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Abstract—Over the last few years, industry and academia
have proposed several Low-Code and Model-driven Engineering
(MDE) platforms to ease the engineering process of the Internet
of things (IoT) systems. However, deciding whether such engi-
neering platforms meet the minimum required software quality
standards is not straightforward. Software quality can be defined
as the degree to which a software system achieves its intended
goal. Various software quality standards have been established
to aid in the software quality assessment process; however, due
to the nature of engineering IoT platforms, such models may not
entirely suit the IoT domain. This paper presents a model for
assessing the software quality of Low-Code and MDE platforms
for engineering IoT platforms. The proposed software quality
model is based on and extends the ISO/IEC 25010:2011 software
product quality model standard. It is intended to assist IoT
practitioners in assessing and establishing quality requirements
for engineering IoT platforms. To determine the effectiveness of
the proposed model, we used it to evaluate the quality of 17 IoT
engineering platforms, and the results obtained are promising.

Keywords—Software quality; Low-code Development platforms;
Model-driven Engineering; Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) systems offer enormous ben-
efits in our daily lives by enabling seamless communication
with our surroundings. Such systems demand many develop-
ment skills, from handling tiny microcontrollers to more ex-
tensive and complex cloud-based systems. In the IoT domain,
systems often include safety-critical tasks that, if mishandled,
might have disastrous consequences and even cost human
lives [1]. To guarantee robustness and safety during operation,
it is critical to investigate the correctness and the quality of the
platforms and the process by which systems are developed.

Over the last years, both academia and industry have
proposed novel languages and tools to support the engineering
of IoT systems. To this end, MDE and Low-Code paradigms
are employed to conceive engineering platforms specific to
the IoT domain. In the software engineering process, MDE
promotes the use of models as first-class citizens in software
development [2]. Its goal is to improve productivity and reduce
time to market by allowing the development of systems using
models defined with concepts that are much less linked to
the underlying implementation technology and much closer to
the problem domain [3]. Low-Code Development Platforms
(LCDPs) are cloud-based software development platforms that
leverage a Platform-as-a-Service paradigm to enable users with

little or no programming skills to create fully functional apps
with dynamic graphical user interfaces [4]–[6]. For the sake of
readability, we use IoT engineering platforms when we need
to refer Low-Code and MDE platforms indistinguishably.

Deciding whether an IoT engineering platform meets the
required standards for adoption in terms of quality is not
a straightforward process as it involves considering and ex-
ploring various sources of information. MDE and low-code
development technologies frequently rely on rigorous verifi-
cation and validation processes conducted under predefined
arbitrary constraints to guarantee the quality of generated
systems. However, in most cases, the quality of the employed
engineering is not taken into account seriously or is overlooked
[7], [8].

Practitioners typically rely on well-established standards
and practices to improve confidence in whether a system or
a product fits the wanted quality requirements. The ISO/IEC
25000 to ISO/IEC 25099 series of International Standards,
titled “Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQUARE)”, aims
to address issues concerning software quality requirements
specification and evaluation [9]. The ISO/IEC 25010:2011
standard, in particular, [10], is intended to help people who are
interested in developing or purchasing systems and software
products to specify and evaluate their quality requirements.

This paper presents a quality model for assessing the
quality of IoT engineering platforms based on the ISO/IEC
25010:2011 standard. In doing so, we enhanced the standard’s
product quality model by defining a product quality assessment
model that is more suitable for the IoT domain. Initially, the
ISO/IEC-25010:2011 standard, which replaced ISO/IEC-9126-
1:2001 standard, defines two main sets of quality models,
namely “quality in use model”, and “product quality model”.
The former is related to the outcome of interaction when a
product is used in a specific context. In contrast, the latter is
related to software platforms’ static and dynamic properties.
These models are defined in terms of characteristics, with
some of them further subdivided into sub-characteristics [10].
Both models are equally crucial for thoroughly assessing the
quality of a given platform. However, the proposed model
focuses on the product quality model since it emphasizes on
platform’s technical quality rather than usage quality which
can be challenging to measure for platforms in their early



development stages.
To evaluate the effectiveness of the proposed model, we

employ it to assess the quality of 17 IoT platforms selected
from our previous studies [11], [12]. We present the method-
ology we used to choose such platforms, perform the quality
assessment, and subsequently present and discuss the obtained
results. We summarize this paper’s contribution as follows:

• We propose a quality model based on the ISO/IEC
25010:2011 standard for evaluating the quality of IoT
engineering platforms;

• We assess the quality of 17 IoT engineering platforms by
relying on the proposed model;

• We present and discuss the findings as well as the limi-
tation of the study in order to validate the effectiveness
of the proposed model.

The remaining of the paper is structured as follows: The
background of the study is presented in Section II. The
proposed product quality model is presented in Section III.
In Section IV we go through the selected primary studies
and present the followed evaluation process. In Section V, we
present the results from the conducted assessment by reflecting
specific research questions. Section VI discusses the results as
well as its limitations. In Section VII, we present the related
work and Section VIII concludes the paper and discusses
perspective future work.

II. BACKGROUND

A. IoT Engineering Platforms

The main goal of MDE is to increase productivity and
reduce time to market by enabling the development of systems
using models defined with concepts that are much less tied to
the underlying implementation technology, and much closer
to the problem domain [3]. Same as MDE, low-code software
development processes aim to improve software development
processes by raising abstraction and hiding implementation-
level details. Both approaches employ model-driven devel-
opment (MDD) in their development stack; the important
distinction seems to be how they enforce factors such as
cloud-based deployment, target users, setup, and so on [13]. In
addition to that, not all MDE approaches seek to reduce the
amount of code required to develop software solutions, and
not all low-code approaches are model-driven [13]. Although
this is true, their difference in practice is not yet clear, and it
is widely debated how much work done in MDE is directly
transferable to LCDPs [14].

Nowadays, we witness a growing number of successful
generic LCDPs on the market (e.g., Google App Maker and
Microsoft Power Platform). Despite their success, LCDPs’
development capabilities are still limited regarding how com-
plex, intelligent, and sophisticated they may be [5]. In the
IoT domain, only a few LCDPs are available, and they
provide limited functionalities given the inherent complexity
and heterogeneity of typical IoT systems. Among others,
IoT-specific platforms such as Node-RED [15] and Atmo-
sphericIoT [16] have demonstrated a significant push toward

the development of fully-fledged multi-layer IoT platforms.
However, their capacity to generate code and interact with low-
level IoT devices is still limited. Unlike LCDPs, MDE presents
a more significant number of platforms that can still generate
low-level platform-specific code. Still, they often suffer from
integration and interoperability issues because most of them
are deployed and operated locally [11].

B. Software Quality Models

The discipline of Software Quality Engineering [17] is
concerned with improving the approach to software quality.
However, the various perspectives present throughout the
software life cycle show what constitutes software quality
is frequently contested. In this context, relying on software
quality models to support the quality management of software
systems is widely accepted [18]. A quality model is typically
defined as a set of sub-characteristics and their interrela-
tionships that serve as the foundation for specifying quality
standards and evaluating quality [19]. Various standards have
been defined in the literature to assist in the evaluation process.
The ISO/IEC 9126:1991 standard aimed at defining a software
quality paradigm and a set of guidelines for assessing the
characteristics associated with it [20]. This standard was later
revised by ISO/IEC 25010:2011, which included a model for
software system quality with well-formed specifications for
quality characteristics of software products [7].

The ISO/IEC 25010:2011 standards help design, develop
and acquire systems and software products with the specifi-
cation for evaluating their quality requirements [9]. The stan-
dards are made up of two quality models, each with its own set
of characteristics, some of which are further subdivided into
sub-characteristics. First, the “quality in use model” focuses
on the outcome of interaction when a product is used under
particular contexts [10]. This model is primarily intended to
provide targets for promoting the development and verification
efficiency, as well as to anticipate quality in use before
delivery [9]. This model includes five characteristics, namely
effectiveness, efficiency, satisfaction, risk freedom, and context
coverage where some of them are further subdivided into
nine sub-characteristics. The “product quality model” refers
to the static and dynamic qualities of a software platform.
This model primarily focuses on providing assessment ground
for people supplying software products and those acquirers
who wish to get more involved in the process technically [9].
The model is divided into eight characteristics, namely func-
tional appropriateness, performance efficiency, compatibility,
reliability, usability, security, maintainability, and portability
which are further elaborated into 31 sub-characteristics.

In the past, the ISO/IEC 25010:2011 standard has been
adopted to assess not only the product quality of IoT systems
[21]–[23] but also in domains such as Big data [24], Machine
Learning [25], Software Product Lines (SPL) [26], Customer
Relationship Management (CRM) systems [27] and mobile
apps [28], just to mention a few. In MDE domain, approaches
such as [29] relied on it for assessing the performance of MDE
quality studies, while [7], [8] adopted it in order to assess



the quality of Domain Specific Languages (DSLs) whileand
design architectures quality [30] adopted it to assess the quality
of design architectures. Although ISO/IEC 25010:2011 cannot
be considered a one-size-fits-all solution, it can be a benefi-
cial approach for evaluating the quality of IoT engineering
platforms. A detailed description of the mentioned quality
characteristics is given in the next section.

III. THE PRODUCT QUALITY MODEL

In this section, we discuss the product quality model of the
ISO/IEC 25010:2011 standard to enable the quality evaluation
of IoT engineering platforms. To this end, by referring to
Figure 1, in the following, we discuss the common model
characteristics concerning the peculiarities of the IoT domain.

A. Functional suitability
This factor evaluates how well a platform meets specified

and implied objectives when used in specific contexts. In the
IoT engineering context, its corresponding sub-characteristics
can be defined as follows.

Functional completeness is the extent to which a given
platform supports the design of all the layers that comprise
an IoT ecosystem. For instance, the platform’s capacity to
represent the complete IoT ecosystem from the edge, fog, to
the cloud layers while seemingly handling all of the communi-
cation heterogeneity that might occur. Concerning Functional
Correctness, this can be defined as the extent to which the
platform applies specific correctness methodologies during
the development phases, including but not limited to correct
by construction, model-checking, model validation, and rule-
based modeling. Finally, the Functional appropriateness refers
to the amount to which the given functionalities facilitate the
completion of defined activities and objectives. IoT engineer-
ing platforms have diverse functionalities; in this case, we can
propose to analyze how the specified correctness methodology
permits achieving the goal.

B. Performance efficiency
This characteristic determines how the platforms consume

resources under specific conditions. This characteristic is
mainly related to run-time attributes of the underlying system
infrastructure, which in some situations cannot be predicted
accurately. In the context of IoT engineering platforms, the
corresponding sub-characteristics can be defined as follows:
Time behavior refers to how well a platform function meets
its criteria in terms of response and processing times, as well as
throughput rates. The platform’s responsiveness can primarily
indicate this, and it is worth noting that it can only be evaluated
on platforms that are accessible.

Resource utilization measures how much and what kind
of resources are used to suit the platform’s needs. Although
this can somewhat be predicted when a platform runs on
well-known underlying infrastructures, the actual utilization
can only be evaluated accurately during the platform’s usage.
Finally, the Capacity is defined to assess the platform’s ability
to model and coordinate a large and complex system that spans
multiple IoT sub-domains.

C. Compatibility

This characteristic implies the platform’s capacity to inter-
change data with other platforms. The two sub-characteristics
are defined as follows: Co-existence refers to the degree to
which a platform continues to operate efficiently while sharing
a shared environment and resources with other platforms
without hammering the other platforms. Interoperability is
referred to the degree to which a platform can exchange
information with other platforms while in use. In our context,
this can be assessed in terms of the platform’s capability to
support the data exchange during the development process by
consuming or sending information to/from external services
via dedicated means such as REST APIs.

D. Reliability

This characteristic reflects how a platform can complete a
set of tasks in a given amount of time. Its sub-characteristics
can be defined as follows: Maturity reflects how well the
platform supports all of the basic functionalities of a typical
engineering platform, such as design, code generation, and
deployment. Availability is concerned with the extent to which
a platform is operational when needed. Fault tolerance is the
degree to which a platform performs as expected despite the
presence of hardware or software faults. In our case, this can
be evaluated as the platform’s capability to support advanced
mechanisms, including but not limited to self-adaption and
self-healing. Finally, the Recoverability reflects the extent to
which a platform, in case of interruptions or failures, can
recover data directly affected and re-establish the desired state
of the system. To that end, the platform should be able to
handle the mechanisms including but not limited to self-
recovery or self-redeployment, etc.

E. Usability

This characteristic reflects how well specific users can use a
platform to achieve particular goals with efficiency, effective-
ness, and satisfaction. The sub-characteristics are as follows:
Appropriateness recognizability is defined as the degree to
which users can determine whether a platform is appropriate
for their needs. This can be promoted in the IoT engineering
world by the degree to which the platform is customized
concerning the underlying environment. Learnability can be
defined as the extent to which the platform aids developers
in learning how to use it, e.g. with context-based modeling
support, on-the-fly suggestions, and so on.

Operability represents the extent to which a platform has at-
tributes that make the entire development process more acces-
sible, for instance, using functionalities like auto-completion
for textual languages, guide-through mechanisms, multi-view
modeling, palette show/hide, and palette element search. User
error protection reflects the extent to which the platform pro-
vides some protection to avoid errors, such as static analysis
or on-the-fly error handling. User interface aesthetics is the
extent to which the platform provides pleasant and satisfying
user interfaces. Finally, Accessibility can be considered as to



Figure 1: Software Product Quality Model

whether the platform is easily reachable in case of needs, either
being locally or online.

F. Security

This characteristic refers to how successfully a platform
protects information and data so that users, services, and
external systems have appropriate access to data according
to specific authorization levels. Its six sub-characteristics have
been renamed as follows: Confidentiality refers to the extent to
which a platform assures that data is exclusively available to
those who have been granted access. Integrity can be defined
as the extent to which an IoT platform prohibits unwanted
access, modification of the platform, or data.

Non-repudiation can be measured by the extent to which the
platform enables methods for recording all actions conducted
during development and proves that they have been performed
so that they cannot be contradicted later. Accountability can
be measured as the extent to which a platform enables tracing
attributes like versioning, historical action retrieval, and so on.
Finally, Authenticity can be described as the ability of the plat-

form to support different types of authentication mechanisms
while accessing platform resources.

G. Maintainability

This characteristic refers to the degree of a platform to be
improved, repaired, or adapted to changes. Its corresponding
sub-characteristics are defined below: Modularity can be mea-
sured as the extent to which a platform is decoupled into
discrete sub-systems that can be modified independently of
other parts. Reusability reflects the extent to which a platform
or a component of a platform can be used in more than one
system. While evaluating this, we can focus on the platform’s
ability to be decomposed into small reusable sub-systems.

Analyzability assesses the efficacy and efficiency with which
it is feasible to determine the impact of modifying parts
of the platform by either removing it or injecting failures
into it. In the IoT engineering context, whether the platform
provides means supporting the analysis of the system under
development and/or the platform itself is also looked at. In
terms of Modifiability, the assessment can be performed on the



extent to which a platform can be successfully and efficiently
modified without introducing flaws or deteriorating the quality
of existing products. Finally, Testability can be assessed in
terms of the capability of the platform to provide testing
supports for its components or the system under development.

H. Portability

This characteristic refers to how fast and successfully a
platform can be moved from or to different hardware and
software operational environments. Its corresponding sub-
characteristics are defined below: Adaptability refers to the
extent to which a platform can be effectively and efficiently
adapted to different environments. Installability reflects the
degree of effectiveness and efficiency with which a platform
can be successfully installed and/or uninstalled in a given
environment. Replaceability measures the extent to which a
platform can be updated, replaced, and redeployed in the same
environment and still performs as expected.

IV. QUALITY ASSESSMENT OF IOT ENGINEERING
PLATFORMS

This section shows the quality assessment process followed
to analyze 17 IoT engineering platforms using the product
quality model discussed in the previous section. The platforms
of interest have been identified as presented in Section IV-A.
The research questions that we answered through the per-
formed evaluation are presented in Section IV-B. The quality
assessment process that has been followed is presented in
Section IV-C.

A. Selection of the evaluated IoT engineering platforms

In [11], we examined 16 different platforms to gain a better
understanding of the current state of the art in supporting the
development of IoT systems, with a focus on languages and
tools available in the MDE field and emerging LCDPs. In
[12], we examined 22 IoT modeling environments, assessing
their strengths and weaknesses in terms of cloud-based mod-
eling capacity, accessibility, openness, and artifact generation.
Combining the two data sources, we started with a total of
38 approaches, which have been filtered by considering the
following exclusion criteria:

• Approaches that were published before 2012 have been
discarded;

• Duplicated approaches have been removed;
• Approaches that do not permit developing fully functional

IoT applications have not been considered.
• Approaches that depend on already-included platforms

have been filtered out;
• Approaches that are generic and that do not explicitly

target the IoT domain have not been considered in this
study.

By applying such criteria, 15 out of the initial 38 IoT
development platforms were identified. In addition, we have
added two more approaches that we believe are very promising
and were published after our first study, bringing the total to
17. Figure 2 depicts the detailed paper selection procedure that

we used. To better understand the selected basic studies, we
have categorized them quantitatively based on publishing year,
publisher type, article type, and the distribution among MDE
and LCDPs approaches. The result is shown in Figure 3a, 3b,
3c and 3d respectively.

B. Research questions

The performed assessment aimed at answering the following
research questions:

• RQ1: To what extent do the considered IoT engineering
platforms meet the characteristics of the proposed quality
model?

• RQ2: What are the most and the least addressed quality
sub-characteristics by the considered IoT engineering
platforms?

C. Assessment process

The quality assessment process of the considered IoT en-
gineering platform has been done iteratively by going over
all of the reference papers. We established a set of questions
for each sub-characteristic that must be addressed to confirm
the platform’s competence with respect to what is included in
the model described in Section III. By doing this, we made
the evaluation process result easier and more reflective of the
proposed model. Following that, we read the entire document
and responded to the questions. Each question can be answered
with “Yes” or “No”. For instance, the following questions have
been formulated to help in assessing the platform’s Functional
Suitability:

• Does the platform support the design and development of
IoT systems?

• Does it support all layers (Edge, Fog, Cloud)?
• Does it mention any support for dealing with different

communication protocols?
Consequently, given the paper under analysis, if the corre-

sponding presented platform succeeds on at least 50% of the
questions, it is marked as supporting the quality characteristic
of interest. This procedure has been developed and imple-
mented for all 31 sub-characteristics. The defined questions
have been created purely to facilitate the review process and
are entirely consistent with what is provided in the model.
Unfortunately, due to space constraints, we could not present
the extended table of questionnaire used to assess all of the
quality characteristics. In this regards, a full set of evaluation
questionnaire used in the evaluation has been published and
can be accessed from an online database available at [31].

As mentioned in the previous section, some of the char-
acteristics heavily depend on the dynamic properties of the
underlying system infrastructures as well as during their
usage. For instance, verifying sub-characteristics related to
performance efficiency and usability might be difficult in
general. Thus, during the performed analysis we relayed on
information provided in the reference papers when available.
We considered such kind of characteristics unsupported if
the corresponding articles do not mention any mechanism
addressing them.



Figure 2: Primary studies selection process

(a) Publications by year
(b) Publications by publisher

(c) Publications by paper type (d) Publications by category

Figure 3: Overview of the selected basic studies

V. ASSESSMENT RESULTS

This section presents the comprehensive findings of our
assessment by answering the research questions. Table I sum-
marizes the results of the study. The MDE and LCDP plat-
forms supporting each quality characteristic of the considered
product model are shown.

1) Quality characteristics support of IoT engineering plat-
forms (RQ1): According to the proposed model, eight char-
acteristics with their associated sub-characteristics were eval-
uated on the approaches considered in this work. This section
elaborates on the overall quality performance of such devel-

opment platforms by comparing LCDPs and MDE platforms.

As shown in Table I, MDE approaches support an av-
erage of 12 of the 31 possible sub-characteristics, whereas
LCDPs support an average of 18. Furthermore, different
sub-characteristics are not supported at all. Figure 4 shows
the overall characteristic-level performance of the analyzed
platforms. Figure 4a and Figure 4b depict the overall per-
formance of MDE platforms and LCDPs against the eight
main characteristics, respectively. To this end, an aggregated
performance sum from all sub-characteristics was produced
for each characteristic.



TABLE I: Assessment overview

Characteristic Sub-characteristic MDE platforms MDE(%) LCDP platforms LCDP(%)
Functional 75.8 83.3
suitability Func. Completeness [32] [33] [34] [35] [36] [37] [38] [39] [40] 81.82 [41] [15] [16] [42] [43] 83.3

Func. Correctness [44] [33] [32] [35] [36] [45] [38] [39] [40] 81.82 [15] [16] [42] [43] [46] 83.3
Func. Appropriateness [44] [34] [32] [36] [38] [39] [40] 63.6 [15] [16] [42] [41] [46] 83.3

Performance 24.2 38.9
efficiency Time-behavior Unsupported 0 [15] [16] 33.3

Resource Utilization [32] 9.09 [15] [16] 33.3
Capacity [33] [32] [36] [37] [38] [39] [40] 63.3 [15] [16] [41] 50

Compatibility 27.3 58.3
Co-existence Unsupported 0 [15] [16] [42] 50
Interoperability [32] [35] [36] [45] [38] [39] 54.5 [15] [16] [42] [43] 66.6

Reliability 40.9 41.7
Maturity [44] [34] [32] [35] [36] [45] [38] [39] [40] 81.82 [15] [16] [42] [41] [43] 83.3
Availability [36] [40] 18.18 [15] [16] 33.3
Fault tolerance [44] [33] [38] [39] [40] 45.45 [15] 16.6
Recoverability [32] [40] 18.18 [15] [16] 33.33

Usability 50 66.7
Appropriateness [33] [34] [32] [36] [40] 45.45 [15] [42] [41] 50
Learnability [38] 9.09 [15] [16] [46] [43] [39] 83.3
Operability [44] [32] [36] [45] [37] [38] [39] [40] 72.72 [15] [16] [42] [41] [46] 83.3
User error protection [36] [37] [38] [39] [40] 45.45 [15] [16] [42] [46] 66.6
User interface [44] [33] [34] [32] [35] [36] [45] [37] [38] [39] [40] 100 [15] [16] [42] [41] [46] [43] 100
Accessibility [36] [40] 18.18 [15] [16] 33.3

Security 5.5 36.7
Confidentiality [32] 9.09 [16] [42] 33.3
Integrity [32] 9.09 [16] [42] [43] 50
Non-repudiation Unsupported 0 [16] 16.6
Accountability Unsupported 0 [15] [16] 33.3
Authenticity [32] 9.09 [16] [42] [43] 50

Maintainability 43.6 30
Modularity [34] [32] [35] [36] [39] [40] 54.54 [15] [16] [41] [43] 66.6
Reusability [44] [39] [33] [32] [36] [38] [40] 63.3 [15] 16.6
Analyzability [33] [32] [38] 27.3 [15] 16.6
Modifiability [33] [34] [32] [36] [38] [39] 54.5 [15] [43] 33.3
Testability [39] [40] 18.18 [15] 16.6

Portability 57.6 66.7
Adaptability [32] [35] [38] [40] 36.36 [15] [16] [42] 50
Installability [44] [33] [34] [32] [35] [36] [45] [37] [38] [39] [40] 100 [15] [16] [42] [41] [46] [43] 100
Replaceability [32] [36] [39] [40] 36.36 [15] [16] [43] 50
Overall 135 out of 341 possible 39.6 95 out of 186 possible 51.1
Standard deviation 30.6 25.5

Both categories (MDE and LCDPs) perform well enough
in quality characteristics related to Functional suitability,
Portability, and Usability, with general supporting rates of
75.8%, 57.8%, and 50% for MDE and 83.3%, 66.7%, and
66.7% for LCDPs, respectively. It is important to note that the
listed supporting/non-supporting rates reflect the aggregated
characteristic performance calculations from its corresponding
sub-characteristics. Although this provides us with an overall
picture of characteristic performance, it does not allow us to
make a final judgment on whether certain sub-characteristics
are better supported than others. For example, in terms of
Usability aspects, all 11 MDE platforms satisfy the User
interface quality characteristic, although only two of them
satisfy the accessibility sub-characteristic.

MDE platforms have limited security and performance
efficiency support, with overall support rates of 5.5% and
24.2%, respectively. For instance, in MDE, from the studies
considered, only IoTML [32] promotes security by enhancing
authentication, confidentiality, and integrity mechanisms while
accessing the platform. On the other hand, LCDPs fall short

concerning security and maintainability, with overall support
rates of 36.7% and 30%, respectively. Each of the security
aspects is implemented at least once by LCDPs, with the
AtmosphereIoT [16] platform supporting all. Consequently, as
shown in Table I, MDE accounts for 135 points out of 341
possible support, representing approximately 39.6%, whereas
LCDPs account for 95 points out of 186 possible, which would
be about 51.1%.

Answer to RQ1: Overall, MDE quality is around 39.6%,
while LCDPs account for 51.1%, resulting in an overall
quality of the selected engineering platforms being ap-
proximately 45.5%.

2) Quality sub-characteristics support of IoT engineering
platforms (RQ2): In the previous section, we focused on
overall quality characteristic support; in this section, we focus
on individual sub-characteristic by highlighting the most and
least addressed ones. Even though the average supporting
rate of studied quality sub-characteristics for both MDE and
LCDPs will be equal to the average supporting rate for the



(a) MDE platforms

(b) LCDPs

Figure 4: Quality characteristics support

quality characteristics presented above (Sec. V-1: MDE:39.6%,
LCDP:51.1% ), they differ in their deviation from the mean
of individual supports. According to the standard deviation
indicated in Table I, MDE platforms have an average sup-
porting standard deviation of 30.6, while LCDPs have a
standard deviation of roughly 25.5, which is less than of MDE
platforms. Such figures suggest that LCDPs are more likely to
consistently touch all of the model’s individual quality sub-
characteristics than MDE approaches.

As shown in Table I, IoT MDE and LCDPs cover all quality
sub-characteristics such as user interface and installability.
This is expected, given that the fundamental principle of MDE
and LCDP technologies centers around enabling an easy-to-
use and executable environment for developing applications
with less effort, which cannot be accomplished without pro-
viding a user interface.

Figure 5 depicts an overall performance of sub-
characteristics among IoT MDE, and LCDPs engineering
platforms. As indicated, none of the chosen MDE approaches
address quality sub-characteristics such as non-repudiation,
time-behavior, accountability, and co-existence. LCDPs, on
the other hand, fall short on fault-tolerance, non-repudiation,
reusability, analyzability, and testability, with a consistent
minimal support rate of 16.7%, which implies a generic rate
of at least 1 out of 6 LCDPs supports at least one of the sub-
characteristics. On the other hand, Figure 6 depicts the average
quality performance for both MDE and LCDP platforms.
As can be seen, sub-characteristics such as user interface,
installability, and functional completeness are the most well
supported by both categories, while testability, time-behavior,
accountability, and non-repudiation are the least supported.

Answer to RQ2: The top three quality sub-
characteristics addressed by both technologies are
user interface, installability, and maturity. On the other
hand, selected MDE approaches were unable to address
quality sub-characteristics such as non-repudiation,
accountability, co-existence, and time-behavior. In
contrast, LCDPs fall short of addressing fault tolerance,
non-repudiation, and reusability with a consistent rate of
1 out of 6 LCDPs.

VI. DISCUSSION

In this section, we discuss the proposed model’s suitability
and its limitation with respect to general software quality
assessment of software systems.

A. Model suitability

The proposed model aims to assist practitioners who have
to design and develop IoT systems by exploiting low-code
or MDE platforms. According to the results presented in
Section V, security-related characteristics are the least ad-
dressed. This is particularly pertinent given how IoT security
concerns are dynamic and unstructured, leading to uncer-
tainty among software developers in terms of concepts and
terms [47]. MDE approaches are most affected since most
conventional MDE platforms are deployed locally and used
offline, making incorporating any form of security capabilities
less required (e.g., authentication). We can argue that the
dominant Eclipse Development Environment1, which hosts a
lot of classical MDE-based platforms, has a significant impact
on this problem. On the other hand, although LCDPs neither
excel in such security-related aspects, it is critical and rational
to be integrated since such platforms are deployed in cloud-
based environments, which are more likely to be attacked by
unwanted intruders.

Furthermore, besides security, the results show that LCDPs
lack quality criteria for general maintainability. For instance,
according to the Table I, the reusability of LCDP is shown
to be less supported among others. This is generally true
and can mainly be since more LCDPs are tailor-made, and
most of their application developments and deployments are
bound to a particular technology [13], making them difficult
to modify and reuse elsewhere. In our study, only Node-RED
[15] showcased means for supporting the usability of aspects
of its components through the Node-RED modules that can
be composed, built, deployed and reused separately from one
instance to another.

Due to the tight coupling between functions and their sub-
functions found in different LCDPs and some MDE platforms,
analysability becomes very hard to achieve. Our proposed
model defines software analysability as the means to assess the
efficacy and efficiency with which it is feasible to determine
the impact of modifying parts of the platform by either remov-
ing it or injecting failures into it. According to the obtained
results, only 27% of MDE platforms support such features,
while for LCDPs, only one out of 6 support them. This

1https://www.eclipse.org/

https://www.eclipse.org/


Figure 5: Quality sub-characteristics performances

quality characteristic is generally considered in the software
design phase through different model-based system analyses.
Still, in the actual implementation of the system, such quality
is often ignored [48]. Concerning software testability, as
indicated above, only 2 out of 11 of the analysed platforms
showed means for supporting it. The testing can either be
done at the platform sub-functions level or at the system they
develop. In general, developers tend to disregard this aspect.
For instance, in the LCDP domain, low-code testing is still
in its early stages, with no formal structure to the domain’s
ideas, concepts, and hypotheses which undoubtedly contributes
to such lacking [6].

Another interesting fact is that the overall performance of
IoT engineering platforms (MDEs and LCDPs combined),
regardless of characteristics and sub-characteristics, is about
45.5%, in which MDE accounts for 39.6%, whereas LCDPs
have 51.1%. Although we acknowledge that these measures
cannot be regarded as a definitive measure of the IoT en-
gineering platforms’ quality questions, we believe they can
point researchers in the right direction regarding the present
state of the art in IoT engineering quality evaluation sup-
port. Consequently, we can finally draw the line of how the
proposed model satisfies the quality evaluation procedure as
“promising”; it unveiled several concepts that reflect what is
already available in the IoT engineering domain.

B. Limitations

In this paper, we have extended the ISO/IEC 25010:2011
standard model to propose a software product model for

assessing the quality of IoT engineering platforms. To evaluate
the effectiveness of the proposed model, we employed it to
determine the quality of 17 IoT platforms selected from our
previous studies [11], [12]. In terms of limitations, we can
state the followings:

• Although the presented model contributes positively to
the software product quality assessment of IoT engineer-
ing platforms, it only performs very well when the eval-
uation is done at the platform’s technical implementation
level. However, the proposed model performed poorly
regarding run-time software product quality assessment,
such as quality linked to performance efficiency. This is
primarily due to the implementation nature of the LCDP
and MDE platforms. We believe that assessing such
quality could be heavily influenced by the environment
in which such software is deployed.

• The evaluation methods employed in this study and the
reported results are critical because they are exclusively
based on what was identified in the selected tool’s papers.
However, in some instances, the published content of
the paper may not correctly reflect the full capabilities
of the platform under consideration. Furthermore, soft-
ware platforms evolve, and new development is regularly
contributed to the platforms. Therefore, we believe that
integrating the results found in the papers and the actual
inputs from the tool vendors can significantly increase
the legitimacy of the findings. We intend to address this
in future research.



Figure 6: Average quality sub-characteristics performances

VII. RELATED WORK

ISO/IEC 25010:2011 standard has been heavily used to
assess the quality of complex software and systems. To name
a few, [21] relied on it to assess the quality of online health
awareness systems, [22], [49] for IoT brokers, and [23] for
IoT implementations. Although this quality model’s scope is
intended general for software and computer systems, it can
also be applied to assess larger systems and services [10].
For instance, in [28], the model has been adopted in order to
evaluate the quality of mobile applications, as well as in [24],
[25] for Machine Learning and Big data systems.

There have been several approaches in the modeling domain
for quality measurements. For example, in [7], a Framework
for Qualitative Assessment of DSLs (FQAD) was presented.
The FQAD framework is based on ISO/IEC 25010:2011 when
determining the evaluation’s perspective, the assessment’s
goal, and selecting relevant quality characteristics to guide
the assessment process. In addition to that, the authors in [8]
relied on the standard to assess the quality assurance of DSLs.
In contrast, [30], the standard was employed to evaluate the
quality of design architectures.

In [26], the authors used this standard to perform a mapping
study on the quality assessment of software product lines. The
standard was used in [50] to assess the security quality of
mobile cloud computing-based technologies. Finally, it was
used in [27] to evaluate the quality aspects of customer
relationship management (CRM) systems. A large number
of extensions and suggestions on the standard have been
proposed. To name a few, authors in [9] proposed the extension
to meet the lifetime service-oriented quality aspect of software
systems. In [24], the authors conducted a study to assess the

product quality of Big data systems concerning non-functional
requirements, while in [51], the authors extended the model
to Semantic Web exploration tools.

Finally, the authors in [52] presents a highly comprehensive
effort to assist the quality evaluation of MDD platforms,
as well as a mapping from the proposed model to the
ISO/IEC 25010:2011 standard. In their paper, a multi-criteria
decision-making (MCDM) model for MDD platforms is used
to help in choosing an optimal quality sufficient platform
for their requirements. Nevertheless, the approach as well as
the results presented are too generic, whereas our approach
focuses primarily on IoT specific platforms. Furthermore, the
approach, in our opinion, focuses mostly on LCDPs, while
other conventional MDE platforms, such as those based on the
Eclipse Development Environment, are not taken into account
at all.

Even though all of the approaches relied on the standard
used in this paper, none specifically target IoT engineering
platforms. Based on the previous discussions, we can con-
clude that this study is novel and unique compared to other
studies. While there are many quality assessments of DSLs
available, only a small number of them refer to an established
standard in the evaluation [7], and we could not find any that
addresses the IoT modeling domain in particular. As a result,
we are confident that our study is the premier to use a well-
established quality standard to evaluate the product quality of
IoT engineering platforms.



VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension of the ISO/IEC
25010:2011 product quality model for assessing the quality
aspects of IoT engineering platforms. We evaluated the soft-
ware product quality of 17 IoT engineering platforms using
the proposed model. The findings revealed that the overall
performance of IoT engineering platforms is roughly 45.5%,
with LCDPs doing slightly better than MDE platforms. Fur-
thermore, security and maintainability aspects are found to be
less addressed, whereas functional appropriateness, portability,
and usability were found to be the most addressed. In the
future, we plan to evaluate the quality in the use of the IoT
engineering platform by extending the quality in use model of
the ISO/IEC 25010:2011 standard in which we will be able
to accommodate other quality aspects beyond the software
product quality model.
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