associated with the statements
determine a ranking that is used by APR techniques to identify
the targets of the repair process. For example, jGenProg [11],
uses the ranking generated by the Ochiai SBFL technique [12]
to select statements as modification points with a probabil-
ity that depends on their suspiciousness, while NOPOL [7]
follows the ranking generated by Ochiai to analyze each
statement in the ranking one after the other. Unfortunately,
experimental evidence shows that SBFL techniques are often
unable to rank faulty statements at top positions [8], [13], [14].

In this paper, we propose to address the localization problem
by primarily exploiting the semantics of the failures rather
than the correlation between the executed statements and
the failed tests, that has been proven to produce inaccurate
results. To this end, we focus on failures caused by exceptions,
which represent a large portion of the failures that can be
observed [15]–[17].

Exceptions carry extensive information about the oc-
curred failures, such as the location that raised the excep-
tion, which can represent a good starting point for fault
localization, and the type of the exception, which pro-
vides useful semantic information about the possible na-
ture of the problem. For instance, a failure caused by
a Java ArrayIndexOutOfBoundsException suggests the
statement that raised the exception as a possible location for
the fix, but the statement where the array has been initialized,
and the statements that assigned a value to the variables used
to access a location of the array are good locations as well. The
type of the exception can thus be used to guide the analysis
in the selection of the suspicious locations according to the
semantics of the failure.

Since locations are identified based on a guessed cause of
the failure (e.g., the value of an index might be wrong), a
suspicious location can be enriched with information about
the program elements that are likely responsible for the failure
(e.g., a variable in an index expression) and the likely fault
(e.g., wrong variable used), which can in turn be exploited
to identify the change that should be operated to correct the
program (e.g., replace the variable).

Although some approaches addressed the localization
and repair of failures caused by exceptions,

ar
X

iv
:2

20
1.

00
73

6v
1

 [
cs

.S
E

]
 3

 J
an

 2
02

2

NullPointerExceptions in particular [18], [19], they
cannot generate ranked lists of statements that can be used
by APR techniques, neither they considered enriching the
localization with debugging information that can be useful to
developers. The localization used in ssFix [20] can exploit
stack traces to improve rankings, but this is not sufficient to
correctly localize several faults, as reported in our evaluation.

This paper presents EXCEPT, an exception-driven fault
localization technique that can be used to support APR
techniques. EXCEPT analyzes failures caused by exceptions
and localizes faults by following the semantics of exceptions
and their causes. In addition to producing an ordered list of
statements that are reported as high-priority elements on top of
ranked lists returned by SBFL techniques, EXCEPT enriches
the identified items with information about the individual
expressions that are likely faulty (e.g., a specific variable in
an expression) and the guessed faults (e.g., wrong variable
used), which can be used by APR techniques and developers to
determine how to patch programs (e.g., replacing the variable).

In our empirical evaluation, EXCEPT outperformed both
Ochiai [12] and the localization used in ssFix [20] for 43
exception-raising fault locations selected from the Defects4J
benchmark [21]. Further, EXCEPT could correctly guess faults
for multiple exception types.

In a nutshell, the main contributions of this paper are:
• EXCEPT, a fault localization technique that considers the

semantics of exceptions to localize faults for APR, enrich-
ing the localization with information about the expressions
likely responsible for the failures and the guessed faults,

• Empirical evidence of the effectiveness of the proposed
strategy in comparison to Ochiai and ssFix.
This paper is organized as follows. Sections II presents

EXCEPT. Section III describes the supported exceptions. Sec-
tion IV presents the empirical evaluation. Section V discusses
the related approaches. Section VI provides final remarks.

II. EXCEPT

As exemplified in Figure 1, EXCEPT returns a ranked list
of repair targets starting from three inputs: a faulty program
p, a test t that fails with an uncaught exception, and a list of
suspicious statements rankingSBFL identified with an SBFL
technique. A repair target reports the following information:
• a program location, which is a likely faulty program state-

ment,
• an expression in the location, which represents a specific

program element likely responsible of the fault,
• guessed faults, which associate the expression with specific

guessed faults that may affect the expression,
• a suspiciousness value, which is a positive number that can

be used to rank repair targets from the most likely to the
least likely to be relevant for fixing the fault.
For example, a repair target may refer to an array variable

(expression) in a statement with an array access (program loca-
tion) as a likely faulty element, while suggesting that the array
name is wrong (guessed fault), with a given suspiciousness

Algorithm 1 Description of EXCEPT.

1: procedure EXCEPT (p, t, rankingSBFL)
2: Input
3: p The faulty program
4: t A test case that fails raising an exception
5: rankingSBFL The list of suspicious statements identified with a

SBFL technique
6: Output
7: repairTargetsList: a list of repair target or null

8: // Step 1: Stack Trace Analysis
9: stackTrace = getExceptionStackTrace(p, t);

10: exceptionType = getExceptionType(stackTrace);
11: relevantStatementsList = getRelevantStatementsList(stackTrace);

12: // Step 2: Ranking Generation
13: repairTargetsList = ∅;
14: relevantStmsAnalyzed = 0;

15: // Sub-step 2.1: Selection of suspicious locations
16: for each relevantStatement ∈ relevantStatementsList do
17: if relevantStmsAnalyzed <

exceptionType.maxRelevantStatementsToConsider then
18: relevantStmsAnalyzed = relevantStmsAnalyzed + 1;
19: suspiciousLocations = selectSuspiciousLocations(p,

relevantStatement, exceptionType);
20: // Sub-step 2.2: Generation of repair targets
21: for each suspLoc ∈ suspiciousLocations do
22: susp = computeSuspValue();
23: repairTarget = generateRepairTarget (suspLoc,

exceptionType, susp);
24: repairTargetsList.add(repairTarget);
25: end for
26: end if
27: end for

28: // Sub-step 2.3: Merging of the rankings
29: repairTargestList.addTargetsFrom(rankingSBFL);

30: return repairTargetsList;
31: end procedure

value. Or, it may identify the variable used as index of the
array (expression) as the faulty element, suggesting that the
value of the variable is wrong (guessed fault), with a given
suspiciousness value.

EXCEPT adds the repair targets that derive from the knowl-
edge of the exception raised by the failing test as high priority
items in the initial ranked list produced by a SBFL technique.
Repair targets and SBFL locations are merged together to
obtain a comprehensive ranked list that can benefit from the
joint contributions of two complemental approaches. Since
the information about the faulty expression and the guessed
fault derives from the knowledge of the exceptions, they are
available only for the high priority targets added by EXCEPT,
and are not available for the elements in the initial ranked list
produced by SBFL.

EXCEPT works in two main steps:

• Stack Trace Analysis, which analyzes the stack trace of
the exception to identify the type of the exception and the
relevant statements that occur in the stack trace;

• Ranking Generation, which identifies the relevant expres-
sions that may have caused the exception, traces them back

Relevant
statements

Stack Trace Analysis

Relevant
expressions

Ranking Generation

Suspicious
locations

(expression level)

out[row] = sum

java.lang.ArrayIndexOutOfBoundsException:
Index 2 out of bounds for length 2

 at org.apache.commons.math.linear.BigMatrixImpl.
operate(BigMatrixImpl.java:997)

 at org.apache.commons.math.linear.BigMatrixImplTest.
testMath209(BigMatrixImplTest.java:446)

 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.
invoke0(Native Method)

 at java.basejdk.internal.reflect.NativeMethodAccessorImpl.
invoke(NativeMethodAccessorImpl.java:62)

 ...
 at java.base/java.lang.reflect.Method.

invoke(Method.java:566)
 at junit.framework.TestCase.runTest(TestCase.java:176)
 ...

Stack trace

Repair
targets

public BigDecimal[] operate(BigDecimal[] v) {
 ...
 final BigDecimal[] out = new BigDecimal[v.length];
 for (int row = 0; row < nRows; row++) {
 BigDecimal sum = ZERO;
 for (int i = 0; i < nCols; i++) {
 sum = sum.add(data[row][i].multiply(v[i]));
 }
 out[row] = sum;
 }
 ...
} Program

...

...
991
992
993
994
995
996
997
...
...
...

Test

Selection of suspicious locations Generation of repair targets Merging of the rankings

row

out[row] = sum @line997

row @line997

row = 0 @line992

out[row] = sum @line997
out
missing condition
2.00

row @line997
row
wrong array index
1.95

Repair
targets list

out[row] = sum @line997
out
missing condition
2.00

SBFL
ranking

out

v.length @line991

row @line997

row = 0 @line992

Fig. 1: Except applied to the program in Listing 1.

to the suspicious locations that might have affected the
values of the relevant expressions, and creates a ranked list
of repair targets from the suspicious locations and the input
SBFL ranking.
Figure 1 shows the elements that are incrementally iden-

tified by EXCEPT to finally generate the ranking, when
applied to the faulty program in Listing 1, which throws
an ArrayIndexOutOfBoundsException. Algorithm 1 and
Algorithm 2 detail how EXCEPT works with pseudocode. The
blue constant and the blue functions depend on the type of
the exception and are described in details in Section III for
the supported exceptions.

A. Stack Trace Analysis

Stack trace analysis (lines 9-11 of Algorithm 1) extracts two
key data from the stack trace associated with an exception: the
exception type and the relevant statements.

The exception type is explicitly reported in the stack trace
and can be trivially retrieved.

EXCEPT identifies as relevant statements that might have
contributed to the exception every program statement explicitly
reported in the exception stack trace, that is, every location
that appears in the context of the statement that raised the
exception. Since the fault is assumed to be in the program,
EXCEPT discards the statements that do not refer to the pro-
gram under analysis, but rather refer to external libraries, JDK
classes, test frameworks (e.g., JUnit [22] or Mockito [23]),
and test cases. For each unfiltered statement, EXCEPT creates
a relevant statement which includes the line number of the
statement, the Java class to which it belongs to, the method
that executes it, and the file name containing the statement.
This is done by function getRelevantStatementsList

invoked at line 11 of Algorithm 1.
The list of relevant statements is ordered according to their

position in the stack trace, starting from the one closest to the
statement that generates the exception under analysis.

Algorithm 2 Description of selectSuspiciousLocations.

1: procedure selectSuspiciousLocations(p, stp, et)
2: Input
3: p The faulty program
4: stp A Stack Trace Poi
5: et The type of the exception

6: Output
7: suspiciousLocations: a set of suspicious locations

8: relevantExpressions = selectRelevantExpressions(p, stp, et);

9: suspiciousLocations = ∅;
10: for each re ∈ relevantExpressions do
11: suspiciousLocationsForRe = findSuspiciousLocations(p, re, et);
12: suspiciousLocations.add(suspiciousLocationsForRe);
13: end for

14: return suspiciousLocations;
15: end procedure

B. Ranking Generation

The generation of the ranking (lines 13-29 in Algorithm 1)
implies 1) analyzing the relevant statements to identify the
suspicious program locations that might have caused the
exception, 2) generating the repair targets, and 3) merging the
identified repair targets with the initial SBFL ranking.

Selection of Suspicious Locations (lines 16-19 in Algo-
rithm 1 and Algorithm 2). The number of the analyzed relevant
statements is bound to prevent that too many repair targets can
be generated (line 17 in Algorithm 1). In fact, adding many
targets to the initial ranking generated by SBFL may hinder
the effectiveness of APR techniques, since they would have
to consider too many highly suspicious program locations. On
the contrary, EXCEPT aims to add a small and focused set of
high-priority repair targets that may help in directing repair
algorithms on the right statements for the right reason.

In practice, the number of relevant statements to be con-

sidered might be different based on the exception type. The
bound could be small (e.g., 1) for some exceptions. For in-
stance, in the case of ArrayIndexOfOutBoundsException,
the statement that raises the exception includes the array
variable and the index value that causes the exception and
the analysis can be effectively driven by their values. The
bound could be higher for other exceptions, such as the
IllegalArgumentException, since the raised exception
may strongly depend on the execution context, and considering
multiple points derived from the stack trace of the exception
might be beneficial (e.g., also considering the calling method).

The selection of the suspicious locations from a relevant
statement is described in the selectSuspiciousLocations
function presented in Algorithm 2. The selection is driven by
two key logical steps: the selection of the relevant expressions
(line 8 in Algorithm 2) and the identification of the suspicious
locations (line 11 in Algorithm 2).

When a relevant statement is analyzed, EXCEPT first
narrows down the analysis to the specific expressions that
might be responsible for the exception, ignoring the rest
of the statement. For example, if a statement raises an
ArrayIndexOutOfBoundsException, EXCEPT would se-
lect the expression used to access the array and the expression
that identifies the array as relevant expressions for the analysis,
as shown in Figure 1. Since this step of the analysis depends
on the semantics of the exception, it is described in details for
each supported exception in Section III.

Each expression relevant to the exception is used to identify
the statements that might have caused the exceptional situation
that finally resulted in the failure. For instance, if the relevant
expressions are the array name and the array index, EXCEPT
would select the code that defines the array and the code
that defines the index as suspicious locations. This is done
with a local data-flow analysis that depends on the relevant
expression and the type of exception. The specific analysis
for the supported exceptions is described in Section III.

Generation of Repair Targets (lines 21-24 of Algo-
rithm 1). Every suspicious location is turned into a repair
target by adding the guessed faults and a suspiciousness
value. The guessed faults are annotations that specify why
the expression could be faulty. For example, if the exception
is ArrayIndexOutOfBoundsException and the selected
expression defines the value of the size used to initialize
the array, a guessed fault may assume the initial size of the
array is wrong. Developers and APR techniques can exploit
this annotation to change the program accordingly. Since the
annotation depends on the type of the exception, we describe
how faults are guessed for each exception type in Section III.

The suspiciousness value assigned to the repair targets
considers the fact that these targets must have higher priority
compared to the top ranked items in the input SBFL ranking.
Since the maximum suspiciousness in the input SBFL ranking
is 1, EXCEPT assigns suspicious values that start from 2 to the
identified repair targets. Since repair targets are generated by
following the order of occurrence of the relevant statements,
which are ordered based on their distance from the statement

that raises the exception, EXCEPT prioritizes the repair targets
accordingly, decreasing the suspiciousness value by 0.05 every
time a target is added to the ranking. This gap is chosen
to accomodate up to 20 high-priority repair targets before
potentially reaching the elements in the input ranking.

Merging of the rankings (line 29 of Algorithm 1). The
last step requires merging the identified repair targets with
the input ranked list. This is performed with two simple
steps. First, the locations that are present both in the SBFL
ranking and in the repair targets are removed, keeping only the
location with the highest suspiciousness score. The additional
information produced by EXCEPT (the expression and the
guessed fault) are also preserved. Second, all the items are
ordered according to their suspiciousness.

III. SUPPORTED EXCEPTIONS

To demonstrate EXCEPT, we defined the analysis for four
types of exceptions: ArrayIndexOfOutBoundsException,
StringIndexOutOfBoundsException, NullPointer-

Exception, and IllegalArgumentException. We focused
on some of the most popular types of exceptions based on
faults contained in public benchmarks, such as Defect4J [21],
Bears [24], and Repairnator [17]. Similar analyses can be
added to support additional exceptions.

EXCEPT is equipped with simple and fast analyses based
on data flow and bounded in scope to identify the likely fault
locations. In particular, the analysis to determine the suspicious
locations is bounded to the method that includes the relevant
expression. Note that multiple relevant expressions in multiple
methods can be selected, thus the analysis is not generally
limited to the method that raises the exception. Moreover, the
scope of the analysis always includes the definition of class
variables, which may initialize variables with wrong values.
Bounding the analysis is useful to generate a limited number
of repair targets and complete the analysis quickly (in our
experiments every case could be processed in few seconds).

In the following, we discuss and exemplify the elements
that depend on the exceptions for the four supported ex-
ception types: maxRelevantStatementsToConsider spec-
ifies the number of relevant statements to consider,
selectRelevantExpressions describes how the relevant
expressions are determined, findSuspiciousLocations

describes the analysis that selects the suspicious code loca-
tions, and generateRepairTarget indicates the guessed
faults that are associated with the suspicious locations. The
guessed fault consists of a label with known semantics (e.g.,
“wrong variable name”) that is included in the repair target
and that can be exploited by developers or APR techniques.

A. ArrayIndexOfOutBoundsException

maxRelevantStatementsToConsider. The analysis
only considers the statement that raises the exception.

selectRelevantExpressions. EXCEPT looks for in-
stances of the expression refArray[exprIndex] in the
relevant statement, to select the occurrences of refArray
and exprIndex as relevant expressions that might be wrong

TABLE I: Analysis of ArrayIndexOutOfBoundsException.

Suspicious locations Guessed faults

statement with refArray array variable is wrong
missing conditional statement

allocation of refArray wrong array initialization

definitions of the variables that deter-
mine the size of refArray

wrong variables values

statement with exprIndex exprIndex is wrong

definitions of variables used in
exprIndex

wrong variables values

and thus cause the exception. In fact, the access to the array
might fail because the wrong array is used or the wrong array
location is selected.

findSuspiciousLocations and generateRepair-
Target. When refArray is considered, EXCEPT runs a
recursive backward bounded data-flow analysis to identify the
locations in which refArray is allocated. If the array initial-
ization statement uses other variables, the analysis process is
iterated to determine the locations that assign a value to these
variables. Also the location itself, where refArray is used,
is returned as a suspicious location.

When exprIndex is considered, EXCEPT runs a backward
bounded data-flow analysis to identify the locations that define
the variables that occur in exprIndex. Also the location
itself where exprIndex is used is returned as a suspicious
location. Table I lists the identified locations and the corre-
sponding guessed faults.

Listing 1: Example of ArrayIndexOutOfBoundsException.
1 public BigDecimal[] operate(BigDecimal[] v) {
2 ...
3 final BigDecimal[] out = new BigDecimal[v.length];
4 for (int row = 0; row < nRows; row++) {
5 BigDecimal sum = ZERO;
6 for (int i = 0; i < nCols; i++) {
7 sum = sum.add(data[row][i].multiply(v[i]));
8 }
9 out[row] = sum;

10 }
11 } /*** Source: Math 98 - Defects4J ***/

Example. Listing 1 shows an excerpt of the Math 98 fault in
Defects4J. The statement at line 9 is the relevant statement,
since it generates the ArrayIndexOutOfBoundsException.
The variables out and row are selected as relevant expres-
sions, which in turn generate 6 suspicious locations with the
corresponding guessed fault: out might be the wrong array
variable used at line 9; row might be the wrong index used
at line 9; there might be a missing condition (e.g., it is
necessary to add an if-statement that influences the access
to array out); row might be assigned with the wrong value at
line 4; the initialization of out at line 3 might be wrong; the
expression v.length used at line 3 might be wrong. In this
case, the correct fix consists in modifying the initialization of
the array at line 3 by replacing the expression v.length with
nRows, which is one of the guessed faults.

TABLE II: Analysis of StringIndexOutOfBoundsException.

Suspicious locations Guessed faults

statement with stringVar String variable is wrong
missing conditional statement

definition of stringVar wrong value
missing conditional statement

statement with exprIndex exprIndex is wrong

definitions of vars used in exprIndex wrong variables values
missing conditional statement

B. StringIndexOutOfBoundsException

maxRelevantStatementsToConsider. The analysis
only considers the statement that raises the exception.

selectRelevantExpressions. EXCEPT
looks for instances of the expression string-
Var.op(...exprIndex...) in the relevant statement,
where stringVar is a String variable, op is a method
that can return a StringIndexOutOfBoundsException,
such as charAt(int index), and exprIndex is an Integer
expression for accessing the string at a specific position.

EXCEPT selects the occurrences of stringVar, in case
the wrong string is used, and exprIndex, in case the wrong
index is used, as relevant expressions.

findSuspiciousLocations and generateRepair-
Target. When either stringVar or exprIndex are
considered, EXCEPT runs a backward data-flow analysis to
identify the locations in which the variables included in
these expressions are defined. Also the location where these
variables are used is returned as a suspicious location. Table II
lists the identified locations and the guessed faults.

Listing 2: Example of StringIndexOutOfBoundsException.
1 public static String abbreviate(String str, int lower,

int upper, ...) {
2 ...
3 if (upper == -1 upper > str.length())
4 upper = str.length();
5 if (upper < lower)
6 upper = lower;
7 ...
8 if (index == -1) {
9 result.append(str.substring(0, upper));

10 ...
11 }
12 } /*** Source: Lang 45 - Defects4J ***/

Example. Listing 2 shows an excerpt of the Lang
45 fault in Defects4J. The statement at line 9
is the relevant statement, since it generates the
StringIndexOutOfBoundsException. The analysis
selects the expressions str, 0 and upper as relevant
expressions, which in turn generate 8 suspicious locations
with the corresponding guessed fault. For sake of space, we
do not list all of them, but they include the actual fix, which
consists of a missing condition.

C. NullPointerException

maxRelevantStatementsToConsider. The analysis
considers both the statement that raises the exception and the

TABLE III: Analysis of NullPointerException.

Suspicious locations Guessed faults

statement with obj variable is wrong
missing conditional statement

definition of obj wrong value
missing conditional statement

calling site wrong variables

calling method to address the case of null values erroneously
passed as parameters.
selectRelevantExpressions. EXCEPT looks for in-
stances of the expression obj.op() in the first relevant
statement, where obj is a non-primitive variable. EXCEPT
selects the occurrences of obj as relevant expressions that
might be wrong and thus cause the exception. Finally, EXCEPT
selects the non-primitive parameters used in the method call
in the second relevant statement to account for null values
generated by the caller.
findSuspiciousLocations and generateRepair-
Target. When obj is considered, EXCEPT runs a backward
bounded data-flow analysis to identify the locations where
obj is defined. When the caller is analyzed, if the null vari-
able is defined through the method call, the calling site is also
identified as a suspicious location. The location itself where
this variable is used is also returned as a suspicious location.
Table III lists the identified locations and the corresponding
guessed faults.

Listing 3: Example of NullPointerException.
1 public class XYPlot {
2 ...
3 public Range getDataRange(ValueAxis axis) {
4 ...
5 XYItemRenderer r = getRendererForDataset(d);
6 ...
7 Collection c = r.getAnnotations();
8 ...
9 }

10 } /*** Source: Chart 4 - Defects4J ***/

Example. Listing 3 shows an excerpt of the Chart 4 fault
included in Defects4J. The statement at line 7, since it gen-
erates the NullPointerException, is a relevant statement.
The analysis selects the expression r as relevant expression,
which in turn generates 3 suspicious locations with the
corresponding guessed fault: the variable r at line 7 might
be wrong; the entire statement at line 7 might have to be
accessed only within a conditional statement; and the method
getRendererForDataset() used to assign a value to the
variable r at line 5 might be wrong. The actual fix consists of
adding the conditional statement.

D. IllegalArgumentException

maxRelevantStatementsToConsider. EXCEPT con-
siders both the statement that raises the exception and the
caller statement of the method that raises the exception as
relevant statements for the analysis.
selectRelevantExpressions. EXCEPT looks for one
or more instances of the expression op(...exprPar...)

TABLE IV: Analysis of IllegalArgumentException.

Suspicious locations Guessed faults

exprPar used as parameter wrong parameter
wrong method invoked

definition of variables in exprPar wrong value

in the relevant statements. The expression represents any
method call with at least one parameter. If the invocation is
found in the first relevant statement, the second relevant state-
ment is skipped. Otherwise, (e.g., the first relevant statement
throws the exception instead of invoking a method), the second
relevant statement is also searched for the same pattern.

EXCEPT selects the occurrences of exprPar as relevant
expressions that might be wrong, thus causing the exception.

findSuspiciousLocations and generateRepair-
Target. When exprPar is considered, EXCEPT runs a
backward bounded data-flow analysis to identify the locations
where the variables used in exprPar are defined. Table IV
lists the identified locations and the guessed faults.

Listing 4: Example of IllegalArgumentException.
1 public class TimeSeries {
2 ...
3 public Object clone() {
4 Object clone = createCopy(0, getItemCount() - 1);
5 return clone;
6 }

8 public TimeSeries createCopy(int start, int end)
throws ... {

9 if (start < 0)
10 throw new IllegalArgumentException("");
11 if (end < start)
12 throw new IllegalArgumentException("");
13 ...
14 }
15 } /*** Source: Chart 17 - Defects4J ***/

Example. Listing 4 shows an excerpt of the Chart 17
fault in Defect4J. The statement at line 12 raises an
IllegalArgumentException if the value of the second pa-
rameter of method createCopy is less than the first one. The
corresponding relevant locations are the statements at lines 12
and 4. The former statement does not contribute to the analysis
since it does not include the actual invocation, while the latter
does. The suspicious locations derived from the latter state-
ment are four: the invocation of method createCopy(int,

int); the integer 0; the expression getItemCount() - 1;
and the call to getItemCount(). The fix requires changing
the expression getItemCount() - 1 at line 4.

IV. EMPIRICAL EVALUATION

The empirical evaluation aims to answer three research
questions.
RQ1 What is the fault localization effectiveness of Except?
This research question investigates the fault-localization ef-
fectiveness of EXCEPT for different types of exceptions in
comparison to state of the art solutions.
RQ2 How does Except affect the capability of modifying
the faulty statements of APR techniques that use SBFL?

This research question investigates how using the ranking
produced by EXCEPT affects the capability of program re-
pair techniques to modify the right statement every time the
generation of a patched program is attempted.
RQ3 What is the accuracy of the guessed fault?
This research question investigates how accurately EXCEPT
can guess the fault that generated an exception.

A. Empirical Setup

In the evaluation, we used faults from the Defects4J bench-
mark v1.5 [21], a dataset of real-world bugs and fixes from
5 open-source Java projects (JFreeChart, Closure Compiler,
Commons Math, Joda-Time, and Commons Lang) commonly
used in program repair studies [20], [25], [26].

We initially selected every bug that fails with a test that
raises an uncaught exception. The four most frequent excep-
tion types raised by these bugs match with the classes of
exceptions supported by EXCEPT: NullPointerException
(17 faults), IllegalArgumentException (15 faults),
ArrayIndexOutOfBoundsException (10 faults), String-
IndexOutOfBoundsException (7 faults). Out of these 49
faults, we discarded the faults that require changing multiple
non-contiguous code locations without having a same number
of failing tests because they could not be properly addressed
by localization techniques. For instance, we keep faults that
require changing 2 locations if there are 2 failing tests that
can be used to localize these changes, but we discard the same
fault if only one failing test case is available. We ended up
with 33 faults and 43 fault locations to be localized. Table V
column Bug ID reports the id of the selected faults, organized
by exception type. In case a fault requires changing multiple
locations, the table reports multiple rows for the same Bug ID.

To answer RQ1 and RQ2, we considered two competing
approaches: the Ochiai SBFL technique [12], which is the
most used fault localization technique in program repair [8],
and the localization strategy used in ssFix [20] (hereafter
referred as ssFix), which exploits the entries in the stack trace
as top items of the ranking. Differently from EXCEPT, ssFix
does not analyze the target program to extract the relevant
expressions, thus missing to select the suspicious program
locations that are not in the stack trace.

To precisely measure the improvement that EXCEPT and
ssFix can introduce over an existing ranking, we used the
ranking generated by Ochiai as input ranking for both EXCEPT
and ssFix. We used the test cases available with the programs
to compute the ranking with Ochiai. Our tool, which uses
Spoon [27] for static program analysis, and experimental
material are available at https://gitlab.com/qrs2021/except.

B. What is the fault localization effectiveness of EXCEPT?

In this research question, we compare the fault localization
effectiveness of Ochiai, ssFix, and EXCEPT. We considered the
location modified by developers as the correct fault location
to be identified. If new code is added, the location next to
the added code is considered as the correct one. The metric
that we used to compare the approaches is the position of

TABLE V: Effectiveness results.

Bug ID
Position Probability (%) Additional

Ochiai ssFix EXCEPT Ochiai EXCEPT Info

ArrayIndexOutOfBoundsException (AIOOBE)

Lang 12 6.50 7.50 6.50 6.61 5.57 None
6.50 7.50 6.50 6.61 5.57 None

Lang 61 20.00 21.00 21.00 2.57 2.31 None

Math 3 9.50 10.00 2.00 5.58 17.65 Only Target

Math 98 10.00 10.50 2.00 3.19 10.43 Both
10.00 10.50 2.00 3.19 10.43 Both

Mockito 34 52.00 52.00 53.00 0.30 0.26 Both

StringIndexOutOfBoundsException (SIOOBE)

Lang 6 118.50 2.00 1.00 0.54 7.15 Both

Lang 44 90.50 90.50 94.00 0.81 0.65 None

Lang 45 11.50 11.50 13.00 1.22 1.04 Only Guess

Lang 51 - - - 0.00 0.00 -

Lang 59 3.50 1.00 1.00 14.61 14.85 Both

Math 101 9.00 1.00 1.00 1.89 8.68 Both

NullPointerException (NPE)

Chart 4 53.00 2.50 1.00 0.12 0.45 Both

Chart 14
17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both

Closure 2 6.00 5.00 1.00 0.33 2.63 Both

Lang 20 23.50 23.50 1.00 2.43 9.86 Both
8.00 11.00 1.00 3.47 12.17 Both

Lang 33 4.50 1.00 1.00 7.96 13.74 Both

Lang 39 27.50 1.50 1.00 1.92 5.14 Both

Lang 47 82.50 1.00 1.00 0.86 6.78 Both
86.50 1.00 1.00 0.74 6.78 Both

Lang 57 3.50 1.00 1.00 13.46 18.05 Both

Math 4 4.50 2.00 3.00 0.82 32.48 Only Target
4.50 1.50 8.50 0.82 3.51 None

Mockito 18 644.00 644.00 644.00 0.11 0.11 None

Mockito 35 1.00 1.00 1.00 0.83 0.83 None
33.00 33.00 33.00 0.31 0.31 None
5.00 5.00 5.00 0.69 0.69 None

Mockito 36 4.00 1.00 1.00 0.93 5.79 Both

Mockito 38 1.50 1.50 1.00 0.86 5.87 Both

Math 70 1.00 2.00 3.00 14.04 9.03 None

IllegalArgumentException (IAE)

Chart 9 13.50 14.50 16.50 1.50 1.21 None

Chart 13 52.50 3.50 1.00 0.74 1.46 Both

Chart 17 5.00 1.50 1.00 2.38 7.59 Only Target

Chart 24 5.50 6.00 5.50 7.36 7.36 None

Closure 19 - - - 0.00 0.00 -

Lang 5 38.00 38.00 38.00 1.22 1.22 None

Lang 54 82.50 82.50 82.50 0.86 0.86 None

Time 27 2,636.00 2,638.00 2,636.00 0.0037 0.0036 None

the faulty statement in the ranking. If the faulty statement has
the same suspiciousness of other statements, we consider its
average position, as done in other studies.

Table V column Position reports the ranking of the faulty
statement for Ochiai, ssFix, and EXCEPT. When a technique
outperforms another, we highlight the cell with light grey.

In the case of ArrayIndexOutOfBoundsException, EX-
CEPT ranked the faulty statement better than competing ap-
proaches three times. Ochiai performed better than others
once (Lang 61), while ssFix was never the best approach.
Interestingly, while Ochiai introduced a marginal improvement

https://gitlab.com/qrs2021/except

for Lang 61, EXCEPT significantly improved the ranking,
moving to the second position faulty statements that were
below the ninth position in the initial ranking.

In the case of StringIndexOutOfBoundsException,
EXCEPT ranked the faulty statement better than competing
approaches once, while there was not a single winning ap-
proach in the rest of the cases. In two cases, Ochiai and
ssFix performed better than EXCEPT, although with a marginal
improvement on the raking. On the contrary, EXCEPT signif-
icantly improved the Ochiai ranking in two cases. For this
class of exceptions, ssFix and EXCEPT performed similarly.
In one case, (Lang 51), none of the approaches could locate
the correct statement.

In the case of NullPointerException, EXCEPT per-
formed significantly better than both Ochiai and ssFix both
in the number of cases (10 cases) and the magnitude of the
improvement. Vice versa, Ochiai and ssFix performed better
than the other approaches in 1 and 2 cases, respectively, with
marginal improvement in the ranking compared to EXCEPT.

Finally, in the case of IllegalArgumentException, EX-
CEPT obtained the best result in 2 cases, while Ochiai ob-
tained the best result in 1 case, and ssFix never obtained the
best result. Again, EXCEPT obtained a significative relative
improvement over Ochiai, while the improvement of Ochiai
over EXCEPT was marginal. Also in this case, one fault related
to the addition of new code was impossible to localize.

Overall, it is noticeable how EXCEPT managed to rank well
a number of faults compared to Ochiai and ssFix, with ssFix
performing better than Ochiai but worse than EXCEPT.

C. How does EXCEPT affect the capability of modifying the
faulty statements of APR techniques that use SBFL?

To answer RQ2, we consider how APR techniques use the
rankings returned by SBFL techniques. There are two main
possible models: probabilistic and one-by-one.

In the probabilistic model, APR techniques assign to each
statement a probability to be selected for mutation that is
proportional to its suspiciousness and the suspiciousness of
the rest of the statements in the ranking:

prob(s) =
susp(s)∑

si∈ranking
susp(si)

(1)

where s is a statement in the ranking and ranking is the
considered ranking. The higher the probability of selecting the
faulty statement is, the more likely the APR technique shall
modify the right code location to fix the fault. Examples of
APR techniques that use this probabilistic schema to iteratively
identify the statement to be modified are jGenProg [11],
jMutRepair [28], DeepRepair [29], and Cardumen [30].

In the one-by-one model, APR techniques consider the
statements in the same order they occur in the ranking from the
most suspicious to the least suspicious. The lower the position
value of the faulty statement in the ranking is, the sooner
the APR technique will modify the right code location to fix
the fault. Example of APR techniques that use this systematic

schema to iteratively identify the statement to be modified are
NOPOL [7], AE [5], and jKali [28].

0

10

20

30

All AIOOBE SIOOBE NPE IAE

Type of Exception

P
ro

ba
bi

lit
y

(%
)

Approach

Except
Ochiai

Statements selection: Probabilistic (Except vs Ochiai)

Fig. 2: Comparison between Except and Ochiai according to
the probabilistic usage of the ranking.

0

25

50

75

100

All AIOOBE SIOOBE NPE IAE

Type of Exception

P
os

iti
on

Approach

Ochiai
ssFix
Except

Statements selection: One−by−one (Except vs ssFix vs Ochiai)

Fig. 3: Comparison between Except, ssFix, and Ochiai accord-
ing to the one-by-one usage of the ranking.

To assess the impact of the rankings generated by EXCEPT,
ssFix, and Ochiai in the context of APR, we computed the
metrics prob(s) and position(s) for all the faulty statements
s considered in our study. Since ssFix does not assign a
probability to the statements moved at the top of the ranking,
we could only assess the rankings produced by ssFix with
the position metric. The analytical values of these metrics are
reported in the columns Position and Probability of Table V.

Figure 2 visually shows the results obtained by considering
the probabilistic selection schema, distinguishing per excep-
tion type and overall across all the exceptions. Probability
values increase significantly with EXCEPT. In fact, the me-
dian, third quartile, and maximum obtained with EXCEPT are
3.51%, 8.14%, and 32.48% respectively, while the median,
third quartile, and maximum obtained with Ochiai are 0.86%,

2.88%, and 14.61% respectively. The significant difference
(α = 0.05) between EXCEPT and Ochiai with all exceptions
has been confirmed with a Wilcoxon rank sum test.

The better performance of EXCEPT is also observ-
able at the level of the individual exception types, al-
though with variable strength. In particular, while dif-
ferences are remarkable for ArrayIndexOutOfBounds-

Exception, StringIndexOutOfBoundsException and
NullPointerException, the difference is smaller for
IllegalArgumentException.

Figure 3 visually shows the results obtained considering
the one-by-one selection schema, distinguishing per excep-
tion type and overall across all the exceptions. The relative
performance of the three approaches was confirmed, with
EXCEPT performing better than ssFix which performed better
than Ochiai. The significant difference (α = 0.05) between
EXCEPT and both Ochiai and ssFix with all exceptions has
been again confirmed with a Wilcoxon rank sum test.

At the level of the individual exceptions, we can
observe that EXCEPT performed better than ssFix and
Ochiai for both ArrayIndexOutOfBoundsException and
NullPointerException, while it performed comparably
to ssFix for StringIndexOutOfBoundsException and
IllegalArgumentException.

In a nutshell, the outcome of this research question suggests
that faults revealed by tests that generate uncaught exceptions
should be addressed by APR techniques using the ranking
produced by EXCEPT, regardless of the strategy used (proba-
bilistic or one-by-one).

D. What is the accuracy of the guessed fault?

This research question evaluates the capability of EXCEPT
to guess the fault that should be repaired. We assess the
accuracy of the repair target distinguishing four cases: both the
selected expression and the guessed faults associated with the
faulty statement are correct (label Both), the faulty expression
is correctly selected but the guessed fault is wrong (label
Only Target), the fault is correctly guessed but the wrong
expression is selected (label Only Guess), and both the
selected expression and the guessed fault are wrong (label
None). Table V column Additional Info shows the results.

EXCEPT both identified the expression to be changed and
the fault to be fixed in 22 out of the 41 cases with a localization
(54%). In three cases the faulty expression was identified but
without correctly guessing the fault. In one case, EXCEPT
guessed the right fault, but associated it with the wrong
statement (EXCEPT guessed a missing condition, although not
in the right place). In total, EXCEPT correctly enriched the
localization with additional information in 26 out of 41 cases
(63%). This result indicates that the additional information
generated by EXCEPT frequently represents a meaningful
suggestion about the fault.

E. Threats to validity

A threat to validity is about the limited set of excep-
tions supported by EXCEPT and the generalizability of the

results. To mitigate this threat, we selected the exceptions by
considering common types of problems reported in popular
Java benchmarks, such as Defect4J [21], Bears [24], and
Repairnator [17], that contain real-world faults from different
projects raising different types of exceptions.

Another concern is about the correctness of the imple-
mentations that we used in the experiments. We relied on
GZoltar [31], a widely used tool, for the implementation of
Ochiai. We instead used our own implementation of ssFix [20].
To mitigate any implementation threat, we made our artefacts
publicly available.

V. RELATED WORK

The classes of approaches closely related to EXCEPT are
SBFL, slice-based, and stack trace-based techniques.

Spectrum-Based Fault Localization (SBFL) is probably the
most widely used fault localization method [10]. It computes a
suspiciousness score for the statements executed by a program,
assigning an higher value to the statements mostly executed
by failing test cases. Fault localization approaches based on
SBFL are often unable to rank the faulty statements at the
very top positions of the rankings [8], [13], [14] and they do
not provide information about why a given location might be
considered faulty, complicating their usage [32].

EXCEPT addresses these limitations for failures caused
by uncaught exceptions. In particular, EXCEPT exploits the
semantics of the failures to improve the ranking and enrich
locations with information about the likely faulty expressions
and the guessed faults.

Slice-based techniques use data and control-flow dependen-
cies to focus the localization process on the slice of program
locations that may affect the output of a test case [33]–
[35]. The basic idea is that if a test case fails due to the
incorrect value of a variable, the fault should be searched,
either statically [35], [36] or dinamically [34], [37], in the
slice of statements that may affect that variable.

Slicing techniques tend to select many locations, not sig-
nificantly reducing the search space in practical situations.
EXCEPT exploits static data-flow oriented slicing to identify
the suspicious locations from the relevant expressions, but
heavily bounds the scope of the analysis to select a small
number of statements likely causing the exception.

Stack trace-based fault localization methods analyze the
exception stack trace in order to improve fault localization. For
example, Wong et al. [38] analyze the stack traces that occur
in bug reports to increase the suspiciousness of files. Similarly,
ssFix [20] prioritizes the statements that occur in the exception
stack trace. However, as shown in our experimentation, using
the statements that explicitly occur in stack traces is not always
sufficient to effectively localize faults. CrashLocator [39] can
localize faults from stack traces using static analysis, based
on a large collection of stack traces collected during failures.
EXCEPT also exploits stack traces, but it can be conveniently
applied to a single failing execution.

VI. CONCLUSION

Fault localization is a key component of APR techniques,
in fact a fault that is not localized cannot be repaired [8].

This paper presents EXCEPT, a technique that exploits
the semantics of the exception and the related stack trace,
to identify a small set of highly suspicious statements that
are considered with high priority by APR techniques. The
results obtained with our experiments show the effectiveness
of EXCEPT, also in comparison with the other approaches.

Future work concerns with both experimenting EXCEPT
with APR techniques and studying solutions that can exploit
the semantics of failures also when no exception is raised.

REFERENCES

[1] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Transactions on Software Engineering (TSE), vol. 45,
no. 1, pp. 34–67, 2019.

[2] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[3] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: automated end-to-end repair at scale,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2019.

[4] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering (TSE), vol. 38, no. 1, pp. 54–72, 2012.

[5] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in Proceedings of
the International Conference on Automated Software Engineering (ASE),
2013.

[6] H. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Pro-
gram repair via semantic analysis,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2013.

[7] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in Java programs,” IEEE Transactions on
Software Engineering TSE, vol. 43, no. 1, pp. 34–55, 2017.

[8] K. Liu, A. Koyuncu, T. F. Bissyande, D. Kim, J. Klein, and Y. L.
Traon, “You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems,”
in Proceedings of the International Conference on Software Testing,
Validation and Verification (ICST), 2019.

[9] F. Long and M. C. Rinard, “An analysis of the search spaces for
generate and validate patch generation systems,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2016.

[10] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[11] M. Martinez and M. Monperrus, “Astor: Exploring the design space
of generate-and-validate program repair beyond genprog,” Journal of
Systems and Software, vol. 151, pp. 65 – 80, 2019.

[12] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION (TAICPART-MUTATION), 2007.

[13] F. Y. Assiri and J. M. Bieman, “Fault localization for automated program
repair: effectiveness, performance, repair correctness,” Software Quality
Journal (SQJ), vol. 25, pp. 171–199, 2016.

[14] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2017.

[15] P. Sawadpong, E. B. Allen, and B. J. Williams, “Exception handling
defects: An empirical study,” in Proceedings of the the International
Symposium on High-Assurance Systems Engineering (HASE), 2012.

[16] D. Ginelli, M. Martinez, L. Mariani, and M. Monperrus, “A comprehen-
sive study of code-removal patches in automated program repair,” arXiv
preprint arXiv:2012.06264, 2020.

[17] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a pro-
gram repair bot? insights from the repairnator project,” in Proceedings
of the International Conference on Software Engineering (ICSE), 2018.

[18] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic
patch generation for null pointer exceptions using metaprogramming,”
in Proceedings of the International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017.

[19] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold, “Fault
localization and repair for java runtime exceptions,” in Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis (ISSTA), 2009.

[20] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2017.

[21] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), 2014.

[22] jUnit Team, “junit,” https://junit.org/junit5/, 2021.
[23] Szczepan Faber, “Mockito,” https://site.mockito.org, 2021.
[24] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “Bears: An Exten-

sible Java Bug Benchmark for Automatic Program Repair Studies,” in
Proceedings of the IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2019.

[25] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936 –1964, 2017.

[26] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2019.

[27] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code,” Software: Practice and Experience, vol. 46, pp.
1155–1179, 2015.

[28] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), 2016.

[29] M. White, M. Tufano, M. Martínez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in Proceedings of the IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019.

[30] M. Martinez and M. Monperrus, “Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor,” in Search-
Based Software Engineering, T. E. Colanzi and P. McMinn, Eds., 2018.

[31] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the International
Conference on Automated Software Engineering (ASE), 2012.

[32] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the international Symposium
on Software Testing and Analysis (ISTA), 2011.

[33] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault
localization using program slices,” in Proceedings of the IEEE Annual
Computer Software and Applications Conference (COMPSAC), 2012.

[34] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” Journal of Systems and Software, vol. 89, pp. 51 –
62, 2014.

[35] M. Weiser and J. Lyle, “Experiments on slicing-based debugging aids,”
in Proceedings of the Workshop on Empirical Studies of Programmers,
1986.

[36] T. Gyimóthy, Á. Beszédes, and I. Forgács, “An efficient relevant slicing
method for debugging,” in Proceedings of the European Software
Engineering Conference (ESEC), 1999.

[37] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM Conference on Programming Language Design and
Implementation (PLDI), 1990.

[38] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei, “Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), 2014.

[39] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating
crashing faults based on crash stacks,” in Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2014.

https://junit.org/junit5/
https://site.mockito.org

	I Introduction
	II Except
	II-A Stack Trace Analysis
	II-B Ranking Generation

	III Supported Exceptions
	III-A ArrayIndexOfOutBoundsException
	III-B StringIndexOutOfBoundsException
	III-C NullPointerException
	III-D IllegalArgumentException

	IV Empirical Evaluation
	IV-A Empirical Setup
	IV-B What is the fault localization effectiveness of Except?
	IV-C How does Except affect the capability of modifying the faulty statements of APR techniques that use SBFL?
	IV-D What is the accuracy of the guessed fault?
	IV-E Threats to validity

	V Related Work
	VI Conclusion
	References

