
LogGD: Detecting Anomalies from System Logs with Graph Neural Networks

Yongzheng Xie1, Hongyu Zhang2, and Muhammad Ali Babar1,∗
1The University of Adelaide, Australia
2The University of Newcastle, Australia

yongzheng.xie@adelaide.edu.au, hongyu.zhang@newcastle.edu.au, ali.babar@adelaide.edu.au
*corresponding author

Abstract—Log analysis is one of the main techniques engineers
use to troubleshoot faults of large-scale software systems. During
the past decades, many log analysis approaches have been
proposed to detect system anomalies reflected by logs. They
usually take log event counts or sequential log events as inputs
and utilize machine learning algorithms including deep learning
models to detect system anomalies. These anomalies are often
identified as violations of quantitative relational patterns or
sequential patterns of log events in log sequences. However, ex-
isting methods fail to leverage the spatial structural relationships
among log events, resulting in potential false alarms and unstable
performance. In this study, we propose a novel graph-based log
anomaly detection method, LogGD, to effectively address the
issue by transforming log sequences into graphs. We exploit
the powerful capability of Graph Transformer Neural Network,
which combines graph structure and node semantics for log-
based anomaly detection. We evaluate the proposed method on
four widely-used public log datasets. Experimental results show
that LogGD can outperform state-of-the-art quantitative-based
and sequence-based methods and achieve stable performance
under different window size settings. The results confirm that
LogGD is effective in log-based anomaly detection.

Keywords—Log Analysis, Anomaly Detection, Graph Neural
Network, Deep Learning

I. INTRODUCTION

Modern software systems have become increasingly large
and complicated [1]–[4]. While these systems provide users
rich services, they also bring new security and reliability
challenges. One of the challenges is locating system faults
and discovering potential issues.

Log analysis is one of the main techniques engineers use to
troubleshoot faults and capture potential risks. When a fault
occurs, checking system logs helps detect and locate the fault
efficiently. However, with the increase in scale and complexity,
manual identification of abnormal logs from massive log data
has become infeasible [1], [2], [4], [5]. For example, Google
systems generate millions of new log entries every month,
meaning tens of terabytes of log data daily [6], [7]. For such
a large amount of data, the cost of manually inspecting logs
is unacceptable in practice. Another reason is that a large-
scale modern software system, such as an online service
system, may comprise hundreds or thousands of machines
and software components. Its implementation and maintenance
usually rely on the collaboration of dozens or even hundreds
of engineers. It is impractical for a single engineer to have all
the knowledge of the entire system and distinguish various
abnormal logs generated by various software components.
Therefore, automated log anomaly detection methods is vital.

In the past decades, many log-based anomaly detection
methods have been proposed. Some methods take quantitative
log event counts as inputs and utilize traditional Machine
Learning (ML) techniques to project the event count vectors
into a vector space. Those vectors deviating from the major-
ity (or violating certain invariant relations among the event
counts) are classified as anomalies. We call such an approach
quantitative-based approach. The representative methods of
this approach include LR [8], SVM [9], LogCluster [10],
Invariants Mining [5], ADR [2], and LogDP [11]. However,
these methods tend to suffer from unstable performance on
different datasets since their input only contains quantitative
statistics. They fail to capture the rich semantic information
embedded in log messages and the sequential relationship
between events in a log sequence.

Recently, deep learning-based methods, such as LogRo-
bust [12], CNN [13], and NeuralLog [3], demonstrate good
performance in detecting log anomalies. This class of meth-
ods takes sequential log events as input and uses various
deep learning models, such as LSTM [14], CNN [15] and
Transformer [16], to identify anomalies by detecting violations
of sequential patterns. We call such an approach sequence-
based approach. Although effective, existing sequence-based
methods fail to leverage more informative structural relation-
ships among log events, resulting in potential false alarms and
unstable performance.

To address the above issue, this study proposes a novel
Graph-based Log anomaly Detection method, namely LogGD.
The proposed method first transforms the input log sequences
into a graph. It then utilizes the node features (representing
log events) and the spatial structure of the graph (repre-
senting the relations among log events) to detect anomalies,
through a customized Graph Transformer Neural Network.
The informative spatial structure and the interactions between
node features and structural features of the graph enable
the proposed method to better distinguish the anomalies in
logs. Our experimental results on four widely-used public log
datasets show that LogGD can outperform the state-of-the-art
quantitative-based and sequence-based methods and achieve
more stable performance under various window size settings.

Our main contributions are summarized as follows:
1) A graph-based log anomaly detection method:

We propose a graph-based anomaly detection method
LogGD. The proposed method exploits the spatial
structure of log graphs and the interactions between
node features and structural features for log-based

ar
X

iv
:2

20
9.

07
86

9v
1

 [
cs

.S
E

]
 1

6
Se

p
20

22

anomaly detection, achieving high accuracy and stable
detection performance.

2) A set of comprehensive experiments: We compare the
proposed methods with five state-of-the-art quantitative-
based and sequence-based methods on four widely used
real-world datasets. The results confirm the effectiveness
of the proposed method.

The rest of the paper is organized as follows. In Section
II, we present the background information and techniques
we use in the proposed method. Section III details our pro-
posed methodology. The experimental design and results are
described in Section IV. In Section V we discuss why LogGD
works and its limitations, as well as threats to validity. We
review the related work in Section VI), and conclude this work
in Section VII.

II. BACKGROUND

A. Log Data and Sequences Generation

Logs are usually semi-structured texts which are used to
record the status of systems. Each log message comprises a
constant part (i.e., log event, also called log template) and a
variable part (log parameter). A log parser is a tool that can
be used to parse the given log messages into log events. There
are many log parsers available [7], [17], [18]. In this study,
we choose the state-of-the-art tool, Drain [7] to complete this
task because of its effectiveness, robustness and efficiency that
have been validated in [19]. Figure 1 shows a snippet of raw
logs and the results after they are parsed.

Once the structured log events are ready for use, they
need to be further grouped into log sequences (i.e., series
of log events that record specific execution flows) accord-
ing to sessions or predefined windows. Session-based log
partition often utilizes certain log identifiers to generate log
sequences. Previous studies have [20], [21] shown that the
methods working on session-based data can achieve better
performance than on data grouped by predefined windows.
However, many datasets cannot find such identifiers to group
log data. In such cases, predefined windows are a common
choice for log partitioning, where two strategies are available,
i.e., fixed and sliding windows. The fixed window strategy
uses a predefined window size, e.g., 100 logs or 20 logs,
to produce log sequences with a fixed number of events. In
contrast, the sliding windows strategy generates log sequences
with overlapping events between two consecutive windows,
where window size and step size are two attributes used. An
example is 20 logs windows(window size) sliding every 1
log(step size). At this point, the resulting log sequence can
be used for graph data generation.

B. Graph Neural Networks

Recently, Graph Neural Networks(GNNs) have attracted
great interest from researchers and practitioners as GNN-based
methods have achieved excellent performance on many tasks
such as drug discovery [22], social network analysis [23],
network intrusion detection [24], and so on. We introduce

our notation and then briefly recap the preliminaries in graph
neural networks.

Notation: Let G = (V , E, Xv , Fe) denote a directed graph,
where V = {vi|i ∈ N0} represents a set of nodes and E =
{evivj |vi, vj ∈ V } refers to a set of directed edges that flows
from node vi to node vj , Xv ∈ R|V |×dv denotes the node
features with dimension dv and Fe ∈ R|E|×de represent the
edge features with dimension de. We use Nvi to denote the
set of neighbors of node vi ∈ V , i.e., Nvi = {vj |evivj ∈ E}.

Graph Neural Networks: Unlike sequence models on text
data ((such as LSTM, GRU and Transformer) and convolu-
tional models on image data ((such as CNN), graph neural
networks work on graph data with irregular structures rather
than sequential or grid structures. They combine the graph
structure and node features to learn high-level representation
vectors of the nodes in the graph or a representation vector of
the whole graph for node classification, link/edge prediction
or graph classification. In this work, we focus on the task of
graph classification, i.e., predicting the label for a given graph.

GNNs typically employ a neighborhood aggregation strat-
egy [25], [26], where the representations of nodes in the
graph are iteratively updated by aggregating representations
of their neighbors. Ultimately, a node’s high-level represen-
tation captures structural attributes within its L-hop network
neighborhood. Formally, the l-th layer representation of node
vi can be formulated as:

xlvi = Φ(xl−1vi ,Ψvj∈Nvi
(xl−1vj , fevivj)) (1)

where fevivj ∈ Fe denotes the feature vectors of edges
{evivj |vj ∈ Nvi} and x0

vi ∈ Xv is the initial node feature
vector of a graph, and Nvi denotes the neighbourhood of node
vi, Ψ and Φ represent the abstract functions of the graph
encoder layer for information gathering from neighbors as
well as information aggregation into the node representation,
respectively.

For graph classification tasks, the derived node high-level
representations from Equation 1 need to be further aggregated
into a graph-level representation through a function named
READOUT , which usually is performed at the final layer of
graph encoder as follows:

hg = Ω(ω;X l) = READOUT (xlvi |vi ∈ V) (2)

where hg denotes the representation of the given graph g, and
X l represents the node representation matrix. READOUT
is a parameterized abstract function Ω(·) with parameters ω,
which can be implemented as any aggregation function, such
as sum, max, mean-pooling or more complex approach in real
applications.

C. Graph Transformer Networks

The Transformer architecture originates from the field of
Natural Language Processing(NLP) [16]. Due to its excellent
performance on various language tasks, it has been generalized
to graph-based models [27]–[29], i.e., Graph Transformer(GT)

Figure 1. A snippet of HDFS (Hadoop Distributed File System) raw logs and events after parsing

model. A graph transformer block comprises two key com-
ponents: a self-attention module and a position-wise feed-
forward network(FFN). The self-attention module first projects
the initial node features X ∈ R|V |×dv into query(Q), key(K),
value(V) matrices through independent linear transformations,
where W query ∈ Rdv×dz , W key ∈ Rdv×dz , and W value ∈
Rdv×dz denote learnable parameters, dz denotes the output
dimension of linear transformation.

Q = X ·W query, K = X ·W key, and V = X ·W value

(3)
then the attention coefficient matrix can be obtained through
a scaled dot production between queries and keys.

aij =
qi · kj√

dz
and âij =

exp(aij)∑N
k=1 exp(aik)

(4)

Next, the self-attention module outputs the next hidden feature
by applying weighted summation on the values.

hli =

N∑
j=1

âijvj (5)

In order to improve the stability of the model, the multi-
head mechanism is often adopted in the self-attention module.
After that, the output of the self-attention is followed by a
residual connection and a feed-forward network and ultimately
provides node-level representations of the graph. Finally, a
READOUT function in the equation 2 is applied to the final
layer output of the graph transformer model to obtain the graph
representation.

III. PROPOSED METHOD

A. Overview

The proposed method, LogGD, is a graph-based log
anomaly detection method that consists of three components:
graph construction, graph representation learning, and graph
classification. The input is the log sequences generated in
section II-A, and the output is whether a given log sequence
is anomalous or not. LogGD starts by transforming the given
log sequences into a graph. The node features contain the
semantic information of log events, and the edges include the
connectivity and weights of pairs of nodes. Then, the resulting
graph data is fed into a GNN model to learn the patterns of
normal and abnormal graphs in the training phase. During the
testing (inference) phase, the representation of a given graph

obtained through the same process is classified as anomalous
or non-anomalous.

B. Graph Construction

First, each log sequence derived from section II-A is trans-
formed into a directed graph, denoted as G = (V , E, Xv ,
Fw), where V represents the set of nodes vi, corresponding
to the log events of the log dataset and E refers to the set of
edges evivj , that is, a node pair where event vi is immediately
followed by event vj in the sequence. Xv ∈ R|V |×d denotes
the node features corresponding to the semantic vectors of log
events generated by some NLP technique. Fw ∈ R|E|×1, i.e.,
the set of edge weights, indicating the occurrence frequency
of the edges evivj in a sequence. It is worth noting that a
self-loop edge is always added for the initial event since there
is no preceding event before the initial event. In addition, the
node set V and their corresponding initial node features Xv

are shared across the graphs transformed from the same log
dataset. Through the previous steps, we construct the graphs
from a given set of log sequences.

Fig. 3 is an example that transforms a log sequence [E1, E2,
E3, E2, E3, E4] with the event semantic vectors into a graph
consisting of node features and graph structure attributes. From
the figure, we can see that a graph can provide richer spatial
structure attributes than a sequence of log events. The spatial
structure of a graph includes the node-centered local structure
represented by the degree matrix, the global structure of node
locations encoded by a distance matrix, and the quantitative
connections between nodes represented by the weight matrix.
Later, We will see that the combination of the spatial structure
attributes will benefit the graph-based methods to generate
more expressive representations of sequences, thereby improv-
ing detection accuracy and stability. An important point to note
is that a graph contains only nodes with no duplicates, unlike
sequences that allow duplicate log events. Taking the sequence
above as an example, although events E2 and E3 appear twice
in the sequence, node E2 and node E3 in the transformed graph
exist as a single node, respectively. The occurrence frequency
information of the nodes is reflected in the corresponding edge
weights, ensuring no information is lost in the resulting graph.

C. Graph Representation Learning

Graph representation learning is the process of learning
an expressive low-dimensional representation incorporating
node features and spatial structure attributes of a given graph,

Figure 2. The overview of the proposed method.

which is crucial in graph classification tasks. In order to make
the trained model more discriminative towards normal and
abnormal graphs, we need to carefully design the features that
will participate in generating the graph representation.

Semantic-Aware Node Embedding: Each node in a graph
represents a unique log event derived from the log parsing
process. As many prior studies [3], [12], [21], [30] show,
the semantic information embedded in the log messages can
have a significant impact on the performance of subsequent
log anomaly detection. To extract semantics from text data,
there are many NLP models available, such as Word2Vec [31],
Glove [32], FastText [33], and BERT model [34]. In this study,
we utilize the BERT model to extract semantics embedded in
the log messages because it has been proved to better capture
and learn the similarity and dissimilarity across log messages
based on the position and context of words [3], [35]. We
follow [3] to tokenize each template into a set of words and
subwords and employ the feature extraction function of pre-
trained BERT 1 to obtain the semantic information of each
log event. Finally, each log event is encoded into a vector
representation with a fixed dimension. In our experiments, this
fixed dimension is 768.

Structure-Aware Encoding for Graph: For log sequences,
the sequential relationship between log events is often an im-
portant indicator of normality or abnormality. The sequential
relation between log events reflects the positional structure of
log events in the sequence. Sequence-based methods either
implicitly exploit the positional structure of log events by se-
quentially processing a given sequence (e.g., LogRobust [12])
or employ explicit positional encoding to enhance the sequence
representations (e.g., NeuralLog [3]). Unlike sequence data,
graphs typically do not have such a node sequential structure
due to the invariance of graphs to node permutation. Inspired
by [28], [29], in this study, we utilize three structural attributes
of graph, the degree matrix, the distance matrix, and the
edge weight matrix, to generate structure-aware encoding for
a graph to enhance the discriminatory of graph representation.
Intuitively, the in-degree and out-degree of a node reflect
the local topology of a node. It not only represents the
importance of a node in the graph, but also reflects the
similarity between nodes, which can be used to complement
the semantic similarity between nodes. In addition, the shortest

1 https://github.com/google-research/bert

path distance matrix of a graph reflects the global spatial
structure of a graph, while the edge weight matrix incorpo-
rates the quantitative relation of connections between nodes.
Thus, the degree matrix, distance matrix, and edge weight
matrix reflect different aspects of a graph and theoretically
complement each other. When combined with node features
to generate a representation for a graph, they will help enhance
the representation of a given graph for graph classification.

As an example, let us assume [E1, E2, E3, E4, E5, E2,
E6] as a normal sequence, while [E1, E2, E3, E4, E5, E2,
E2, E6] is abnormal because an additional event, E2, occurs
in the penultimate position. Although the degree and distance
matrix of the graph cannot catch the anomalous information,
the change can be reflected in the edge weight matrix. As
another example, suppose that [E1, E2, E3, E4, E7, E2,
E6] is an anomaly because E7 replaces event E5. In this
case, the changes will be reflected in the entries of all the
matrices of the graph, including the distance matrix, the degree
matrix, and the edge weight matrix. Similarly, whether the
sequential relationship between a pair of events changes, or
one event is inserted or substituted for another, the anomaly
can always be reflected in an aspect of graph structure-aware
coding. Therefore, structure-aware encoding can be expected
to help enhance the representation of a given graph for graph
classification.

Graph Representation Learning: The informative graph
spatial structure attributes and the node features require
GNN models to digest and produce the high-level repre-
sentation for a given graph. There are many GNNs mod-
els available, such as GCN [36], GCNII [37], GAT [38],
GATv2 [39], GIN [40], GINE [41], and Graph Transformer
Network(TransformerConv) [42]. In this study, we choose
Graph Transformer Network architecture for graph represen-
tation learning because it not only overcomes the limitations
of under-reaching and overs-quashing in the stacked layers of
message-passing GNNs [26], but also exhibits better perfor-
mance than GAT models in graph classification by exploiting
positional/structural encoding [28], [29]. The input to our
graph representation learning models is graphs derived from
III-B. Structure-aware encoding of graphs is used for graph
representation learning, including degree matrices, distance
matrices, and edge weight matrices.

First, for the degree matrix embeddings, inspired by [28],
we add them to the node features. By doing this, the model can

https://github.com/google-research/bert

Figure 3. The diagram of the graph construction from a log sequence.

capture the node similarity represented by the node-centered
local topology and the semantic correlations embedded in the
node features through an attention mechanism.

x0
i = xvi + zindeg(vi) + zoutdeg(vi) (6)

where xvi ∈ Rdv denotes the feature of node vi,
zindeg(vi) and zoutdeg(vi) ∈ Rdv are learnable embedding
vectors corresponding to the in-degrees and out-degrees of
node vi, respectively.

Second, we encode quantitative connection relationships
between nodes and incorporate edge weight information into
Q and V by element-wise multiplication:

Q0 = w ◦Q, K0 = K, and V 0 = w ◦ V (7)

where w denotes the summation of the edge weight matrix
along the row dimension, Q, K, and V represents the output
of the projection from the node features of the graph by a
linear transformation in the equation 3.

In the third step, to encode a graph’s global structure
attribute, we do not directly add the relative path distance
scalar to the attention coefficients. Instead, we adopt the
practice described in [29] to define the distance embeddings
D ∈ RL×dz , which represents the relative path distance
with the maximum length L between nodes in a graph. The
distance embeddings are shared throughout all layers. The
global structure is then encoded as a spatial bias term bspatialij ,
computed as the sum of dot products between the node feature
and the distance embedding. Notably, the sum of dot products
between the node feature and the distance embedding reflects
the interaction between node features and graph structure. As
such, the proposed spatial bias term enables the trained model
to distinguish different structures even when two nodes have
the same distance.

bspatialij = qi ·Dψ(ij)
+ kj ·Dψ(ij)

(8)

Then, the spatial bias term bspatialij is added to the scaled
dot product attention coefficients matrix to encode the global
structural attribute.

aij =
qi · kj + bspatialij√

dz
(9)

Finally, the node features are encoded as hidden features by
weighted summation of the value and spatial bias terms with
the attention coefficient matrix:

zi =

N∑
j=1

âij(vj +Dψ(ij)
) (10)

Our method encodes both the node-wise information (atten-
tion coefficient) and the interaction-wise information between
the node and structure of a graph into the hidden features of
value, which is different from those methods encoding only
node-wise information. Thus, when the attention weight â
is applied equally to all channels, our graph-encoded value
enriches the feature of each channel.

D. Anomaly Detection through Graph Classification

To implement the classification task, the output graph rep-
resentation of the graph encoder layer is directly connected
to a feed-forward network with layer normalization(LN) [43],
which contains three fully connected layers with Gaussian
Error Linear Units(GELU) [44] as the activation function. The
sum and maximum values of the output node representations
are concatenated as the READOUT function for the graph
representation. Then, the cross-entropy is used as the loss func-
tion, and the class probabilities of normality and abnormality
for the given log sequences are calculated using the softmax
function:

hg = concat(
∑
vi∈V

xlvi ,max
vi∈V

(xlvi)) (11)

TABLE I
OVERVIEW OF DATASETS USED IN THE EXPERIMENTS.

Datasets #Nodes Window Training Set(80%) Testing Set(20%)

#Graphs #Nodes #Anom. %Anom. #Graphs #Nodes #Anom. %Anom.
HDFS 48 session 46,0048 48 13,470 2.93% 115,013 43 3,368 2.93%

100 logs 37,708 980 4,009 10.63% 9,427 1,063 817 8.66%

BGL 1847 60 logs 62,847 980 6,307 10.04% 15,712 1,063 1,194 7.60%

20 logs 188,540 980 17,252 9.15% 47,135 1,063 3,006 6.38%

100 logs 63,867 1,209 20,195 31.62% 15,967 844 399 2.50%

Spirit 1,229 60 logs 106,445 1,209 30,882 29.01% 26,612 844 410 1.54%

20 logs 319,334 1,209 81,550 25.54% 79,834 844 438 0.55%

100 logs 79,674 3,779 816 1.02% 19,919 1,923 27 0.14%

TDB 4,992 60 logs 132,789 3,779 985 0.74% 33,198 1,923 34 0.10%

20 logs 398,367 3,779 1,394 0.35% 99,592 1,923 48 0.01%

#Nodes: number of unique events; #Graphs: number of sequences; #Anom.: number of anomalies; %Anom.: percentage of
anomalies.

ŷg = softmax(FFN(hg)) (12)

In this way, we train a GNN-based model for log-based
anomaly detection. When a set of new log messages are pro-
vided, they are first preprocessed. Then the new log messages
are transformed into semantic vectors as node features, and the
sequences are converted to graphs. Afterward, the resulting
graph data is fed into the trained model. Finally, the GNN-
based model can predict whether the given graph is anomalous
or not.

IV. EVALUATION

A. Datasets

In our experiments, four public log datasets, HDFS, BGL,
Spirit and Thunderbird, are used to evaluate the proposed
approach and the relevant baseline methods. The datasets
are widely used in log analysis research [1]–[3], [5], [45],
[46] because all of them come from real-world datasets
and are labeled either manually by system administrators or
through alert tags automatically generated by their systems.
We obtained all the log datasets from the publicly available
websites.2. Further details about the four datasets are described
as follows.

HDFS dataset is generated by running Hadoop-based map-
reduce jobs on more than 200 Amazon’s EC2 nodes. Among
the 11,197,954 log entries collected, approximately 2.9% of
them are abnormal.

BGL dataset is an open dataset of logs collected from
a BlueGene/L supercomputer system at Lawrence Livermore
National Labs (LLNL) in Livermore, California, with 131,072
processors and 32,768GB memory.

Spirit dataset is a high-performance cluster that is installed
in the Sandia National Labs(SNL). The Spirit dataset was
collected from the systems with 1,028 processors and 1,024GB

2 https://github.com/logpai/loghub and https://www.usenix.org/cfdr-data

memory. In this study, we utilize 1 gigabyte continuous log
lines from Spirit data set for computation-time purposes.

Thunderbird (TDB) dataset is also from the supercomputer
at Sandia National Labs (SNL). The dataset is a large dataset
of more than 200 million log messages. We only leverage 10
million continuous log lines for computation-time purposes.

The details of the log datasets in our experiments are
summarized in Table I. From the table, we can see that these
datasets exhibit diversity in node size and anomaly rate, which
can better validate the generalization of the evaluation method.

B. Implementation and Experimental Setting

We implemented LogGD and its variants based on Python
3.8.5, PyTorch 1.11.0 and PyG 2.04, respectively. For the GC-
NII, GINE, GATv2 and TransformerConv models, we utilized
the corresponding modules from PyG with default parameters
setting. In our experiments, we set the graph encoder layer
size of LogGD as 1. The size of the feed-forward network
that takes the output of the encoder layer is 1024. LogGD
is trained using AdamW optimizer. The linear learning rate
decay is used, and the learning rate starts from 3 ∗ 10−4 and
ends at 1 ∗ 10−9. We set the mini-batch size and the dropout
rate to 64 and 0.3, respectively. We use the cross-entropy as
the loss function.The model trains for up to 100 epochs and
performs early stopping for 20 consecutive iterations without
loss improvement.

Regarding the baseline approaches used for comparison, we
adopt the implementations in the studies [3], [20], [30]. We use
the parameters set in their implementation. In the experiments,
we ran each method three times at each window setting on the
four datasets and averaged them as the final result to report.

We conduct all the experiments on a Linux server with
AMD Ryzen 3.5GHz CPU, 96GB memory, RTX2080Ti with
11GB GPU memory and the operating system version is
Ubuntu 20.04.

https://github.com/logpai/loghub
https://www.usenix.org/cfdr-data

C. Compared Methods

To evaluate the effectiveness of the proposed method, we
compare LogGD with five state-of-the-art existing supervised
log anomaly detection methods on the aforementioned public
log datasets. Specifically, there are two quantitative-based
methods, LR [8] and SVM [9], and three sequence-based
methods, CNN [13], LogRobust [12] and NeuralLog [3].

We did not directly compare the proposed method with
another state-of-the-art graph-based method GLAD-PAW [47]
because GLAD-PAW is a semi-supervised method. However,
we implemented a corresponding supervised method using the
GAT model and compare it with our proposed method in the
subsequent experiments.

D. Evaluation Metrics

To evaluate the effectiveness of the approaches, we utilize
precision/recall/F1 score as the metrics, which are widely used
in many studies [3], [20], [30]. Specifically, the metrics are
calculated as follows:
• Precision: the percentage of correctly detected abnor-

mal log sequences amongst all detected abnormal log
sequences by the model. Precision = TP

TP+FP
• Recall: the percentage of log sequences that are correctly

identified as anomalies over all real anomalies. Recall =
TP

TP+FN
• F1: the harmonic mean of Precision and Recall. F1 =

2∗Precision∗Recall
Precision+Recall

E. Research Questions

Our experiments are designed to answer the following
research questions:
• RQ1. How effective is the proposed graph-based

approach for log anomaly detection?
• RQ2. Can the proposed approach work stably under

various window settings?
• RQ3. How does LogGD perform with other GNN

models?
• RQ4. How do the specific structural features and the

interaction affect the performance of LogGD?

F. Results and Analysis

RQ1. How effective is the proposed graph-based ap-
proach for log anomaly detection?

In this experiment, we aim to evaluate the effectiveness of
LogGD on the four aforementioned public log datasets. To
generate the log sequences, we use session window on the
HDFS dataset to group log messages by the same block ID,
as the data is labeled by blocks. Then, 80% of log sequences
are randomly selected for training, and the rest of the dataset
is used for testing. For the BGL, Spirit and Thunderbird
datasets, we keep the chronological order of the dataset and
leverage the first 80% log messages as the training set and
the rest 20% as the testing set, which aims at following the
real scenarios and ensures new log events that are unseen
in the training set appearing in the testing set. We group

log sequences on the BGL, Spirit and Thunderbird datasets
by fixed-window rather than by session or sliding-window
because there is no universal identifier available for session
grouping, and the fixed-window grouping strategy is more
storage efficient than sliding-window grouping strategy. In
this experiment, the fixed-window size of the input data is
set to 100 logs. We present the results for other window-
size settings in the subsequent research question. In addition,
we utilize oversampling technique to address the imbalance
of the training data. If the anomaly rate of the training data
is less than 30%, we oversample it to 30%; otherwise, we
do not use oversampling. To make a fair comparison, all the
deep learning-based methods, LogRobust, CNN, NeuralLog
and LogGD all take the semantic vectors of log messages that
are generated by Bert model as input. In addition, the 10% of
the training set on each dataset is used as the validation set to
decide when to early stop the training.

The experimental results are shown in table II. It can be
seen that LogGD outperforms all comparison methods on four
datasets under a fixed window setting of 100 logs with an
improvement of F1 score by 0.5% on HDFS and 1.9% on
BGL, 0.5% on Spirit, 19.1% on Thunderbird dataset compared
to the second best baseline method. Meanwhile, from the table,
we can also see that all the baseline methods but LogGD
perform poorly on the Thunderbird datasets because the
Thunderbird dataset has highly imbalanced data with a small
percentage of anomalies(1.02% and 0.14% in the training and
test datasets, respectively). Although oversampling has been
applied to data preprocessing in experiments, limited by too
few anomalies, this still does not prevent poor performance
of all baseline methods. In contrast, LogGD performs much
better, albeit with a slight drop in performance on the Thunder-
bird dataset. This may be attributed to the advantage that our
method can capturing additional graph structure information to
help distinguish the difference between normal and abnormal
graphs. Furthermore, although both NeuralLog [3] and LogGD
belong to the transformer architecture, the utilization of graph
structure information rather than sequential position encoding
can still enable our proposed graph-based method to achieve
better performance.

RQ2. Can the proposed approach work stably under
various window settings?

This experiment aims to investigate whether LogGD can
work stably under various window settings. We conduct the
experiments only on the BGL, Spirit and Thunderbird datasets
because HDFS only has a session window setting. The exper-
iment is implemented under three window size settings, i.e.,
100logs, 60logs, and 20logs. Some larger window size settings
were not chosen in this experiment because they are generally
unlikely to be adopted in real scenarios due to potential delays
in fault discovery.

The comparison results between baseline methods and
LogGD are shown in Fig 4. From the figures, we can see that
LogGD works more stably on the three window size settings of
each dataset compared to the quantitative-based and sequence-
based baseline methods and also achieves better performance

TABLE II
EXPERIMENTAL RESULTS OF LOGGD AND BENCHMARK METHODS.

Dataset Metrics LogGD LR SVM LogRobust CNN NeuralLog

HDFS
F1 0.9877 0.9616 0.8330 0.9819 0.9872 0.9827

Precision 0.9774 0.9603 0.9519 0.9688 0.9852 0.9627
Recall 0.9982 0.9629 0.7405 0.9954 0.9891 0.9956

BGL
F1 0.9719 0.2799 0.4558 0.9402 0.9140 0.9535

Precision 0.9708 0.1684 0.8190 0.9229 0.8669 0.9586
Recall 0.9731 0.8286 0.3158 0.9596 0.9702 0.9484

Spirit
F1 0.9789 0.9652 0.9736 0.9757 0.9652 0.9510

Precision 0.9889 0.9580 0.9773 0.9957 0.9740 0.9694
Recall 0.9691 0.9724 0.9699 0.9566 0.9566 0.9349

TDB
F1 0.9284 0.4651 0.7797 0.4043 0.5533 0.7704

Precision 0.9772 0.3390 0.7188 0.4329 0.5405 0.9683
Recall 0.8889 0.7407 0.8519 0.4198 0.5802 0.6437

in most cases. It is worth noting that the two quantitative-based
methods both perform poorly on BGL. This may be explained
by the fact that the test set of BGL contains many unseen
events that never appeared in the training set. Quantitative-
based methods rely only on the quantitative patterns among log
events in the sequences and fail to capture the semantics in log
messages, preventing them from learning more discriminative
characteristics to classify the anomalies. This conjecture can
also be confirmed by the fact that all sequence- and graph-
based methods exploiting semantics in log events work well
on the BGL dataset. Another noting thing is that traditional
ML-based methods, LR and SVM, perform even better than
some sequence-based deep learning methods on the Spirit and
Thunderbird datasets especially under smaller window settings
although they are still suboptimal than LogGD in most cases.
It implies that the quantitative pattern among log events as an
important indicator should not be neglected in log anomaly
detection. In addition, the overall performances in the F1 score
metric of both NeuralLog and LogGD show better than the
other sequence-based methods like CNN and LogRobust. This
can be explained as Transformer-based methods, including
NeuralLog and LogGD, both benefit from exploiting the extra
information (positional encodings and spacial structure encod-
ings) in the sequence, leading to better and stable performance.
Finally, another thing that should not be overlooked is that all
the methods have a trend of significant growth in detection
performance on the Thunderbird dataset as the data window
size decreases. The reason for this may be the increase in the
number of anomalies due to the reduced window size, which
enables all the methods to improve the detection performance
with the further help of oversampling.

RQ3. How does LogGD perform with other GNN
models?

In this experiment, we investigate the impact of using
different types of GNN layers for graph representation learning
on the overall detection performance, i.e., the ablation exper-
iment with GNN models. We replaced our customized graph
transformer layer with GCNII [37], GINE [41], GATv2 [39],

and TransformerConv [42] models. We did not compare with
GCN [36], GIN [40], and GAT [38] because GCNII, GINE
and GATv2 have shown better performance than the corre-
sponding counterparts in their studies. We present the results in
Precision, Recall, and F1-Score on the four datasets under the
session window setting(HDFS only) and the 100logs, 60logs
and 20logs window setting in Fig 5. As seen from the figure,
all variants of LogGD achieve good performance on the four
datasets, while LogGD with our customized graph transformer
layer slightly outperforms the variants with other GNN layers
in most cases. Furthermore, both LogGD with customized
graph transformer layer and the variants with the Transformer-
Conv layer outperform the other variants. The results show that
the Transformer architecture can overcome the limitations of
other Message Passing Neural Network (MPNN) models and
better utilize graph structure attributes to learn the normal and
anomalous patterns for graph classification.

RQ4. How do the specific structural features and the
interaction affect the performance of LogGD?

In this experiment, we aim to investigate the impact of
graph representations with/without specific structural attributes
and with/without the interaction between node features and
graph structure on the overall detection performance, i.e., the
ablation experiment with the input features. We present the
results in Precision, Recall, and F1-Score on the four datasets
in Fig 6. From the figure, we can see that all variants of
LogGD achieve good performance with an over 90% F1 score
on the four datasets under different window settings. Second,
the effect of the structural attribute and the interaction between
node features and structure on performance appears to be
data-dependent. For example, the performance of almost all
variants with/without a specific attribute is slightly different
on the HDFS and Spirit datasets. In contrast, the variation in
performance seems to be higher on BGL and TDB datasets
for variants that include/exclude the corresponding attribute.
Furthermore, we can see that the performance of the variant
approach without the interaction between node features and
structure (i.e., the distance embedding is directly added to the

Figure 4. Performance Comparison under Different Window Setting between Baseline Methods and LogGD

Figure 5. Performance Comparison with Different GNN Models

Figure 6. Ablation Experiment With Input Feature

attention coefficients) degrades significantly on the BGL and
Thunderbird datasets. This may indicate that the interaction
between node features and structure does help to improve the
model’s discriminative power between abnormal and normal.
In contrast, the effects of the degree alone and edge weight
alone appear to be less significant. Interestingly, the variant
that excludes the degree attribute performs better on the
Thunderbird dataset. In future work, we will further investigate
how to better utilize the degree attribute and how to better
represent the node-centered topology structure to improve
detection performance. Finally, we can see that LogGD, which
combines three graph structure attributes, including the degree,
distance and edge weights, and the interactions between node
features and structure always perform better in most data

settings. This confirms the advantages of combining graph
structure and node features.

V. DISCUSSION

A. The advantages and limitations of LogGD

Two main reasons make LogGD perform better than the
related approaches. First, LogGD can capture more expres-
sive structure information from graphs than purely sequential
relations between log events. These enhanced features help
LogGD better identify the anomalous log sequences. Second,
the customized graph transformer model captures the inter-
action between node features and graph structure represented
by the shortest relative path distance, which can also improve
anomaly detection performance.

Our study demonstrates the effectiveness of LogGD for
anomaly detection. However, LogGD still has limitations. Our
method is a supervised method, which means that intensive
data labeling work is inevitable, which may limit the adoption
of this method in the industry. In our future work, we will
consider self-supervised techniques to enable LogGD to work
in semi-supervised or unsupervised information modes to
improve the adaptability of the proposed method in real-world
scenarios. Also, LogGD identifies anomalies at the graph level.
Developers and operators may have to inspect each event in
the data window to locate the potential fault [46]. It would
be interesting to explore the feasibility of more fine-grained
anomaly detection to reduce the effort and time to locate a
fault.

B. Threats To Validity

In this study, we identify the following threats to validity:
1) External validity threats: this threat denotes those factors

that affect the generalization of results. In this study, the
external threat to validity lies in the selected datasets, i.e.,
subject selection bias. In our experiment, we only use four log
datasets as experimental subjects. However, these systems are
from real-world industrial systems and are widely used in the
existing work [2], [20], [21], [48]. We believe that these four
log datasets are representative. In the future, we will evaluate
LogGD on more datasets and systems.

2) Internal validity threats: this refers to threats that may
have affected the results and have not been properly consid-
ered. In this study, the internal threat to validity mainly lies
in the implementations of LogGD and compared approaches
and the design of the experiments. To reduce the threat from
the implementation, we inspect and test the program carefully
and assume that all the bugs revealed by testing are fixed
in our approach. We implemented LogGD based on popular
libraries. Regarding the compared methods, we utilize open-
source implementations of these methods. For the threat posed
by the experimental design, on the one hand, we ran all
experiments three times and reported the average of the results.
On the other hand, we compare all methods under the same
setting for all experiment settings. For example, all the deep
learning-based methods share the semantic extraction scheme,
the oversampling scheme, and the early stopping scheme. We
believe our experimental design can yield fair comparisons
among all evaluation methods.

VI. RELATED WORK

A. Graph Positional Encoding

Positional Encoding(PE) is commonly used in image- and
text-based tasks with deep learning models, such as image
classification [49] and language translation [50]. It plays a
crucial role in improving model effectiveness. Studies [25],
[47] have shown that PE representing the structural attributes
of graphs is also essential for prediction tasks on graphs.
However, finding such positional encodings on graphs for
nodes is challenging due to the invariance of graphs to node
permutation. Existing PE schemes can be classified into index

PE, spectral PE, diffusion-based PE and distance-based PE.
For index PE, one option is that indices based on a preset
of rules are assigned as positional encodings to nodes in
the graph, such as [47]. However, this scheme still follows
a sequence pattern and does not fully exploit the spatial
structural attributes of graphs. Another way to build an index
PE is to use n! possible index permutations or sample them to
train the model [51]. However, this may result in either expen-
sive computations or the loss of precise positions. Regarding
spectral PE, it uses Laplacian Eigenvectors as a meaningful
local coordinate system to conserve the global graph structure.
However, spectral PE suffers from sign ambiguity, which
requires random sign flipping during training for the network
to learn the invariance [25]. Diffusion-based PE, such as [25],
[52], is based on the diffusion process, such as Random Walk
and PageRank. However, it turns out that they tend to be
dataset dependent [53]. Recently, the shortest path distance
has been used as positional encoding in [28], [29] and shows
promising results. In this work, we utilize the shortest path
distance as the basis of graph global structure encoding.

B. Log-based Anomaly Detection

Log-based anomaly detection has been intensively studied
in recent decades. Existing log anomaly detection approaches
can be roughly categorized into quantitative-based, sequence-
based and graph-based methods in terms of the input data.

Quantitative-based methods work on log event count matrix.
Generally, they can be further divided into traditional ML-
based and invariant relation mining-based methods. Traditional
ML-based methods, such as LR [8], SVM [9], PCA (Principal
Component Analysis) [54] and LogCluster [10], are often
more efficient compared with deep learning based methods in
terms of time costs. Invariant relation mining-based methods,
such as Invariants Mining [5], ADR [2] and LogDP [11],
have the advantages of low labeling cost and interpretability
because they usually work in semi-supervised or unsupervised
mode and can capture meaningful relations. Despite these
advantages, quantitative-based methods tend to suffer from
unstable performance in some specific cases because they
cannot capture sequential patterns and semantic information
between log events.

In contrast, sequence-based methods take a sequence of
log events as input. They typically use various deep learning
models to learn sequential patterns in log sequences for
anomaly detection, showing impressive performance. Such
methods include DeepLog [1], LogAnomaly [48], LogRo-
bust [12], CNN [40] and NeuralLog [3]. A potential weakness
is that most sequence-based methods rely only on sequential
relationships between log events in log sequences for anomaly
detection. The inability to capture more informative structure
information from log sequences hinders sequence-based meth-
ods from further improving detection performance and exhibits
significant performance fluctuations in some specific cases.

In the past decade, Graph Neural Networks (GNNs) have
attracted much attention for their successful applications in
many areas, such as drug discovery [22], social network

analysis [23], network intrusion detection [24], and so on.
Recently, the authors of GLAD-PAW [47] apply GAT to
log anomaly detection and confirm the feasibility of graph-
based log anomaly detection methods. However, although
their approach is graph-based, their structure-aware design still
follows a sequence pattern, i.e., using only positional encod-
ing, fails to fully exploit the spatial structure of graphs that
combines local structure, global structure, and quantitative re-
lationships between nodes. In addition, GLAD-PAW does not
consider the interaction between node features and structure of
the graph, which may lead to a sub-optimal result. As a graph-
based method, LogGD utilizes a combination of node-centered
local structure, global structure containing node locations,
and quantitative relationships of connections between nodes
to generate an expressive representation for a given graph.
In the representation learning stage, the interaction between
node features and graph structure is combined through a
customized Graph Transformer Network, which contributes
to the improvement and stability of log anomaly detection
performance and demonstrates the powerful effectiveness of
graph-based methods.

VII. CONCLUSION

In this paper, we have proposed a graph-based log anomaly
detection method, LogGD, which can detect system anomalies
from logs with high accuracy and stable performance by
combining the graph structure and the node features. Our
experimental results on four widely-used public datasets il-
lustrate the effectiveness of LogGD. We hope that LogGD
can inspire researchers and engineers to explore further the
application of graph neural networks in log analysis.

ACKNOWLEDGMENT

This research was supported by an Australian Government
Research Training Program (RTP) Scholarship, and by the
Australian Research Council’s Discovery Projects funding
scheme (project DP200102940). The work was also supported
with super-computing resources provided by the Phoenix High
Powered Computing (HPC) service at the University of Ade-
laide.

REFERENCES

[1] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 1285–1298.

[2] B. Zhang, H. Zhang, P. Moscato, and A. Zhang, “Anomaly detection via
mining numerical workflow relations from logs,” in 2020 International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2020, pp.
195–204.

[3] V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 492–504.

[4] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1448–1460.

[5] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010, pp. 1–14.

[6] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas,
“A search-based approach for accurate identification of log message
formats,” in Proceedings of the 26th Conference on Program Compre-
hension, 2018, pp. 167–177.

[7] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS). IEEE, 2017, pp. 33–40.

[8] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: automated classification of performance
crises,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 111–124.

[9] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in Seventh IEEE International Conference on
Data Mining (ICDM 2007). IEEE, 2007, pp. 583–588.

[10] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[11] Y. Xie, H. Zhang, B. Zhang, M. A. Babar, and S. Lu, “Logdp:
Combining dependency and proximity for log-based anomaly detection,”
in International Conference on Service-Oriented Computing. Springer,
2021, pp. 708–716.

[12] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[13] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
151–158.

[14] A. Graves, “Long short-term memory,” Supervised sequence labelling
with recurrent neural networks, pp. 37–45, 2012.

[15] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
physiology, vol. 160, no. 1, p. 106, 1962.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[17] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
2016 IEEE 16th International Conference on Data Mining (ICDM).
IEEE, 2016, pp. 859–864.

[18] H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Transactions on Software
Engineering, 2020.

[19] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). IEEE, 2019, pp. 121–130.

[20] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th international
symposium on software reliability engineering (ISSRE). IEEE, 2016,
pp. 207–218.

[21] V. H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: How far are we?” arXiv preprint arXiv:2202.04301, 2022.

[22] D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen,
D. Cao, J. Wu, and T. Hou, “Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of
descriptor-based and graph-based models,” Journal of cheminformatics,
vol. 13, no. 1, pp. 1–23, 2021.

[23] S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, and B. Fang, “Stgsn—a
spatial–temporal graph neural network framework for time-evolving
social networks,” Knowledge-Based Systems, vol. 214, p. 106746, 2021.

[24] X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, I. Kevin, and K. Wang,
“Hierarchical adversarial attacks against graph neural network based iot
network intrusion detection system,” IEEE Internet of Things Journal,
2021.

[25] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Graph
neural networks with learnable structural and positional representations,”
arXiv preprint arXiv:2110.07875, 2021.

[26] R. Brüel-Gabrielsson, M. Yurochkin, and J. Solomon, “Rewiring
with positional encodings for graph neural networks,” arXiv preprint
arXiv:2201.12674, 2022.

[27] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks
to graphs,” arXiv preprint arXiv:2012.09699, 2020.

[28] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu,
“Do transformers really perform badly for graph representation?” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 28 877–
28 888, 2021.

[29] W. Park, W.-G. Chang, D. Lee, J. Kim et al., “Grpe: Relative positional
encoding for graph transformer,” in ICLR2022 Machine Learning for
Drug Discovery, 2022.

[30] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,” arXiv
preprint arXiv:2107.05908, 2021.

[31] K. A. Nguyen, S. S. i. Walde, and N. T. Vu, “Integrating distributional
lexical contrast into word embeddings for antonym-synonym distinc-
tion,” arXiv preprint arXiv:1605.07766, 2016.

[32] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[33] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[35] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in system
log,” IEEE transactions on network and service management, vol. 17,
no. 4, pp. 2064–2076, 2020.

[36] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[37] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep
graph convolutional networks,” in International Conference on Machine
Learning. PMLR, 2020, pp. 1725–1735.

[38] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[39] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” arXiv preprint arXiv:2105.14491, 2021.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[41] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” arXiv preprint
arXiv:1905.12265, 2019.

[42] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” arXiv preprint arXiv:2009.03509, 2020.

[43] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[44] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[45] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Largescale
system problem detection by mining console logs,” Proceedings of
SOSP’09, 2009.

[46] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep
learning for anomaly detection in log data: A survey,” arXiv preprint
arXiv:2207.03820, 2022.

[47] Y. Wan, Y. Liu, D. Wang, and Y. Wen, “Glad-paw: Graph-based log
anomaly detection by position aware weighted graph attention network,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2021, pp. 66–77.

[48] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 19, no. 7,
2019, pp. 4739–4745.

[49] X. Chu, Z. Tian, B. Zhang, X. Wang, X. Wei, H. Xia, and C. Shen, “Con-
ditional positional encodings for vision transformers,” arXiv preprint
arXiv:2102.10882, 2021.

[50] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” arXiv preprint arXiv:1803.02155, 2018.

[51] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling
for graph representations,” in International Conference on Machine
Learning. PMLR, 2019, pp. 4663–4673.

[52] G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit: Encoding
graph structure in transformers,” arXiv preprint arXiv:2106.05667, 2021.

[53] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and
D. Beaini, “Recipe for a general, powerful, scalable graph transformer,”
arXiv preprint arXiv:2205.12454, 2022.

[54] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 117–132.

	I Introduction
	II Background
	II-A Log Data and Sequences Generation
	II-B Graph Neural Networks
	II-C Graph Transformer Networks

	III Proposed Method
	III-A Overview
	III-B Graph Construction
	III-C Graph Representation Learning
	III-D Anomaly Detection through Graph Classification

	IV Evaluation
	IV-A Datasets
	IV-B Implementation and Experimental Setting
	IV-C Compared Methods
	IV-D Evaluation Metrics
	IV-E Research Questions
	IV-F Results and Analysis

	V Discussion
	V-A The advantages and limitations of LogGD
	V-B Threats To Validity

	VI Related Work
	VI-A Graph Positional Encoding
	VI-B Log-based Anomaly Detection

	VII Conclusion
	References

