
A preliminary investigation of developer profiles
based on their activities and code quality: Who does

what?
Cristina Aguilera González†

Universitat Politècnica de Catalunya
Barcelona, Spain

cristina.aguilera.gonzalez@estudiantat.upc.edu

Laia Albors Zumel†
Universitat Politècnica de Catalunya

Barcelona, Spain
laia.albors@estudiantat.upc.edu

Jesús Antoñanzas Acero†
Universitat Politècnica de Catalunya

Barcelona, Spain
jesus.maria.antonanzas@estudiantat.upc.edu

Sonia Rabanaque Rodrı́guez†
Universitat Politècnica de Catalunya

Barcelona, Spain
sonia.rabanaque@estudiantat.upc.edu

Valentina Lenarduzzi
LUT University
Lahti, Finland

valentina.lenarduzzi@lut.fi

Silverio Martı́nez-Fernández
Universitat Politècnica de Catalunya

Barcelona, Spain
silverio.martinez@upc.edu

Abstract—Developers work on different tasks in different
conditions based on individual technical skills and personal
habits. Identifying developer groups by mining their repositories
is key for various tasks ranging from understanding develop-
ers types in open source projects, to help project managers
concerned with the team allocation and coordination of human
resources in companies. We aimed at identifying distinct groups
of developer profiles based on well defined characteristics and at
characterizing the most common quality issue types introduced
by each profile in their code. We considered 77,932 commits of 33
open source Java projects, clustering their 2460 developers using
dimensionality reduction techniques and applying the k-means
algorithm. We identified five profiles among 2460 developers
based on project experience, developer productivity and the
common quality issues they introduce in the code. Results can
be used by developer teams to detect and cope with harmful
practices, in order to be more efficient by reducing the number
of bugs they produce, looking for adequate training options, and
balancing their teams.

Index Terms—machine learning, developer characterisation,
SonarQube, code quality, software engineering

I. INTRODUCTION

During the software development process, developers work
on different tasks in different conditions. Since developers are
human, they differ on technical skills and personal habits to
face or solve code problems. Similar developer groups can be
identified on factors such as time spent in each activity or
quality issues introduced in the code.

Understanding the interaction between technical tasks and
teams’ behaviors and, consequently, the effect of their actions

†Cristina Aguilera González, Laia Albors Zumel, Jesús Antoñanzas Acero
and Sonia Rabanaque Rodrı́guez are all first authors of this paper. They equally
contributed to this work and are ordered alphabetically.

(e.g. software quality, productivity) can help project managers
concerned with the team allocation, coordinating developers’
efforts and human resources (given their current skill set
and expertise) [1], especially in large, globally-distributed
projects [2].

In this context, the main goal of this paper is to find distinct
groups of developer profiles based on distinct characteristics.
Moreover, we performed an analysis to identify the most com-
mon types of quality issues each developer profile introduces
in the code.

We considered 77,932 commits from 33 Java projects in-
cluded in the Technical Debt Dataset [3] by clustering the
developers using dimensionality reduction techniques such as
PCA and tSVD and applying the k-means algorithm. We
identified five profiles among 2460 developers based on project
experience, developers’ productivity and the quality issues
they introduce in the code. We refined the clustering by
common characteristics into three main groups.

Results can be used by developer teams to balance their
skills identifying the most common technical issues and pro-
viding a set of training options. Also, at individual level, re-
sults can be used by developers to combat some “destructive”
practices and avoid behaviours that are considered harmful.
Furthermore, bearing in mind that developers want to improve
their abilities and managers are (or should be) interested
in dealing with their projects more efficiently, we see the
potential results and the adopted approach as very favourable
for any company.

The main contributions of this paper are:
• The classification of open source developers into five

profiles, refined into three main developer types: the

UPCnet
Quadre de text
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

cleaner, the average developer, and the dirty.
• An investigation to understand the impact of each devel-

oper profile into code quality.
• A replication package with a set of scripts that can be

adopted by development teams and researchers to identify
developer profiles in their context.

The rest of this paper is structured as follows: Section II
describes the empirical study design. Section III presents and
discusses results. Section IV discusses the potential usage of
the results. Section V identifies the threats to validity of this
work. Section VI reports on related work. Finally, Section VII
draws the conclusion and highlights the future work.

II. THE EMPIRICAL STUDY

A. Goal and Research Questions

The goal of the empirical study is to analyze developers’
contributions with the purpose of characterizing their profile
with respect to the quality issues they introduce in the code
during the development process from the perspective of soft-
ware engineering researchers and in the context of 33 open
source projects.

Based on our goal, we derived two Research Questions
(RQs):

RQ1. What are the different developer profiles?
RQ2. Which are the quality issues usually introduced in

the code by each developer profile?

In RQ1, we aim at distinguishing between different develop-
ers profiles. We implement a segmentation model that creates
different profiles of developers based on the selected attributes.
After having classified each developer profile, in RQ2 we
investigate which quality issues each of them introduce in
the code. We aim at helping developers be more efficient by
reducing the number of quality issues, and to balance their
teams with the needed developer types.

B. Context

We considered the Technical Debt Dataset, which is a
curated collection of data coming from 33 Java projects mostly
pertaining to the APACHE SOFTWARE FOUNDATION ecosys-
tem. Despite belonging to a single ecosystem, the projects of
this dataset were originally selected by following the diversity
guidelines introduced by Nagappan et al. [4], i.e., they were
selected by addressing the representativeness of projects in
terms of age, size, and domain, other than considering the
Patton’s “criterion sampling” [5], namely they are more than
four years old, have more than 500 commits and 100 classes,
and have more than 100 issues reported in their issue tracking
system. As such, this dataset minimizes by design possible
threats to external validity.

The Technical Debt Dataset includes 77,932 commits with
information collected from several tools such as SonarQube
7.2, GitHub, and Jira.

As for quality issues, we considered the ones reported by
SonarQube. SonarQube is a static analysis tool that includes

rules for Java issues relating to different aspects of source
code.

If the analyzed source code violates a coding rule, or
if a metric is outside a predefined threshold (also named
“gate”), SonarQube generates an “issue”. SonarQube includes
three types of rules: Bug, Code Smell and Vulnerability. It
is important to note that the term “Code Smells” adopted in
SonarQube does not refer to the commonly known term code
smells defined by Fowler et al. [6], but to a different set of
rules. The severity of each rule is ranked as an five-points
scale (Blocker, Critical, Major, Minor, and Info).

This work has been conducted as part of the TAED2 course
at UPC [7]. The first four authors composed a team in the
laboratory of such course. They equally contributed to this
paper. The last two authors advised the project and edited this
paper.

C. Data Collection

In this subsection, we report the data selection process, the
data construction, and data integration.

Data selection. From the different attributes contained in
the Technical Debt Dataset, we selected data related to the
developers and commits. Regarding the tables related to issues
(from Jira (JIRA ISSUES) and SonarQube (SONAR ISSUES)),
we selected also the attributes that define both Jira and Sonar
issues, that is, their type and priority/severity. In addition, we
were interested in the measures obtained by Sonar to have
information about the code and the reliability and security
issues (SONAR MEASURES).

We were also interested in the information obtained through
the SZZ algorithm in order to identify fault-inducing commits
(SZZ FAULT INDUCING COMMITS). To characterize the
developer’s profile, it was also important to know the changes
performed in each commit (GIT COMMITS CHANGES). Fi-
nally, we took the type of refactoring that has been applied to
the code (REFACTORING MINER).

Data cleaning. After the selection of the appropriate at-
tributes, we cleaned the data by dealing with the missing
values: either erasing the records that contain one or more (in
each table), either relabeling them with another value. In the
tables with missing values the following changes were made:

• JIRA_ISSUES: the records that have no value in the
priority attribute were removed since we could not
obtain this information from anywhere else. From those
remaining, we relabeled the resolutionDate using
the timestamp of the last commit of the project. In
addition, in the case of the assignee, the missing
values were relabeled as ”not-assigned”.

• SONAR_ISSUES: the records with NaNs in debt
were erased since we could not obtain this informa-
tion. After that, the rows with closeDate but not
closeCommitHash were removed. With the remaining
ones, the missing values were replaced by the timestamp
of the last commit of the project and the string ”not-
resolved”, respectively.

• GIT_COMMITS: the rows that contained a missing value
in both committer and author were erased.

• REFACTORING_MINER: as in the previous one,
the records with NaNs in commitHash and
refactoringType were removed since this
information could not be extracted from other tables.

Data construction. After the cleaning, we derived new
attributes that we thought could be more useful for our mining
goals:

1) Developer productivity (part of RQ1)
• Time spent in each project per developer: sub-

tract the first committerDate from the last
committerDate in table GIT COMMITS.

• Number of commits per developer (using
GIT COMMITS).

• Fixed issues per developer: the number of Sonar
and Jira issues, and SZZ faults that each de-
veloper has fixed in its commits, using tables
GIT COMMITS, SONAR ISSUES, JIRA ISSUES, and
SZZ FAULT INDUCING COMMITS.

• Time to resolve Jira and Sonar issues: subtract
creationDate from resolutionDate, from
JIRA ISSUES table; and subtract creationDate
from closeDate, from SONAR ISSUES table.

• Code contributions per developer: compute, for each at-
tribute in SONAR MEASURES, the difference between
their values in consecutive commits.

2) Code Quality (part of RQ1 and RQ2)
• Induced issues per developer: the number

of Sonar issues and SZZ faults that each
developer has induced in its commits, using
tables GIT COMMITS, SONAR ISSUES, and
SZZ FAULT INDUCING COMMITS.

• For each refactoring commit, check
if they have induced an issue (tables
SZZ FAULT INDUCING COMMITS and
REFACTORING MINER).

Data integration. For the Data Analysis we needed a ta-
ble with information per developer. Therefore, some of the
attributes had to be aggregated. Depending on the attribute,
we considered averaging or adding the values. Since not all
the developers appeared in every table, after their combination
some attributes had missing values. These had to be replaced
with values that made sense. After this, we ended up with a
table with 2,460 developers and 83 attributes.

D. Data Analysis

Project experience. We used table GIT COMMIT data,
as it contains information about commits performed by each
developer. For each committer, we have computed the time
in days he/she has spent on each project in which he at least
made one commit. This period of time is computed as the
difference in days between the first and last commit he made in
the project. Finally, to have a single value for each developer,
we have performed the average of days between the different

projects. This is equivalent to knowing on average how many
days each developer spends working in one project.

From table GIT COMMIT, for each committer (equivalent
to developer), we have computed the number of different
projects he/she has worked on. This is done by counting the
number of different projectID on which the developer has
made at least one commit.

Developer’s productivity. We used table JIRA ISSUES
data, as it contains information about reported Jira issues and
the user who solved the bug. This person is called assignee and
we are going to consider that he/she is also a developer. For
each assignee, we have computed the different issues (different
“creationDate”) for which he/she has fixed the bug of himself
or another developer, called the reporter. We must take into
account that the resultant developers are going to be the ones
that fixed at least one bug. The majority of developers are
concentrated in the range of bugs between 1 and 9. A small
part of them are spread through values higher than 10. This
way, we have identified two different developer behaviours.
However, we must take into account another important group:
the ones that do not fix any bug. This quantity is quite higher
than the quantity of developers that fixed just 1 bug.

Clustering developer’ profiles. The nature of our problem
is to create homogeneous groups of developers that share
some characteristics and differ significantly from the other
groups. For that reason, we performed clustering analysis
over a reduced dimensionality space. We use scikit-learn’s
[8] clustering and decomposition modules, in particular the
k-means algorithm from the former and PCA and Transposed
SVD from the latter.

The adopted clustering algorithm makes some important
assumptions with respect to the data: 1) The variance of the
distribution of each attribute is spherical, 2) All features have
the same variance, and 3) The prior probability for all the
clusters are the same (i.e. each cluster has roughly the same
number of observations).

We identified the more frequent issues of each developer
profile. To do that, we assume that the clusters are well defined,
that is, that they separate the developers clearly according
to their characteristics. We have used the centroid of each
cluster, that is, the representative of the developers of the same
profile, to obtain this information. In other words, once we
have obtained the centroids of each profile, we have searched
for the most frequent issues of this representative.

Test design. To test our models we applied two approaches:
1) different clearly visible profiles identification, 2) homoge-
neous developer groups identification (and differences).

Therefore, we had one visual test, in which we plotted
the observations after the dimensionality reduction to see if
the clusters are sufficiently distinguishable; and another test
related to the homogeneity of the profiles, that is, we can use
the variance between and within the developers of the different
clusters.

Within cluster variance: a dispersion estimation of the
observations within a cluster. It is computed as the average

of the distance between individual observations and the center
of their cluster (i.e., centroid). So we get one value for each
cluster k: σ2

w,k =
‖Xk,n−ck‖

Nk
, where ‖ · ‖ is the Euclidean

distance, Nk is the number of observations of this cluster,
Xk,n are the observations contained in the cluster and ck is
the centroid of the cluster.

Summing over all the clusters we get the total within-cluster
variance σ2

w =
∑K
k=1 σ

2
w,k, where K is the total number of

clusters.
Between cluster variance: it is an estimation of the variation

between all clusters. A large value can indicate clusters that are
spread out, while a small value can indicate clusters that are
close to each other. This metric can be computed as σ2

b,k =
Nk · ‖ck − X̄‖, where ‖ · ‖ is the Euclidean distance, Nk
is the number of observations of the k-th cluster, ck is the
centroid of this cluster and X̄ is the variables mean over all
the observations (not just the ones from this cluster).

Summing over all the clusters we get the total between-
cluster variance σ2

b =
∑K
k=1 σ

2
b,k, where K is the total number

of clusters.
This can also be seen in the Calinski-Harabasz index, where

the within- and the between-cluster variances are used to
get an index that indicates us which clustering technique
has the most well-defined clusters, with a large σ2

b and a
small σ2

w. Therefore, the clustering algorithm that produces a
collection of clusters with the biggest Calinski-Harabasz index
is considered the best algorithm based on this criterion. This
index is defined as CH =

σ2
b

σ2
w
· N−KK−1 , where N is the total

number of observations and K is the total number of clusters.
Regarding the intuition that items in the same cluster should

be more similar than items in different clusters, we use the
Davies–Bouldin index to assess the quality of the clustering
algorithms. This index can be calculated with the following
formula:
DB = 1

K

∑K
k=1 maxk 6=k′

(
σ2
w,k+σ

2
w,k′

‖ck−ck′‖

)
,

where K is the total number of clusters, ‖·‖ is the Euclidean
distance, cx is the centroid of the cluster x and σ2

w,x is the
within-cluster variance of the cluster x. Based on this criterion,
the clustering algorithm that produces a collection of clusters
with the smallest Davies–Bouldin index is considered the best
algorithm.

To evaluate our models, since it is an unsupervised problem,
we studied the different profiles obtained with each model to
see if they make sense to us, considering our knowledge of
the topic and what we expect to obtain.

Model Description. The modelling phase is comprised of
three separate procedures:

Dimensionality Reduction. The dataset extracted from the
developers’ profiling contained 83 distinct features. The fea-
ture space, then, was too big to perform clustering directly
over it: more than 10 dimensions is generally regarded as ’too
many’ for clustering with K-Means because of the curse of
dimensionality. Moreover, each of the features in the original
space did not explain much variance (all < 5%), so feature
selection was not possible. The objective, then, was to extract

the maximum information possible from these 83 variables
and ’compress it’ into as few dimensions as possible. In order
to do this, classic PCA and Transposed SVD were performed,
the rationale being that, with both methods, the found PCs are
linearly related to the original features, allowing for a level of
explainability of the cluster representatives. That is, we can tell
the importance of each of the original features to each principal
component. We then picked the first n ‘components’ that
explain, as an heuristic, 75% of the original data variability.
We argue that 75% is enough as the other 25% is, for the most
part, noise. In the case of PCA, the number of components
picked is 9 and in the case of tSVD, 10.

Clustering. Over the n PCs extracted from the previous step
we independently clustered with K-Means. We performed a
series of experiments to find the optimal number of clusters
over the data (silhouette analysis and the Gap statistical test).
Finally, with the found clusters of the data projected onto
n principal components, we extracted what each of them
meant. This could be done due to the fact that each principal
component was mostly important to a/some original feature/s
(in terms of variance explained). Then, we found the charac-
teristic in terms of the principal components of each cluster,
equivalently telling us which original features characterized
the cluster. Moreover, given that we know the importance of
each original feature to each principal component and that we
can extract the importance of each principal component for
each cluster centroid, we can quantify the relation between
each centroid and each original feature. We selected the
developer groups obtained from PCA or tSVD by comparing
both results (Section IV).

E. Replicability and Data Availability

In order to allow our study to be replicated, we have
published a replication package1, following the template
Cookiecutter Data Science, and documentation suggested on
CRISP-DM.

III. RESULTS

In this section, we report the achieved results that are sum-
marize in Table I. We identified five different preliminary pro-
files based on project experience and developer’s productivity
and quality issues introduced in the code. For each profile, we
outline project experience (years), number of commits where
they worked (#Commits), number of fixed issues (#Fixed
Issues) used to answer to our RQ1. Moreover, Table I in-
cludes information related to refactorings activities performed
(#Refactorings), if developers documented their code (Code
Documentation), the code complexity (Code Complexity), and
the number of Code Quality Issues introduced in the code
grouped by type (Code smell, Bug, and Vulnerability).

A. Developer’s Profiles Identification (RQ1)

Before applying any clustering technique, we explored the
GIT COMMIT table, which has 1016 developers, and we got
the following results:

1Replication package: https://doi.org/10.6084/m9.figshare.14980662

https://doi.org/10.6084/m9.figshare.14980662

TABLE I
IMPACT OF THE FIVE DEVELOPER’ PROFILES ON DEVELOPER’S PRODUCTIVITY AND CODE QUALITY

Dev. type Profile
Project Developer’s productivity Code Quality
experience #Commits #Fixed Issues #Refactors Code

Documenting
Code

Complexity
#Introduced Issues

(years) CS Bug Vuln.
The cleaner P1 medium medium high low medium medium low low low

The average
developer

P2 low low low low medium low low low low
P3 high high low medium high high high medium medium
P4 medium medium medium low low medium medium low low

The dirty P5 high high low high low high high high high
CS means Code Smells and Vuln. means Vulnerabilities

Project experience. We identified three main groups among
1016 developers:
• 363 developers who have been very few days (less than

24 days on average) working in the project. They can
be considered as contributors to the project but not
developers.

• 429 developers who work on projects for a reasonable
period of time (less than 2 years on average).

• 224 developers who work for many days (more than 2
years on average).

Moreover, we have computed the number of different
projects where a developer worked on, identifying three main
groups:
• 901 developers that just worked on a single project
• 66 developers who worked in a moderate number of

projects (2-3 projects)
• 49 developers that participate in lots of projects (>3

projects)
Developer’s productivity We identified three main groups:
• Developers that just worked on one single project: on

average they are used to fix 134.3 bugs.
• Developers who worked in a moderate number of projects

(2-3 projects): we are not able to find any case where
these developers solve any bugs.

• Developers that participate in lots of projects (> 3
projects): their mean value is 191.5, which is quite
superior to the first case but more or less similar.

After these, we took the dataset with 2460 developers
obtained in Section II-C (combining all the tables) and applied
K-Means:

Clustering developer profiles. tSVD reduced the data di-
mensionality identifying the most important attributes that
characterize the profiles as follows:
Profile 1 (1950 developers): Developers are responsible for
some commits (39 on average) and they are the ones that fix
more Jira issue (636 on average).
Profile 2 (14 developers): Developers almost never do com-
mits (0.44 on average). They spend a lot of time working
on Jira issues (4 years on average) but rarely fix them (3 on
average).
Profile 3 (224 developers): Developers are responsible for
a fair amount of commits (309 on average) and they almost
never fix Jira issues (0.46 on average).

Profile 4 (238 developers): Developers are responsible for
some commits (15 on average) and they also fix some Jira
issues (12 on average).
Profile 5 (34 developers): Developers are responsible of a lot
of commits (2168 on average). Moreover, they induce many
bugs applying refactorings (856 on average).

B. Code Quality Issues by Profiles (RQ2)

From the clusters obtained, we identified the most code
quality issues in each profile’ groups:
Profile 1: Developers that do not usually document their code
(0.01 commented lines on average). Their code complexity
is low (increase the complexity 22 points on average) and
introduce some issues (3 on average), mainly Violations or
Code Smells with Major or Minor priority.
Profile 2: Developers that do not usually document their code.
The complexity of their code is very low (decrease it 16 points
on average). These developers never induce issues of any kind
(0.4 on average), but if they create one, it is usually of type
Violation or Code Smell and Major or Minor priority.
Profile 3: Developers that document the most of their code
(0.11 commented lines on average). The complexity of their
code is high (increase the complexity 2464 points on aver-
age). These developers usually introduce Violations and Code
Smells with Major or Minor priority. This is the second profile
which makes the most number of issues (49 on average).
Profile 4: Developers that never document their code. The
complexity of their code is low (increase the complexity 24
points on average). In general, this profile does not induce
issues (0.44 on average), but regarding the few that they create,
they are Violations and Code Smells with Major or Minor
priority.
Profile 5: Developers that do not document their code. The
complexity of their code is very high (increase the complexity
31420 points on average). These developers are the ones that
induce the most number of issues in general (417 on average).
The most introduced ones are Violations and Code Smells with
Major or Minor priority.

IV. DISCUSSION

After the implementation of the model with the selected
data, we obtained five different developers profiles. Then, we
evaluated the results according to the developers profiles that
the model created.

First of all, we tried to test the results using visualization
techniques. We saw that the clusters were separated in three
main directions, but we could not see them clearly forming
groups.

We used techniques related to the homogeneity of the
profiles using the variance between and within the developers
of each cluster. Comparing both variances of each technique,
we saw that the values obtained were similar, but it seemed
that the tSVD technique was slightly better. It was due to the
fact that the within cluster variance was lower than the one
obtained with PCA, and because the between cluster variance
was greater. Moreover, we used some indexes that related
these values and that indicated which technique had the most
well-defined clusters. With the first one, the Calinski-Harabasz
index, it seemed that the results were better when we used the
tSVD to reduce the data dimensionality. However, using the
Davies-Bouldin index, we obtained that the best results were
obtained from the PCA. Finally, we remark that these results
did not check if the results were good or not, but they gave
us insights to select the more appropriate model.

Moreover, we saw that the conclusions obtained from the
tests were not conclusive, as we could not deduce which
technique was the best one. So, we decided to use the at-
tributes that distinguish the clusters to select the best technique
according to a subjective measurement. Therefore, we looked
for the most important attributes that characterize each profile
defined by each one of the techniques. In both cases we found
profiles that were similar and that passed the tests, as we
considered that the profiles were well defined and separated
the developers in five profiles with different characteristics.
Finally, we selected the tSVD as the best technique since the
profiles seemed more consistent and their characteristics made
more sense. We found two profiles with distinct characteristics,
and another three that were in between these two groups and
that differed on the characteristic values of the main attributes.

From these obtained profiles we got a list of their frequent
issues to get the most frequent errors of each cluster. In all
cases we saw that they tend to introduce the same type of
issues and with the same priority. That is, all of them create, to
a greater extent, Violations and Code Smells of Major or Minor
priority. This means that the differences between profiles were
in the amount of issues they create, not in their type.

From the five groups obtained after dimensionality reduc-
tion with tSVD, we could have studied the most important
attributes that characterize the profiles and their values in each
group. Profile 5 is made up of developers that make the most
issues, they do not document their code, they do not fix Jira
issues, their code is very complex, they make many refactors
and their code is more expensive to fix than to make. On the
other hand, Profile 1 corresponds to the ones that fix most of
the Jira issues, rarely produce issues and their code is highly
complex, even though they do not document much of their
code. The other three profiles are in between these two. For
example, even though Profile 2 induces very few code quality
issues and its code has a low complexity, it does not fix issues;
despite inducing a lot of issues and having a code with a high

complexity, Profile 3 documents a lot its code; and, finally,
although Profile 4 induces very few issues and its code is not
very complex, it does not document much their code nor fix
issues. Therefore, we think that we can join them in order
to create the third profile. This way, we have obtained three
separated developer profile groups as depicted in Figure 1:
The cleaner, the average developer, and the dirty.

V. THREATS TO VALIDITY

We adopted the measures detected by SonarQube. We are
aware that the SonarQube detection accuracy of some rules
include false positives and negatives, and that some detected
issues are duplicated due to the violation occurring in the same
class and in the same position but with different resolution
time. However, we replicated the same conditions adopted by
practitioners when using the same tool. Unfortunately, some
projects in our dataset do not tag the releases. We know that
some detected issues are duplicated, since SonarQube reports
the issue violated in the same class and in the same position
but with different resolution times. We are aware of this fact,
but we did not remove such issues since we wanted to report
the results without modifying the SonarQube output.

We selected the 33 projects of the Technical Debt Dataset
that projects from the APACHE SOFTWARE FOUNDATION,
which incubates only certain systems that follow specific and
strict quality rules. Moreover, we only considered Java projects
and SonarQube provides a different set of quality issues for
each language.

As for conclusion validity, the obtained profiles are de-
pendant on the cluster quality: other clustering techniques or
different number of clusters could give different results.

VI. RELATED WORK

Some models have been proposed to identify developer’s
profiles [9]–[12]. However, there are a few studies that investi-
gated developer characteristics based on artifacts (e.g., defects)
in order to recommend specific tasks (e.g., bug fixing) or for
mapping developer profiles.

Some models are based on developer activities [13] or
technical skills [11]. Other models are constructed based
on more specific information, such as issues introduced in
the code [10], refactoring prioritization activities [9], effort
estimation [14], or the introduced technical debt [12]. All these
factors have been considered separately without combining
them together in order to construct a more accurate developer
profile.

Analyzing each model in depth, adopting personal infor-
mation and programming skills turned out to be successful
factors for code recommendation and programming task as-
signments [11]. Moreover, peripheral developers, active de-
velopers, core members and project leaders can be considered
as other positive factors to determine developer profiles [13].

Other work built developer profiles based on the coding
habits, looking at how developers were responsible for intro-
ducing and fixing static analysis violations [10]. Considering
bug prioritization is also a good factor to create the model

Does not document code
Complex functions
Many refactorings
Does not work on fixing
issues

Documents code
Functions somewhat
complex
Works on fixing issues

THE DIRTY
THE AVERAGE
DEVELOPER

Somehow documents
code
Low complexity functions
A lot of time fixing issues

THE CLEANER

Fig. 1. Developer profiles clustered in three main groups

to more accurately assist in tasks such as bug triage, severity
identification, and reopened bug prediction [9]. Results are
also confirmed in another study that created the models to
recommend developers for bug fixing [9].

Information from source code management systems, mailing
list archives, and bug tracking systems have proven to be
good factors to characterize developer activities for more
accurate effort and cost estimations [14]. Profiling developers
considering the accumulated technical debt has been explored
evaluating code smell and refactoring perspective [12]. In
particular, this model focused on developers who introduced
and removed code smells and the relative refactoring actions
they performed.

A similar approach was considered in another study that
focused on the developers’ behavior, the analysis considering
technical debt. The model clustered Git commits, faults and
static analysis issues (calculated by SonarQube) [15].

In contrast, in our study, we considered a combination of
many factors to construct our model. We considered factors
that independently have been considered harmful in the eval-
uated studies.

VII. CONCLUSION

In this paper we characterized 33 Java projects with a total
of 77,932 commits in order to identify developer profiles based
on 83 distinct characteristics, using the 9 most important ones
(Table I) to narrow down on the profiles, and to characterize
the most common types of quality issues each developer profile
introduce in the code.

Results show that there are distinct types of developer
profiles. We identified five profiles among 2460 developers
based on project experience, developer productivity and the
common quality issues they introduce in the code. We refined
the clustering by common characteristics into three main
groups: The cleaner, the average developer, and the dirty.
These results and the replication package can be used in
software projects to help developers be more efficient by
reducing the number of the introduced technical issues and
to human resources departments to balance their teams.

As future works, we will consider the developers’ person-
ality as a possible influence on the developers’ profiling [16].
Moreover, we are planning to conduct an industrial validation
to evaluate the usefulness of these profiles, for instance to
motivate each developer type, and to explore the personalized
training they need to better contribute to the success of the
software projects.

VIII. DATA AVAILABILITY

We provide a replication package available on
https://doi.org/10.6084/m9.figshare.14980662.

ACKNOWLEDGMENT

The research presented in this paper has been developed
in the context of the TAED2 course at the GCED@FIB.
This work has been partially funded by the “Beatriz Galindo”
Spanish Program BEAGAL18/00064 and by the DOGO4ML
Spanish research project (ref. PID2020-117191RB-I00).

REFERENCES

[1] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying developers
into core and peripheral: An empirical study on count and network
metrics,” in International Conference on Software Engineering, 2017,
pp. 164–174.

[2] J. Herbsleb, “Building a socio-technical theory of coordination: Why
and how (outstanding research award),” in International Symposium on
Foundations of Software Engineering, 2016, p. 2–10.

[3] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “The technical debt dataset,”
in Conference on PREdictive Models and data analycs In Software
Engineering, 2019, pp. 2 – 11.

[4] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software
engineering research,” in Joint meeting on foundations of software
engineering, 2013, pp. 466–476.

[5] M. Patton, Qualitative Evaluation and Research Methods. Sage, 2002.
[6] M. Fowler and K. Beck, “Refactoring: Improving the design of existing

code,” Addison-Wesley Longman Publishing Co., Inc., 1999.
[7] S. Martı́nez-Fernández, C. Gómez, and X. Franch, “Aprendizaje basado

en proyectos de analı́tica de software en estudios de ciencia e ingenierı́a
de datos,” Actas de las Jenui, vol. 6, pp. 27–34, 2021.

[8] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[9] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in International Conference on Software Engineering,
2012, pp. 25–35.

https://doi.org/10.6084/m9.figshare.14980662

[10] P. Avgustinov and other, “Tracking static analysis violations over time
to capture developer characteristics,” in International Conference on
Software Engineering, vol. 1, 2015, pp. 437–447.

[11] W. Y., M. P., Y. Z., and Z. H., “Developer portraying: A quick approach
to understanding developers on oss platforms,” Information and Software
Technology, vol. 125, p. 106336, 2020.

[12] Z. Codabux and C. Dutchyn, “Profiling developers through the lens
of technical debt,” in International Symposium on Empirical Software
Engineering and Measurement, 2020.

[13] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in IWPSE ’02, 2002.

[14] J. Amor, G. Robles, and J. Gonzalez-Barahona, “Effort estimation
by characterizing developer activity,” in International Workshop on
Economics Driven Software Engineering Research, 2006, p. 3–6.

[15] X. Li, “Research on software project developer behaviors with k-means
clustering analysis,” in Summer School on Software Maintenance and
Evolution, 2019.

[16] F. Calefato, F. Lanubile, and B. Vasilescu, “A large-scale, in-depth anal-
ysis of developers’ personalities in the apache ecosystem,” Information
and Software Technology, vol. 114, pp. 1 – 20, 2019.

	Introduction
	The Empirical Study
	Goal and Research Questions
	Context
	Data Collection
	Data Analysis
	Replicability and Data Availability

	Results
	Developer's Profiles Identification (RQ1)
	Code Quality Issues by Profiles (RQ2)

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	Data Availability
	References

