
Mapping breakpoint types: an exploratory study
Eduardo Andreetta Fontana

University of Quebec at Chicoutimi
Saguenay - QC, Canada

eduardo.andreetta-fontana1@uqac.ca

Fabio Petrillo
University of Quebec at Chicoutimi

Saguenay - QC, Canada
fabio@petrillo.com

Abstract—Debugging is a relevant task for finding bugs dur-
ing software development, maintenance, and evolution. During
debugging, developers use modern IDE debuggers to analyze
variables, step execution, and set breakpoints. Observing IDE
debuggers, we find several breakpoint types. However, what are
the breakpoint types? The goal of our study is to map the
breakpoint types among IDEs and academic literature. Thus,
we mapped the gray literature on the documentation of the nine
main IDEs used by developers according to the three public
rankings. In addition, we performed a systematic mapping of
academic literature over 68 articles describing breakpoint types.
Finally, we analyzed the developers understanding of the main
breakpoint types through a questionnaire. We present three main
contributions: (1) the mapping of breakpoint types (IDEs and
literature), (2) compiled definitions of breakpoint types, (3) a
breakpoint type taxonomy. Our contributions provide the first
step to organize breakpoint IDE taxonomy and lexicon, and
support further debugging research.

Index Terms—debugging, mapping, IDE, breakpoint, break-
point type, watchpoint, taxonomy

I. INTRODUCTION

Debugging is a relevant task for finding and resolving bugs
during software development, maintenance, and evolution [1].
During debugging, developers use modern interactive debug-
gers with Integrated Development Environments (IDEs), such
as Eclipse, NetBeans, IntelliJ IDEA, and Visual Studio, to de-
tect, locate, and correct faults in software systems [2]. Among
the many features provided by IDEs, breakpoints are one of
the most used features by developers to initiate a debugging
session [3]. Observing IDEs documentation, we found several
breakpoint types, each one has particular functionalities that
could be explored by developers [4]–[8].

However, what are the breakpoint types? To the best of our
knowledge, there is a lack of congruence related to breakpoint
type names and descriptions in IDEs documentation and
academic literature. We found some IDEs documentation using
different names for the similar breakpoint types. For example,
Eclipse [4], [5] and IntelliJ [6] call data-sensitive breakpoints
as Watchpoint or as Field Watchpoint, but Visual Studio
[7] or Visual Studio Code [8] call them Data Breakpoint.
Furthermore, the IDEs documentation information is not clear
or sufficient to support developers understanding of breakpoint
types. For example, there are discussions in gray literature
about the difference between Breakpoint, Watchpoint, Method
Breakpoint [9]–[12], Static Breakpoint, Dynamic Breakpoint
[13], Conditional Breakpoint, and Data Breakpoint [14]–[16].

In academic literature, we found some studies that try to
define or classify some breakpoint types, but there are no
studies that map the breakpoint types among different IDEs
and different technologies. For instance, Petrillo et al. [2],
[17] and Johnson [18] classify some breakpoint types as
Static Breakpoint and Dynamic Breakpoint; and Keppel [19],
Vasudevan [20], and Spinellis [21] use the name Code Break-
point, but IDEs documentation do not use these categorization
names. Arya et al. [22], Spinellis [21], Kumar et al. [23],
Copperman et al. [24], and Zhao [25] present breakpoint
types with the names of Watchpoint or Data Breakpoint at the
software level, while Chew et al. [26], Sommer et al. [27],
and Jang et al. [28] present the same breakpoint type names,
but at the hardware level or with hardware support.

The goal of our study is to map the breakpoint types among
different IDEs and academic literature. Our survey provide
to developers a common lexicon to IDEs. In addition, our
study contributes to avoid misleading breakpoint names among
academic literature and IDE documentation. Furthermore, as
suggested by Aniche et al. [29], our study can support future
debugging research. Finally, our study provides a discussion
that establishes characteristics and the state of the art of the
main existing breakpoint types and support further debugging
research.

We mapped the gray literature on the documentation of the
nine main IDEs used by developers according to the Stack
Overflow Survey 2019 [30], Google Trends 2020 [31], and G2
2020 [32] rankings. In addition, we performed a systematic
mapping of academic literature over 68 articles describing
breakpoint types. Finally, we analyzed the developers under-
standing of the main breakpoint types administering a ques-
tionnaire. From the collected data, we applied The Grounded
Theory method [33] to map and organize the definitions and
characteristics of the main existing breakpoint types.

As a result, we built a breakpoint type mapping table of
the main IDEs, as well as a breakpoint type mapping table
for academic papers. Furthermore, we present breakpoint type
definitions structured according to attributes mapped. Finally,
we present a taxonomy diagram with two breakpoint type
categories.

We present three main contributions: (1) the mapping of
the existing breakpoint types in the main IDEs and academic
literature, (2) compiled definitions of breakpoint types, and (3)
a breakpoint type taxonomy.

1

ar
X

iv
:2

10
9.

00
91

7v
2

 [
cs

.S
E

]
 1

1
N

ov
 2

02
1

II. BACKGROUND

The use of breakpoint originates in the 1940s during discov-
ery attempts of program problems running on ENIAC (Elec-
tronic Numerical Integrator and Computer), the first digital
computer in history [34] [35]. In the initial design of the
ENIAC, the program flow was set by plugging cables from one
unit to another. To make the program stop at a certain point, a
cable was simply removed. The removal of such cable midway
through the program execution was named as breakpoint. The
term breakpoint was coined by Frances Elizabeth Holberton,
one of the six woman programmers that worked at ENIAC
[36].

“Well you know, the thing is we did develop the
one word that’s in the language today, which is
‘breakpoint’, at that time. Because we actually did
pull the wire to stop the programs so we could read
the accumulators off. This was, I mean we actually
broke the point, and that was where the word came
from.” - Frances Elizabeth Holberton [36].

Iterative breakpoints were initially used in the 1970s, during
the era of mainframe computers, over OLIVER debugger
(CICS interactive test/debug). OLIVER was a proprietary
testing and debugging toolkit for interactively testing programs
designed to run on IBM Customer Information Control System
(CICS) on IBM System/360/370/390 architecture. It provided
instruction step, conditional program breakpoint, and storage
alteration features for programs written in Assembly, COBOL,
and PL/I. HLL (high-level language) users were able to see
and modify variables directly at a breakpoint [37].

The first use of breakpoints in IDEs (Integrated Devel-
opment Environment) was observed in Turbo Pascal in the
1980s. The Turbo Pascal IDE provided several debugging
facilities, including single stepping, examination and changing
of variables, single breakpoints, and conditional breakpoints.
In later versions, assembly language blocks could be stepped
through in debugging process. The user could add breakpoints
on variables and registers in an IDE window [38].

Currently, the use of breakpoint is an integral part of most
IDEs and one of the main resources used during the debugging
process. Breakpoints are also features of symbolic debuggers
like GDB [39] and WinDbg [40], so they are part of IDE
instrumentation. Some popular IDEs that use breakpoints are:
Eclipse, IntelliJ, NetBeans, Visual Studio, Visual Studio Code,
and others.

III. RELATED WORK

Petrillo et al. [2], [17], Johnson [18], and Chern et al.
[41] classify some breakpoint types as Static Breakpoint, and
Dynamic Breakpoint. However, our research extends this clas-
sification including other criteria that determine the breakpoint
type groups, such as how the breakpoint is added and the effect
when it is triggered.

Vasudevan [20] describes a generic way classification of
breakpoint types through Software Breakpoint and Hardware

Breakpoint categories. Spinellis [21] classifies software break-
points by the term Code Breakpoint and classifies the break-
points with related data as Data Breakpoint, with or without
hardware support. Beller et al. [42] present categories closer
to those found in IDEs, using terms such as Line Breakpoint,
Exception Breakpoint, Method Breakpoint, Watchpoint, and
others. In general, these articles describe generic categories
and do not provide details or attributes of each category.
Our study extends those categories, adding details, describing
subcategories and relationships among them.

Moritz et al. [42] provide an attempt to group breakpoint
types with the same nomenclature used by IDEs. Robert
Wahbe [43], Zhao et al. [25], and Copperman et al. [24]
provide definitions for Data Breakpoints and Watchpoints.
Dupriez et al. [44] and Corrodi [45] define a new generation
of debuggers, which uses the concept of context breakpoint,
that is, breakpoints centered on objects already instantiated in
memory.

Kumar et al. [23] introduces the Behavioral Watchpoint
into Watchpoint category, as a subcategory of Software Break-
point. Copperman et al. [24] and Zhao [25] present specific
implementations for Watchpoint and mention that this type
is a synonym for the term Data Breakpoint. Wahbe [43]
introduces the Data Breakpoint category to describe data-
related breakpoint implementation strategies with or without
hardware support. Our article extends these classifications and
details Data Breakpoint and Watchpoint as synonyms within
the context of data-related breakpoint.

IV. STUDY DESIGN

In this section, we describe the details our study design.
We performed systematic mapping of academic literature
and gray literature, i.e., IDEs documentation. After that, we
administered a survey questionnaire. From those instruments,
we analyzed and mapped breakpoint type definitions applying
The Grounded Theory method [33]. Our protocol steps is
presented in Figure 1. The steps are focus on answering
research questions RQ1, RQ2, and RQ3.

Step 2 - Academic
Literature Data

Extraction - RQ2

Step 3 - Questionnaire
Data Extraction - RQ3

Step 1 - IDEs
Documentation Data

Extraction - RQ1

Step 4 -
Analysis and
Mapping of
Definitions

The Grounded Theory (GT)

Op
en

Axial

Selective

...

...

...

...

...

Taxonomy

Mapping

Fig. 1. Protocol Steps – We extracted Breakpoint type definitions from three
data sources, after it we processed it through The Grounded Theory method
which generated as output a Mapping and a Taxonomy.

A. Research Questions
RQ1 - What breakpoint types are found in IDEs? By

answering this research question, we aim to map the break-
point types used by gray literature as IDEs documentation
from different IDEs and different technologies.

2

RQ2 - What breakpoint types are studied in the aca-
demic literature? By answering this research question, we
aim to map the breakpoint types investigated by academic
literature.

RQ3 - What are the breakpoint types according to
practitioners? By answering this research question, we aim
to discover what breakpoint types are according to software
developers.

B. Scope

The scope of our research consisted of three data sources.
The first data source was the official documentation of the
nine main IDEs used for developing high-level software. To
select IDEs, we considered the crossing of the IDE rankings
websites.

The second data source was four specialized academic
libraries in software engineering, in which we performed
a systematic mapping, as shown in Figure 3. From these
libraries, we found the total of 931 candidate articles. Over
candidate articles, we applied some filters and selections
resulting in 68 articles with breakpoint type descriptions. From
these 68 articles we performed the extraction of breakpoint
type definitions.

The third data source was the questionnaire administered
to debugging practitioners, who are software developers. The
questionnaire has 30 questions divided into three sections. We
collected 29 valid responses, i.e., form completed by the end.

C. Protocol

In this subsection, we describe in detail the activities per-
formed in each step of our study design, as shown in Figure
1.

1) Step 1 - IDEs Documentation Data Extraction - RQ1:
We searched breakpoint type descriptions in IDEs documen-
tation. For that, we indexed the main IDEs considering the
crossing of the IDE rankings according to the Stack Overflow
Survey 2019 [30], Google Trends 2020 [31], and G2 2020
[32] websites, as presented in Figure 2. From the IDEs
documentation, we extracted the breakpoint type definitions.
We describe below the five steps performed in this process.

Stack Overflow
Survey 2019 -
IDE Ranking

Google Trends
2020 - IDE
Ranking

G2 2020 - IDE
Ranking

20

30

10

10

10

10

10

9

7

9 9

Initial
search

Select
top 10

Merge and
duplicates
removal

Impurity
removal

IDE
documetation
data extraction

IDEs breakpoint
definitions

Fig. 2. IDEs selection process and definition extraction – We selected nine
IDEs by crossing the IDE rankings according to the Stack Overflow Survey
2019, Google Trends 2020, and G2 2020 websites. From the selected IDEs,
we extracted breakpoint type definitions in IDEs documentation.

Initial search: first, we selected the IDEs from the rankings
of three websites. The Stack Overflow platform offers a rank-
ing of IDEs that was created through surveys made directly to
developers, conducted in 2019. We extracted Google Trends
2020 from the Pypl website, which uses the search term
metrics provided by Google Trends to generate a ranking of
the most searched IDEs until November 2020. We selected the
G2 website because it presents a ranking of the most widely
used IDEs in the market according to the analysis of technical
experts from the G2 itself.

Select top 10: we select the top ten IDE from the three
rankings because they are widely used or they have easily
accessible documentation.

Impurity removal: we removed some development tools that
are text editors with debugging plugins.

Merge and duplicates removal: we combined the IDEs in
each ranking by removing duplicates and obtained a new set
of nine IDEs.

IDE documentation data extraction: finally, we extracted
the descriptions of the breakpoint functionalities from the IDE
website.

2) Step 2 - Academic Literature Data Extraction - RQ2: We
indexed 68 articles from journals and conference proceedings
that partially classify or partially define breakpoint types, as
presented in Figure 3. In addition, we performed the snow-
balling search method. Finally, from the selected articles, we
extracted the breakpoint type definitions. We describe below
the seven steps performed in this process.

Web of Science

Scopus

ACM Digital Library

Computers & Applied
Sciences Complete

(EBSCOhost)

254

192

430

55

281

160

80

189

15

170 5 68

Initial
search

Impurity
removal

Merge and
duplicates
removal

Selection
cirteria

Snowballing

Article data
extraction

63

Articles define
breakpoint

types

Articles
breakpoint
definitions

Fig. 3. Articles selection process and definition extraction – We selected
68 articles of journals and conference proceedings from specialized academic
libraries in software engineering. From the selected articles, we analyzed and
extracted breakpoint type definitions.

Initial search: first, we selected the four main scientific re-
search specialized academic libraries in software engineering:
ACM Digital Library, Web of Science, Scopus, The Collec-
tion of Computer Science Bibliographies and Computers &
Applied Sciences Complete (EBSCOhost). The search query
used is presented below. The search request was applied to
the libraries considering title, abstract, and keywords. In this
initial search, we had a total of 931 articles found.

(breakpoint* OR break-point*
OR watchpoint* OR watch-point*
OR tracepoint* OR trace-point*
OR logpoint* OR log-point*

3

OR catchpoint* OR catch-point*)
AND debug*

Impurity removal: we removed articles that are related to
private software tools or articles that describe breakpoints in
the context of hardware component debugging. After impurity
removal, we had a total of 444 articles.

Merge and duplicates removal: we combined all studies into
a single dataset. Duplicated entries have been matched by title,
authors, year, and type of publication. After applying merge
and removal duplicates, we had a total of 281 articles.

Selection criteria: over the 281 articles, we selected only
journals and conference articles that are full paper with eight
pages or more. After applying these selection criteria, we had
a total of 170 articles.

Articles define breakpoint types: we performed a systematic
search over the entire paper texts by the key-words: breakpoint,
watchpoint, tracepoints, logpoint, and catchpoint. With this
search, we selected the articles with breakpoint type descrip-
tion, partially or completely. After this systematic search, we
had a total of 63 articles.

Snowballing: from 63 selected articles, we complemented
the systematic search with a snowballing search. With snow-
balling, we added five articles that have descriptions of break-
point types. In total, we selected 68 articles from which we
performed data extraction.

Article data extraction: finally, we analyzed the articles
and extracted breakpoint type definitions, i.e., the breakpoint
descriptions, breakpoint type descriptions, and breakpoint
functionality descriptions. The extracted data were stored in
a spreadsheet. We collected a total of 243 text extracts from
68 articles, which we analyzed together with the text extracts
from the IDEs documentation and from the questionnaire data
in subsection IV-C4.

3) Step 3 - Questionnaire Data Extraction - RQ3: We
administered a questionnaire for breakpoint practitioners to
gather opinions and understanding of the breakpoint types used
by software developers in the IDEs.

Questions: the questionnaire has 30 questions divided into
three sections: 1) general information about the respondent;
2) discursive questions about the developers understanding of
the different breakpoint types; and 3) objective questions about
understanding the definitions of the different breakpoint types
used in the IDE documentation.

Participants: the participants of our questionnaire were
included by the following criteria: 1) adult people who have
experience using IDE; 2) and adult people who have expe-
rience using breakpoints. The participants that did not meet
the following criteria were not included: 1) anyone who had
no experience using IDE; 2) anyone who had no experience
using breakpoints; 3) and anyone who refused to answer the
questionnaire.

Ethics: the questionnaire was evaluated and consented on
February 5, 2021 by the Research Ethics Committee of the
University of Quebec at Chicoutimi (CER-UQAC) and certifi-
cated by the Ethics Certificate Reference No: 2021-690.

Dissemination: we disseminated the questionnaire through
social media, software development communities on Discord
servers, and directly to software developers. All responses
were anonymous.

Responses: we got a total of 70 responses, 29 of which were
valid, i.e., form completed by the end, and 41 were invalid,
i.e., partially answered form. Only the 29 valid responses were
considered for analysis in subsection IV-C4.

4) Step 4 - Analysis and Mapping of Definitions: In the
data analysis subprocess, we applied The Grounded Theory
(GT) method. The Grounded Theory is an interpretive and
qualitative research method that uses a systematic set of
procedures to develop an inductively derived theory about a
phenomenon [33], [46]. The set of procedures are composed
by three steps: Open coding, Axial coding, and Selective
coding. The steps are complementary to each other and they
are executed in an iterative way. Details of the result of each
Grounded Theory step are described in section V.

In the Open coding step, we analyzed definitions, features,
properties, and characteristics of the breakpoint types de-
scribed in the bibliography. We defined attributes, categories,
and subcategories, and we use them to classify the definitions
of the concepts found. In the Axial coding step, we mapped
each breakpoint type description classifying by the attributes.
We organized the attributes hierarchically to form a logical
structure of relationships and similarity among the extracted
concepts. In the Selective coding step, based on the feature
similarities and relationships, we refined the categorization,
and we formulated theories to characterize each of the cate-
gories.

V. BREAKPOINT MAPPING

In this section, we present the artifacts and results from The
Grounded Theory data analysis and mapping performed.

A. Open coding output

In The Grounded Theory Open coding step, we analyzed the
definitions, the features, the properties, and the characteristics
of the breakpoint types described both in the IDEs documen-
tation, selected articles, and from the questionnaire. From this,
we extracted 39 attributes grouped into four categories, as
presented below:

• Defined at: line of code, statement in a line of code,
by configuration, over object, over property object, field,
global variable, local variable, over a message, written in
code, block of memory;

• Triggered by: line / statement hit, data changes, memory
address changes, expression satisfied, expression value
change, expression satisfied an object id, conditional
hit, hit count, event triggered, method / function called,
method enter, method exit, class is loaded, exception
throw, field read, field write, test failure, message reaches
the head queue, thread start / terminated;

• Effect: does not stop execution, stop execution, show log
message;

4

TABLE I
BREAKPOINT TYPES ON IDES

Breakpoint Terms NetBeans Eclipse Visual Studio Visual Studio Code IntelliJ PhpStorm Xcode PyCharm Android Studio Total
Breakpoint X X X X X X X X X 9
Exception Breakpoint X X X X X X X 7
Line Breakpoint X X X X X 5
Method Breakpoint X X X X X 5
Tracepoint X X 2
Object Breakpoint X X 2
Function Breakpoint X X 2
Data Breakpoint X X 2
Breakpoint Log X X 2
Breakpoint Stack Trace X X 2
Class Breakpoint X X 2
Watchpoint X X 2
Data Breakpoint C++ X 1
Logpoint X 1
Conditional Breakpoint X 1
Inline Breakpoint X 1
Field Watchpoint X 1
Field Breakpoint X 1
Variable Breakpoint X 1
Thread Breakpoint X 1
Logging Breakpoint X 1
Event Breakpoint X 1
Symbolic Breakpoint X 1
Test Failure Breakpoint X 1

Total 9 7 6 6 6 6 6 5 3

TABLE II
BREAKPOINT TERMS ON ARTICLES

Article Year

B
re

ak
po

in
t

C
on

di
tio

na
l

W
at

ch
po

in
t

D
at

a
D

yn
am

ic

C
od

e
St

at
ic

E
xc

ep
tio

n

H
ar

dw
ar

e
So

ft
w

ar
e

L
in

e
Tr

ac
ep

oi
nt

M
et

ho
d

D
at

a
A

cc
es

s
C

la
ss

Fi
el

d
E

xp
re

ss
io

n
W

at
ch

po
in

t
Tr

an
si

tio
n

W
at

ch
po

in
t

St
at

ef
ul

Te
m

po
ra

l

D
ec

la
ra

tiv
e

M
es

sa
ge

Sy
m

bo
l

M
et

ho
d

M
es

-
sa

ge
M

es
sa

ge
co

n-
di

tio
na

l
R

ev
er

se
W

at
ch

po
in

t
R

ev
er

se
E

xp
re

ss
io

n
W

at
ch

po
in

t
C

on
di

tio
na

l
W

at
ch

po
in

t

Se
le

ct
iv

e
So

ur
ce

C
on

di
tio

na
l

lin
e

L
oc

al
va

ri
ab

le
W

at
ch

po
in

t

Si
m

ul
at

ed
C

on
di

tio
na

l
D

at
a V
ar

ia
bl

e

Total

[42] 2018 X X X X X X X X 8

[44] 2017 X X X X X 5

[45] 2016 X X X X X 5

[18] 1982 X X X X X 5

[2] 2017 X X X X X 5

[47] 2012 X X X X X 5

[48] 1999 X X X X 4

[49] 2003 X X X X 4

[50] 2012 X X X X 4

[20] 2009 X X X X 4

[17] 2019 X X X X 4

[51] 1989 X X X X 4

[24] 1995 X X X 3

[52] 1996 X X X 3

[53] 2014 X X X 3

[21] 2006 X X X 3

[54] 2014 X X X 3

[55] 2012 X X X 3

[56] 2020 X X X 3

Total 11 11 6 6 5 3 3 2 2 2 2 2 1

5

• Complementary: conditional as derivative action, has
derivative actions, is a derivative action, has hardware
support, multithread, not enough information.

Line breakpoint

Line breakpoint
Code breakpoint
Debugger breakpoint
Source breakpoint
Inline breakpoint

Conditional breakpoint
Conditional line breakpoint
Conditional data breakpoint
Conditional watchpoint
Message conditional breakpoint

Conditional breakpoint

Watchpoint
Data breakpoint
Variable breakpoint
Field watchpoint
Field breakpoint
Object breakpoint

Watchpoint

Tracepoint
Breakpoint log
Breakpoint stack trace
Logpoint
Logging breakpoint

Thread breakpoint
Message breakpoint

Event breakpoint
Exception breakpoint
Method breakpoint
Class breakpoint
Function breakpoint

Tracepoint Thread breakpoint Event breakpoint

Fig. 4. The Grounded Theory Open Output – The main breakpoint types
and respective extracted term grouping.

Definition attempts by data source

B
re

ak
po

in
t T

yp
es

0 10 20 30 40 50

Fig. 5. The Grounded Theory Axial Output – Number of times that all
data sources presented some description of each breakpoint type.

TABLE III
THE GROUNDED THEORY AXIAL OUTPUT – CONTINUATION

Described
3 times

class, debugger, event, field watchpoint, hardware, simulated,
software

Described
2 times

log, stack trace, conditional data, field, function, logpoint,
object, source

Described
1 time

behavioral watchpoint, collective, concurrent, conditional line,
conditional watchpoint, control, data access, data c++, declara-
tive, declarative tracepoint, expression watchpoint, expression-
transition watchpoint, inline, lambda, local variable watch-
point, logging, message conditional, meta-breakpoint, method
message, pseudo-breakpoint, reverse expression watchpoint,
reverse watchpoint, scan-points, selective, shared, stateful,
statement, symbol, symbolic, temporal, test failure, thread,
transition watchpoint, unconditional

aThis table is the continuation of the chart in Figure 5.
bBreakpoint types that have been described three times or less

The attribute category Defined At aggregates the group of
attributes that characterize the place or way in which the
breakpoint is added in the source code. That is, added in a
line of code, through configuration, in a variable or others.
The attribute category Triggered By aggregates the group of
attributes that characterize how the breakpoint is triggered

after being added to the source code. That is, triggered by the
execution of a tuple of code, by data changing, by triggering an
event or other way. The attribute category Effect aggregates the
group of attributes that characterize the behavior presented by
the debugger and by the IDE once the breakpoint is triggered.
In other words, if it interrupts the system execution or not or
if it presents a log message. The attribute category Comple-
mentary aggregates the group of attributes that complement
the characteristics of each breakpoint and that do not fit into
the three previous categories. For example, if the breakpoint
type has: conditional, derived actions, hardware support, and
others.

With the attributes defined, we related each attribute to each
of the breakpoint type description taken from the documen-
tation, articles, and questionnaire. As a resulting artifact, we
obtained a Mapping table with the relation of each attribute to
each breakpoint type extracted from each of the data source
descriptions. See Zenodo repository [57].

B. Axial coding output

For each of the breakpoint type descriptions, we extracted
the terms of the breakpoint types, and we related them with
the attributes.

In Figure 5 and in Table III, we present a compilation of the
breakpoint type terms used by the three data sources. The chart
in Figure 5 shows the number of times that all data sources
presented some description to try to define each breakpoint
type. For breakpoint types that data sources define three or
less times, we group them in Table III, i.e., the table is the
chart continuation.

In addition, we created two breakpoint type mapping tables:
1) Table I: breakpoint types on the IDEs, and 2) Table II:
breakpoint types on articles. For both tables, the total column
is the count of incidences that a given term is described by
the IDE or article as a breakpoint type. The total line is the
count of breakpoint types that each IDE or article describes.

Considering the incidence of descriptions by terms pre-
sented in the compilation in Figure 5 and the Mapping table in
the dataset in the Zenodo repository [57], we identified terms
with similar distribution of attributes and high degree of sim-
ilarity among the characteristics of each term. From this, we
extracted the terms that represent the main breakpoint types:
Line Breakpoint, Conditional Breakpoint, Thread Breakpoint,
Event Breakpoint, Watchpoint, Tracepoint. The Figure 4 shows
the term grouping. The box at the top of arrow contains main
breakpoint types and the box below the arrow contains the
extracted terms with high degree of similarity.

The term Breakpoint is described by the IDEs documenta-
tion and the articles in a generic way. Thus, we do not include
the term Breakpoint as a breakpoint type. We observed that
the term Line Breakpoint is the second one in the Table I
that represents the basic breakpoint type. The terms Software
Breakpoint, Hardware Breakpoint, Static Breakpoint, and Dy-
namic Breakpoint are not breakpoint types, but rather interme-
diate categories that suggest the grouping of some breakpoint
types. Complementarily, the term Dynamic Breakpoint groups

6

breakpoint types that depend on events or conditions to be
triggered, while the term Static Breakpoint groups breakpoint
types that are triggered without dependence on other factors.

The term Conditional Breakpoint is sometimes described
as a breakpoint type or at other times as a complementary
action of some other breakpoint type. The term Watchpoint
is the grouping of all terms that define breakpoint types
related to data change, either directly in memory or object
instance. The term Tracepoint group all the terms that define
breakpoint types that do not stop the system running when
triggered, but logging a message. The term Event Breakpoint
grouped all the terms that define breakpoint types that are
triggered when a specific event happens during execution,
such as calling a specific method, triggering an exception,
instantiating a class or calling a specific function. Thread
Breakpoint accurately represents the breakpoint types applied
to distributed programming and multithreading, since the term
Message Breakpoint is misinterpreted with the breakpoint type
that emits log messages, such as Tracepoint.

C. Selective coding output

The output of Selective coding step are structured defi-
nitions for each of the six breakpoint types. We extracted
the definitions from relevant terms structuring by the four
attribute categories: Defined At, Triggered By, Effect, and
Complementary. The definitions are presented in boxes 1, 2, 6,
3, 4, and 5. We evaluated the definitions from the questionnaire
given to software developers. Each respondent gave a score
from one to ten for each of the definitions – being one to
totally disagree and ten to totally agree. The arithmetic average
of the scores obtained is presented in Table IV.

D. Research questions output

RQ1 - What breakpoint types are found in IDEs? We
extracted all distinct breakpoint type names related to the IDEs
analyzed from the Mapping table in dataset [57]. They are
presented in Table I.

RQ2 - What breakpoint types are studied in the
academic literature? We filtered and extracted all distinct
breakpoint type names related to the academic literature from
the Mapping table in dataset [57]. The Table II shows the
academic articles that mention three or more breakpoint type
names. The complete list is found in the GT Compilation
spreadsheet in dataset [57].

RQ3 - What are the breakpoint types according to
practitioners? We filtered from the all distinct breakpoint
type names related to the questionnaire from the Mapping
table in dataset [57]. The new terms we found through the
questionnaire are:

• Debugger Breakpoint: command debugger; written in
the source code, as the language’s own command, to force
the system to stop running.

• Statement Breakpoint: similar to Lambda or Inline
breakpoint. A breakpoint over part of the line of code,
or execution tuple.

• Lambda Breakpoint: similar to Inline breakpoint. A
breakpoint over part of the line of code, or execution
tuple.

• Shared Breakpoint: similar to Tracepoint. A breakpoint
that logs messages and does not stop the system from
running.

The sample of questionnaire respondents is composed of 29
different respondents. The average years of experience with
software development was 9.4 years. From the total sample,
68.96% reported that, according to their work or university
experience, they have studied or have been introduced to
breakpoint types.

Definition 1 — Line Breakpoint

Line Breakpoint is the breakpoint type associated with a line
of code. Where: It is usually inserted over the line of code or
eventually over a code tuple contained in the line of code, or else
written directly in the code as a code stop instruction. Trigger: It
is usually triggered when the line of code is hit during the system
execution. Effect: When triggered, it causes the system execution
interruption.

Definition 2 — Conditional Breakpoint

Conditional Breakpoint is a breakpoint type associated with an
expression. Where: It is usually inserted as a specific breakpoint
type over a line of code, or it could be associated with other
breakpoint type such as a configuration usually called property
or action. Trigger: It is triggered whenever the condition related
to its associated expression is true. This condition could be related
to data, a count or the existence of a specific object. Effect: When
triggered, it causes the system execution interruption.

Definition 3 — Thread Breakpoint

Thread Breakpoint is a breakpoint type applied to distributed
systems and parallel programming, associated with threads.
Where: It is usually related to a thread or thread message through
a configuration option. Trigger: It is usually triggered when the
thread with which it is associated starts or stops. Effect: When
associated with a thread message, it is triggered when the message
with which it is associated is at the top of the execution queue.
When triggered, it causes the entire system execution interruption
or just the thread with which it is associated. Complementary: Fur-
thermore, it could contain associated expressions that determines
its activation only when the condition is true.

Definition 4 — Event Breakpoint

Event Breakpoint is a breakpoint type that is system execution
event oriented. Where: It is usually inserted by configuration
option and eventually over a specific line of code. Trigger: It
is usually triggered when the event to which it is associated is
triggered by the system, such as calling a method, creating an
object of a specific class, or throwing an exception. Effect: When
triggered, it causes the system execution interruption. Comple-
mentary: Furthermore, it could contain associated expressions that
determines its activation only when the condition is true.

7

Definition 5 — Watchpoint

Watchpoint is a type of data-oriented breakpoint and could be
directly related to a memory address. Where: It is usually inserted
over a line of code that contains a field or variable or through
configuration options. Trigger: It is usually triggered when the
data it is associated with is read, written or changed. It could also
be triggered when the memory address to which it is associated
is read, written or changed. Effect: When triggered, it causes the
system execution interruption. Complementary: Furthermore, it
could contain associated expressions that determines its activation
only when the condition is true.

Definition 6 — Tracepoint

Tracepoint logs a message on console output when execution
through it. Where: It is usually inserted over the line of code.
Trigger: It is usually triggered when the line of code with which
it is associated is the next line to be executed by the system. Effect:
When triggered, it displays a previously defined debug message
on the console, not interrupting the system execution. Com-
plementary: Furthermore, it could contain associated expressions
that determines its activation only when the condition is true.

TABLE IV
BREAKPOINT TYPE DEFINITION SCORE

Definition of Score
Line Breakpoint 8.3
Conditional Breakpoint 9.0
Tracepoint 8.6
Thread Breakpoint 8.2
Event Breakpoint 8.2
Watchpoint 8.0
aScore represents the average degree of developers agreement
for each of the definitions. From 1 (disagree) to 10 (agree).

VI. BREAKPOINT TAXONOMY

In this section, we present the taxonomy obtained from the
mapping. This taxonomy is formed by two major breakpoint
categories: Static Breakpoint and Dynamic Breakpoint. In the
static breakpoint category, we have the type Line Breakpoint.
In the dynamic breakpoit, we have four types: Watchpoint,
Condional Breakpoint, Thread Breakpoint, and Event Break-
point. The Figure 6 show the taxonomy diagram.

Breakpoint
(Software Breakpoint)

Static Breakpoint Dynamic Breakpoint

Event Breakpoint

Line Breakpoint

Conditional Breakpoint

Thread BreakpointWatchpoint

Categories

Types

Fig. 6. Taxonomy – The main breakpoint types organized in two categories.

The first level of the Taxonomy is the Breakpoint. It is a
generalization that includes software-related breakpoints, that
is, those that are used in debuggers through IDEs for high-
level software and that are not used in debugging directly
on hardware, i.e., low-level software. We also included the
term Software Breakpoint in the diagram as a synonym
for Breakpoint, because it is often referred to in academic
literature as Software Breakpoint. In addition, the taxonomy
does not include Tracepoint type, because this type does not
cause the system execution to stop.

The second level of the Taxonomy are the categories Static
Breakpoint and Dynamic Breakpoint. We extended these cat-
egories from academic literature. Static Breakpoint encom-
passes all breakpoint types that trigger when the line of code at
which the breakpoint is located is the next line to be executed
and do not depend on the evaluation of logical expressions
or extra events. Dynamic Breakpoint includes all breakpoint
types whose triggering does not depend only or necessarily on
the execution of the line of code in which the breakpoint is
located, but on some extra event or evaluation of some logical
expression. For example, to trigger a Dynamic Breakpoint, it
is necessary the condition assigned to the breakpoint is true,
or the number of line executions reach a certain number, or
call of a certain method, or an object of a certain type is
instantiated, and others.

The third level of the taxonomy is composed by break-
point types. The most often breakpoint type according to the
grouping shown in Figure 5 and Table III is Line Breakpoint.
Furthermore, Line Breakpoint was cited in 23 of the 29
responses, according to the questionnaire. The second term
with similar characteristics is Code Breakpoint, which can be
attributed as a synonym for Line Breakpoint.

Conditional Breakpoint and Watchpoint are also find in the
third level of Taxonomy, in the Dynamic Breakpoint category.
Conditional Breakpoint is similar to the Line Breakpoint, but
with associated triggering conditions. These conditions are
logical expressions that trigger the breakpoint when the line
of code is the next line to be executed and the evaluated
expression returns true value. Watchpoint is a breakpoint
type related to data change, either directly in memory or
object instance. For the Watchpoint to be triggered, the data
associated with a variable, a field or a memory address must
be read, written or changed.

Finally, we describe the Thread Breakpoint and Event
Breakpoint types also in the third level. Thread Breakpoint
has features applied in distributed programming and multi-
threading while the Event Breakpoint is applied in monothread
executions. Both are triggered when an event happens. For
example, Thread Breakpoint triggers when the thread with
which it is associated starts or stops. On the other hand, Event
Breakpoint is triggered when a specific method or specific
function is called, an exception is thrown and others.

VII. DISCUSSION

In this section, we discuss points observed during the
analysis by combining the results of RQs 1-3.

8

From the breakpoint types found in IDEs (RQ1), we recom-
mend that Conditional Breakpoint should not be referred to as
a specific breakpoint type as mentioned in one Visual Studio
Code IDE documentation. In other IDEs’ documentation, there
is no term Conditional Breakpoint. Instead, IDEs define condi-
tionals as extra actions that can be applied on which breakpoint
type. Through this, any breakpoint type with conditionals is a
Dynamic Breakpoint.

Also related to breakpoint type mapping used by gray
literature (RQ1), we recommend that Tracepoint should be
presented by the IDEs documentation as a feature to support
debugging and not as a breakpoint type. The main characteris-
tic of a breakpoint is stop the system running, but Tracepoint
and Logpoint do not stop the system execution, just present
log messages in the console output.

Analyzing the academic articles (RQ2), we found descrip-
tions of breakpoint types named with specific terms and related
to specific technology or specialization, as presented in Table
II. Based on this, we recommend that the more specific is
the breakpoint type, the more specific the name given in the
literature, thus distancing it from the terminology used by
the IDEs documentation and from the terminology known by
software developers.

Considering the results of RQs 1-3, we recommend that the
suitable term to be used for represent data-related breakpoint
type is Data Breakpoint. On academic articles, some authors
use the terms Watchpoint and Data Breakpoint as synonyms.
Furthermore, the questionnaire revealed that developers con-
fuse the term Watchpoint with an in-memory value monitoring
functionality, also known as Watch windows or Watches, or
confuse it with a message logging functionality, such as the
Tracepoint breakpoint type.

Observing the terms in the Table I - RQ1, we identified the
same set of characteristics for different terms from different
IDEs. For example Inline Breakpoint and Variable Breakpoint
are equivalent to Line Breakpoint and Field Watchpoint. We
suggest that companies should not create new terms to define
their own breakpoint types.

Analysing the questionnaire (RQ3), we found some sug-
gestions of usage of source code instructions as breakpoint
type, as debugger and System.Diagnostic.Debugger.Break().
In addition, the questionnaire revealed that practitioners un-
derstand Code Breakpoint as a instruction breakpoint type.
Nonetheless, in academic literature we found Code Breakpoint
as a generic term to describe Line Breakpoint. We suggest
academic literature to adopt the usage of Code Breakpoint as
source code instruction.

VIII. THREATS TO VALIDITY

In this study, we considered the main IDEs used in the
software industry and the articles from the academic literature.
We have not reviewed all possible IDEs. In this way, this study
is not an exhaustive research, and we may have not included
some breakpoint types, mainly those of particular technologies
or proprietary technologies. Besides that, we searched only
documentation related to IDE debuggers, we did not include

descriptions of breakpoint types from documentation related
to standalone debuggers.

In our mapping, we only considered breakpoints related
to high-level software development oriented IDEs. However,
we found in academic literature descriptions of breakpoint
types aimed at debugging directly on hardware, i.e., low-level
software.

IX. CONCLUSION

In this article, we present a mapping of the breakpoint types
at the software level among different IDEs. We mapped the
gray literature on the documentation of the nine main IDEs
used by developers according to the three public rankings.
In addition, we performed a systematic mapping of academic
literature over 68 articles describing breakpoint types. Finally,
we analyzed the developers understanding of the main break-
point types through a questionnaire.

We present three main contributions: (1) the mapping of the
breakpoint types in the main IDEs and academic literature, (2)
compiled definitions of breakpoint types, and (3) a breakpoint
taxonomy. As results, we built a breakpoint type mapping table
of the main IDEs, as well as a breakpoint type mapping table
for academic papers. Furthermore, we present breakpoint type
definitions structured according to attributes mapped in The
Grounded Theory method. Finally, we present a taxonomy
diagram with two breakpoint type categories. We also bring
the discussion about terms used, such as Conditional Break-
point and Tracepoint, should not necessarily be presented as
breakpoint types on IDEs documentation. With the results,
we were able to describe the breakpoint types found in the
IDEs (RQ1), in the academic literature (RQ2), and by the
practitioners (RQ3).

Our breakpoint definitions provide to developers a common
lexicon to IDEs. In addition, our study contributes to avoid
misleading breakpoint names among academic literature and
IDE documentation. Furthermore, as suggested by Aniche et
al. [29], our taxonomy and definitions can support future
debugging research.

As future work, we plan to perform an controlled experi-
ment to evaluate our definitions and study breakpoint types on
hardware level. Furthermore, we plan a study on breakpoint
types from documentation related to standalone debuggers.

REFERENCES

[1] A. S. Tanenbaum and W. H. Benson, “The people’s time sharing system,”
Software: Practice and Experience, vol. 3, no. 2, pp. 109–119, 1973.

[2] F. Petrillo, H. Mandian, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc,
“How do developers toggle breakpoints? observational studies,” in 2017
IEEE International Conference on Software Quality, Reliability and
Security (QRS), 2017, pp. 285–295.

[3] M. Beller, N. Spruit, and A. Zaidman, “How developers debug,” PeerJ
Preprints, vol. 5, p. e2743v1, 2017.

[4] “Eclipse documentation.” [Online]. Available: https://help.eclipse.org/
\2021-03/index.jsp

[5] “Debugging the eclipse ide for java developers.” [Online].
Available: https://www.eclipse.org/community/eclipse newsletter/2017/
june/articl\e1.php

[6] “Intellij idea documentation.” [Online]. Available: https://www.
jetbrains\.com/help/idea/using-breakpoints.html#set-breakpoints

9

https://help.eclipse.org/\2021-03/index.jsp
https://help.eclipse.org/\2021-03/index.jsp
https://www.eclipse.org/community/eclipse_newsletter/2017/june/articl\e1.php
https://www.eclipse.org/community/eclipse_newsletter/2017/june/articl\e1.php
https://www.jetbrains\.com/help/idea/using-breakpoints.html#set-breakpoints
https://www.jetbrains\.com/help/idea/using-breakpoints.html#set-breakpoints

[7] “Use breakpoints in the visual studio debugger.”
[Online]. Available: https://docs.micros\oft.com/en-us/visualstudio/
debugger/using-breakpoints?view=vs-2019

[8] “User guide - debugging.” [Online]. Available: https://code.v\
isualstudio.com/docs/editor/debugging

[9] “What is the difference between watchpoints and breakpoints in
eclipse debugging?” [Online]. Available: https://www.quora.com/
What-is-the-difference-between-watchpoints-and-breakpoints-in-Eclipse-debugging

[10] “Difference between breakpoint on method signature
vs breakpoint on first line in method.” [Online].
Available: https://stackoverflow.com/que\stions/26364634/
difference-between-breakpoint-on-method-signature-vs-breakpoint-on-first-line-in

[11] “Difference between watch point and break point.”
[Online]. Available: https://answers.sap.com/questions/4181705/
difference-between-watch-\point-and-break-point.html

[12] “Difference between watchpoint and break-
point?” [Online]. Available: https://www.lessbro.com/
Difference-between-watchpoint-and-breakpoi\nt-/49

[13] “Difference between a static breakpoint and dynamic breakpoint.” [On-
line]. Available: https://gocoding.org/difference-between-a-static-br\
eakpoint-and-dynamic-breakpoint/

[14] “Understand conditional breakpoints in c++.” [On-
line]. Available: https://visualstudiomagazine.com/articles/2016/09/01/
understand-condit\ional-breakpoints.aspx

[15] “Break when value changes: Data breakpoints
for .net core in visual studio 2019.” [Online].
Available: https://devblogs.microsoft.com/visual\studio/
break-when-value-changes-data-breakpoints-for-net-core-in-visua\
l-studio-2019/

[16] “Break when value changes: Data breakpoints for .net core in
visual studio 2019.” [Online]. Available: DataBreakpoints\OT1\
textendashVisualStudio201715.8Update

[17] F. Petrillo, Y.-G. Guéhéneuc, M. Pimenta, C. D. S. Freitas, and
F. Khomh, “Swarm debugging: The collective intelligence on interactive
debugging,” Journal of Systems and Software, vol. 153, pp. 152–174,
2019.

[18] M. S. Johnson, “A software debugging glossary,” ACM Sigplan Notices,
vol. 17, no. 2, pp. 53–70, 1982.

[19] D. Keppel, “Fast data breakpoints,” 1993.
[20] A. Vasudevan, “Re-inforced stealth breakpoints,” in 2009 Fourth In-

ternational Conference on Risks and Security of Internet and Systems
(CRiSIS 2009). IEEE, 2009, pp. 59–66.

[21] D. Spinellis, “Debuggers and logging frameworks,” IEEE software,
vol. 23, no. 3, pp. 98–99, 2006.

[22] K. Arya, T. Denniston, A. Rabkin, and G. Cooperman, “Transi-
tion watchpoints: Teaching old debuggers new tricks,” arXiv preprint
arXiv:1703.10864, 2017.

[23] A. Kumar, P. Goodman, A. Goel, and A. D. Brown, “Behave or be
watched: Debugging with behavioral watchpoints,” in Proceedings of
the 9th Workshop on Hot Topics in Dependable Systems, 2013, pp. 1–6.

[24] M. Copperman and J. Thomas, “Poor man’s watchpoints,” ACM SIG-
PLAN Notices, vol. 30, no. 1, pp. 37–44, 1995.

[25] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong,
“How to do a million watchpoints: Efficient debugging using dynamic
instrumentation,” in International Conference on Compiler Construction.
Springer, 2008, pp. 147–162.

[26] L. Chew and D. Lie, “Kivati: fast detection and prevention of atomicity
violations,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 307–320.

[27] P. Sommer and B. Kusy, “Minerva: Distributed tracing and debugging in
wireless sensor networks,” in Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, 2013, pp. 1–14.

[28] J. Jang and B. B. Kang, “Revisiting the arm debug facility for os
kernel security,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[29] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer test
cases: An observational study,” arXiv preprint arXiv:2103.01783, 2021.

[30] “Stack overflow developer survey 2019.” [Online]. Available: https:
//in\sights.stackoverflow.com/survey/2019

[31] “Google trends 2020.” [Online]. Available: https://pypl.github.io/IDE.
h\tml

[32] “Best integrated development environments (ide).”
[Online]. Available: https://www.g2.com/categories/integra\
ted-development-environments-ide

[33] B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies
for qualitative research. Routledge, 2017.

[34] T. Haigh, P. M. Priestley, M. Priestley, and C. Rope, ENIAC in action:
Making and remaking the modern computer. MIT press, 2016.

[35] T. Haigh, M. Priestley, and C. Rope, “Engineering” the miracle of the
eniac”: Implementing the modern code paradigm,” IEEE Annals of the
History of Computing, vol. 36, no. 2, pp. 41–59, 2014.

[36] H. S. Tropp and F. E. Holberton, “Computer oral history collection,
1969-1973, 1977,” p. 56–57, Apr 1973. [Online]. Available: https:
//amhi\story.si.edu/archives/AC0196 bart730427.pdf

[37] B. Cristobal, IBM Oliver (CICS Interactive Test/Debug). Cede
Publishing, 2011. [Online]. Available: https://books.google.ca/books?
\id=JbkeygAACAAJ

[38] D. Carroll, Programming with Turbo Pascal, ser. Byte books.
Micro Text Productions, 1985, no. v. 1. [Online]. Available:
https://books.google.ca/books?id=jxESAQAAMAAJ

[39] R. Stallman and S. Shebs, Debugging with GDB - The GNU Source-
Level Debugger. GNU Press, 2002.

[40] D. Vostokov, WinDbg: A Reference Poster and Learning Cards. Open-
Task, 2008.

[41] R. Chern and K. De Volder, “Debugging with control-flow breakpoints,”
in Proceedings of the 6th International Conference on Aspect-
oriented Software Development, ser. AOSD ’07. New York,
NY, USA: ACM, 2007, pp. 96–106. [Online]. Available: http:
//doi.acm.org/10.1145/1218563.1218575

[42] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichotomy
of debugging behavior among programmers,” in 40th International
Conference on So ware Engineering, ICSE, 2018, pp. 572–583.

[43] R. Wahbe, “Efficient data breakpoints,” ACM SIGPLAN Notices, vol. 27,
no. 9, pp. 200–212, 1992.

[44] T. Dupriez, G. Polito, and S. Ducasse, “Analysis and exploration for
new generation debuggers,” in Proceedings of the 12th edition of the
International Workshop on Smalltalk Technologies, 2017, pp. 1–6.

[45] C. Corrodi, “Towards efficient object-centric debugging with declarative
breakpoints.” in SATToSE, 2016, pp. 32–39.

[46] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. sage, 2006.

[47] E. G. Boix, “Handling partial failures in mobile ad hoc network
applications: From programming language design to tool support,” Vrije
Universiteit Brussel, Faculty of Sciences, Software Languages Lab (Ph.
D. Thesis), 2012.

[48] R. Lencevicius, Query-based debugging. University of California, Santa
Barbara, 1999.

[49] K. Maruyama and M. Terada, “Debugging with reverse watchpoint,” in
Third International Conference on Quality Software, 2003. Proceedings.
IEEE, 2003, pp. 116–123.

[50] A.-M. Visan, “Temporal meta-programming: treating time as a spatial
dimension,” Ph.D. dissertation, Northeastern University, 2012.

[51] C. E. McDowell and D. P. Helmbold, “Debugging concurrent programs,”
ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 593–622, 1989.

[52] A. Jähne, S. D. Urban, and S. W. Dietrich, “Peard: A prototype envi-
ronment for active rule debugging,” Journal of Intelligent Information
Systems, vol. 7, no. 2, pp. 111–128, 1996.

[53] T. Kosar, M. Mernik, J. Gray, and T. Kos, “Debugging measurement
systems using a domain-specific modeling language,” Computers in
industry, vol. 65, no. 4, pp. 622–635, 2014.

[54] C. Seaton, M. L. Van De Vanter, and M. Haupt, “Debugging at full
speed,” in Proceedings of the Workshop on Dynamic Languages and
Applications, 2014, pp. 1–13.

[55] B. Alsallakh, P. Bodesinsky, A. Gruber, and S. Miksch, “Visual tracing
for the eclipse java debugger,” in 2012 16th European Conference on
Software Maintenance and Reengineering. IEEE, 2012, pp. 545–548.

[56] A. Kumar, Z. Wang, S. Ni, and C. Li, “Amber: a debuggable dataflow
system based on the actor model,” Proceedings of the VLDB Endowment,
vol. 13, no. 5, pp. 740–753, 2020.

[57] E. Andreetta Fontana and F. Petrillo, “Breakpoints into the wild: an
exploratory study,” Aug. 2021. [Online]. Available: https://doi.org/10.
5281/zenodo.5663903

10

https://docs.micros\oft.com/en-us/visualstudio/debugger/using-breakpoints?view=vs-2019
https://docs.micros\oft.com/en-us/visualstudio/debugger/using-breakpoints?view=vs-2019
https://code.v\isualstudio.com/docs/editor/debugging
https://code.v\isualstudio.com/docs/editor/debugging
https://www.quora.com/What-is-the-difference-between-watchpoints-and-breakpoints-in-Eclipse-debugging
https://www.quora.com/What-is-the-difference-between-watchpoints-and-breakpoints-in-Eclipse-debugging
https://stackoverflow.com/que\stions/26364634/difference-between-breakpoint-on-method-signature-vs-breakpoint-on-first-line-in
https://stackoverflow.com/que\stions/26364634/difference-between-breakpoint-on-method-signature-vs-breakpoint-on-first-line-in
https://answers.sap.com/questions/4181705/difference-between-watch-\point-and-break-point.html
https://answers.sap.com/questions/4181705/difference-between-watch-\point-and-break-point.html
https://www.lessbro.com/Difference-between-watchpoint-and-breakpoi\nt-/49
https://www.lessbro.com/Difference-between-watchpoint-and-breakpoi\nt-/49
https://gocoding.org/difference-between-a-static-br\eakpoint-and-dynamic-breakpoint/
https://gocoding.org/difference-between-a-static-br\eakpoint-and-dynamic-breakpoint/
https://visualstudiomagazine.com/articles/2016/09/01/understand-condit\ional-breakpoints.aspx
https://visualstudiomagazine.com/articles/2016/09/01/understand-condit\ional-breakpoints.aspx
https://devblogs.microsoft.com/visual\studio/break-when-value-changes-data-breakpoints-for-net-core-in-visua\l-studio-2019/
https://devblogs.microsoft.com/visual\studio/break-when-value-changes-data-breakpoints-for-net-core-in-visua\l-studio-2019/
https://devblogs.microsoft.com/visual\studio/break-when-value-changes-data-breakpoints-for-net-core-in-visua\l-studio-2019/
Data Breakpoints \OT1\textendash Visual Studio 2017 15.8 Update
Data Breakpoints \OT1\textendash Visual Studio 2017 15.8 Update
https://in\sights.stackoverflow.com/survey/2019
https://in\sights.stackoverflow.com/survey/2019
https://pypl.github.io/IDE.h\tml
https://pypl.github.io/IDE.h\tml
https://www.g2.com/categories/integra\ted-development-environments-ide
https://www.g2.com/categories/integra\ted-development-environments-ide
https://amhi\story.si.edu/archives/AC0196_bart730427.pdf
https://amhi\story.si.edu/archives/AC0196_bart730427.pdf
https://books.google.ca/books?\id=JbkeygAACAAJ
https://books.google.ca/books?\id=JbkeygAACAAJ
https://books.google.ca/books?id=jxESAQAAMAAJ
http://doi.acm.org/10.1145/1218563.1218575
http://doi.acm.org/10.1145/1218563.1218575
https://doi.org/10.5281/zenodo.5663903
https://doi.org/10.5281/zenodo.5663903

	I Introduction
	II Background
	III Related Work
	IV Study Design
	IV-A Research Questions
	IV-B Scope
	IV-C Protocol
	IV-C1 Step 1 - IDEs Documentation Data Extraction - RQ1
	IV-C2 Step 2 - Academic Literature Data Extraction - RQ2
	IV-C3 Step 3 - Questionnaire Data Extraction - RQ3
	IV-C4 Step 4 - Analysis and Mapping of Definitions

	V Breakpoint Mapping
	V-A Open coding output
	V-B Axial coding output
	V-C Selective coding output
	V-D Research questions output

	VI Breakpoint Taxonomy
	VII Discussion
	VIII Threats to Validity
	IX Conclusion
	References

