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Abstract—Much of software-engineering research relies on the
naturalness of code, the fact that code, in small code snippets,
is repetitive and can be predicted using statistical language
models like n-gram. Although powerful, training such models
on large code corpus is tedious, time consuming and sensitive
to code patterns (and practices) encountered during training.
Consequently, these models are often trained on a small corpora
and estimate the language naturalness that is relative to a specific
style of programming or type of project. To overcome these
issues, we propose using pre-trained language models to infer
code naturalness. Pre-trained models are often built on big data,
are easy to use in an out-of-the-box way and include powerful
learning associations mechanisms. Our key idea is to quantify
code naturalness through its predictability, by using state-of-the-
art generative pre-trained language models. To this end, we infer
naturalness by masking (omitting) code tokens, one at a time,
of code-sequences, and checking the models’ ability to predict
them. To this end, we evaluate three different predictability
metrics; a) measuring the number of exact matches of the
predictions, b) computing the embedding similarity between
the original and predicted code, i.e., similarity at the vector
space, and c) computing the confidence of the model when
doing the token completion task irrespective of the outcome. We
implement this workflow, named CODEBERT-NT, and evaluate
its capability to prioritize buggy lines over non-buggy ones when
ranking code based on its naturalness. Our results, on 2,510
buggy versions of 40 projects from the SmartShark dataset,
show that CODEBERT-NT outperforms both, random-uniform
and complexity-based ranking techniques, and yields comparable
results (slightly better) than the n-gram models.

I. INTRODUCTION

There is a large body of research demonstrating that code,
in small snippets, is repetitive and thus predictable [1]. This
repetitiveness of code is typically captured by statistical lan-
guage models, like n-grams [2], that determine the appearance
likelihood of a token given its n preceding (or subsequent)
ones. By computing the likelihood of tokens, in a sequence,
and by using cross-entropy [3], [4], we can estimate the
appearance likelihood of a given token sequence.

In essence, n-gram-based cross-entropy quantifies the con-
formance of a given code sequence to the sequences appearing
within the code corpus that was used during the n-gram
training process. This naturalness metric of code can be quite
powerful since it can identify unusual code sequences, that
may reflect code that is smelly [5], [6], of low readability [7],
[8], or simply a rare specific implementation instance [9].

Although powerful, training such models on large code
corpus is tedious, time consuming and sensitive to code
patterns (and specificities) of the used projects. Additionally,
the models are sensitive to a number of meta-parameters such

as tokenizers, smoothing techniques, unknown threshold and
n values [10]. Consequently, these models are often trained
on a small corpus and estimate the language naturalness that
is relative to a specific style of programming or type of
project [1]. Moreover, their generalization ability, in a cross-
project fashion, when trained on large corpus remains unclear
since no such evidence appear in the related literature.

To overcome these issues, we propose using generative
pre-trained language models, such as CodeBERT, to infer
code naturalness. Pre-trained models have been shown to
provide strong results on several code-related tasks such as
code generation and translation. They are often built on big
data, are easy to use in an out-of-the-box way and include
powerful learning associations mechanisms that allow them to
generalize well to unseen code and projects.

Therefore, our key objective is to form a powerful and
flexible – easy to use – tool for computing code naturalness
that is applicable in a cross-project fashion. However, due to
the generative nature of these models, they do not allow the
computation of cross-entropy like measures, i.e., the probabil-
ity of the appearance of given tokens of code.

To deal with this issue we view code naturalness as a
predictability metric. Thus, we measure how well code tokens
can be generated by the models, and use it to infer naturalness.
In particular, we mask (omit) code tokens, one at a time,
of code sequences, and check the models’ ability to predict
them. We then define and investigate the use of predictability
metrics, that can be computed based on CodeBERT, to infer
code naturalness. To this end, we evaluate three different
predictability metrics:

• counting the number of exact matches of the predictions.
• computing the embedding similarity between the original

and predicted code, i.e., similarity at the vector space.
• computing the confidence of the model when doing the

token completion task, regardless to the outcome.

We implement this workflow, which we call CODEBERT-
NT, and evaluate its suitability in inferring code naturalness.
We also investigated the use of different aggregation methods
on top of the above-defined token predictability metrics, such
as minimum, maximum, mean, median and cross-entropy to
infer the naturalness of code statements/lines as a whole
thereby computing (n-token) naturalness and going beyond
single tokens.

Since naturalness of code is a relative measure, i.e., it
strongly depends on the models and training data used, and
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every metric involves its own specific building blocks, we can-
not directly contrast the values of one metric over the others.
To bypass this problem we compare the metrics according to
the relative performance differences on an end task, for which
we have a solid ground truth. In particular, we evaluate the
performance of our metrics w.r.t. their ability to rank buggy
lines of code.

Previous work has shown that unusual code is often linked
with bug-proneness and bugginess, thereby making n-gram-
based cross entropy a tool capable to identify likely buggy
code [9], [11]. This means that buggy lines tend to be unnatural
(entropy is high), or at least more unnatural compared to the
clean ones that tend to be natural (entropy is low). Moreover,
empirical studies [11], have shown that code naturalness has a
comparable performance to other static bug finding approaches
such as PMD [12] and FindBugs [13].

We, therefore, investigate the ability of CODEBERT-NT to
distinguish natural (clean) from unnatural (buggy) code. To
do so, we need a solid ground truth of buggy and clean
code. Hence we select the SmartShark dataset [14], which
contains manually untangled buggy and fixed code versions.
This allows us to know the buggy code lines for which
we can perform our experiment. We thus, used 2,510 buggy
versions from 40 projects and investigated the performance of
CODEBERT-NT and contrast it with that of typical baselines
such as uniform-random and complexity-based rankings [15].

To further strengthen our study, we also compared our
results with that of n-gram models when trained on an intra-
project fashion (as typically performed in literature [10], [11]).
Precisely, for every subject bug, we split its corresponding
project-version code into two sets of lines: 1) the training set
which counts all neutral file lines (files not impacted by the
fix-commit) and 2) the evaluation lines set which counts all
lines from the remaining files. We used recommended settings
by Jimenez et al. [10] – unknown threshold= 1, n = 4 with
KN as smoother – and two fundamentally different tokenizers;
1) UTF8 which tokenize the code as a natural-language text
including the comments and javadoc and 2) Java Parser [16]
which tokenize the code according to the java language
grammar, excluding comments and documentation. Finally,
we compared CODEBERT-NT metrics with the cross-entropy
measured by these models in terms of ranking the buggy
lines. Our results suggest that our (inter-project) CODEBERT-
NT yields comparable results (slightly better) than the (intra-
project) naturalness predictions of the n-gram models.

Overall, our primary contributions are:

• We demonstrate that pre-trained generative models like
CodeBERT capture the language naturalness notion. We
can infer the naturalness aspect of a source-code from the
CodeBERT prediction results.

• We introduce a novel approach to detect source-code
naturalness that works in cross-project context and does
not rely on the aspects of naturalness that are tight
to a specific project. For instance, It does not require
any further training or specific knowledge of the target

project, to rank its lines by bugginess likelihood, thus can
be easily used in the future as a baseline.

• We provide empirical evidence demonstrating that the
proposed approach is comparable to the current state-of-
the-art.

II. BACKGROUND AND RELATED WORK

A. Code-naturalness

Estimating the source-code naturalness and predictability
has been widely investigated. Based on the fact that code
is repetitive, the measure of naturalness was adopted on
programming languages [1], using fundamentally the same
techniques as for natural languages. Notably, Language models
and particularly n-grams are the most popular medium of
computing this measure. N-gram models approximate the
naturalness of a sequence of tokens based on its occurrence
likely-hood, estimated relatively to the sequences observed
in the training set. This probability follows a Markov chain
conditional probability series, where the probability P (t) of
a token t to occur depends on the n − 1 preceding to-
kens. To highlight irregular sequences (low probabilities of
occurring), the naturalness of a sequence is expressed as a
cross-entropy [3], [4] which is computed by aggregating the
logarithm of its token probabilities as follows:

H(S) = −
∑m

i=1 log(P (ti|ti−n+1...ti−1))

n
, (1)

where n denotes the order of the n-gram model,
{t1, ..., tm} the set of m tokens forming the sequence
S and P (ti|ti−n+1...ti−1) the probability P (ti) knowing
ti−n+1...ti−1. Consequently, n-gram models attribute high
entropy values to unusual (not natural) code relatively to
regular (natural) code. To avoid assigning a zero probability
to tokens that do not appear in the model vocabulary (which
is often the case of variable names), n-gram models replace
every token occurring less than k times by a placeholder
<UNK> and attributes a not zero probability to it, where k and
<UNK> are usually called the unknown threshold and unknown
word [2], [10], [17]. Similarly, to deal with unseen sequences
of tokens in the training set, several smoothing techniques
have been proposed and evaluated, among which Kneser Ney
(KN) [18] and Modified Kneser Ney (NKM) [17] are the best
performing smoothers [1], [17], with an eventual advantage
for the latter one [10]. Among the potential applications of
the naturalness of code property, Baishakhi et al. [11] have
shown empirical evidence that buggy lines are on average less
natural than not-buggy ones and that n-gram entropy can be
useful in guiding bug-finding tasks at both file- and line-level.
Jimenez et al. [10] evaluated the sensitivity of n-gram w.r.t. its
parameters and code tokenization techniques, via a file level
naturalness-study. Their results confirmed Baishakhi et al.
findings and provided recommendations on the best n-gram
configurations for naturalness based applications, including
the differentiation between buggy and fixed code.



B. CodeBERT

Microsoft has recently introduced CodeBERT [19], a bi-
modal pre-trained language model that supports multiple NL-
PL (Natural Language and Programming Language) applica-
tions such as code search, code documentation generation, etc.
The model was developed with a Multilayer Transformer [20]
architecture, which is adopted by the majority of large pre-
trained models like BERT [21]. It has been trained on a large-
scale dataset counting over 6 million projects from GitHub
in 6 different programming languages, including Java. To
ensure its bimodal functionalities, CodeBERT was trained
towards a hybrid objective function (based on replaced token
detection) in a cross-modal style, based on bimodal NL-PL
data (precisely, source-code paired with its documentation)
and unimodal data (including NL and PL sequences). In this
work, we incorporate its Masked Language Modeling (MLM)
functionality [22] in our experiments pipeline, in order to
study the possibility of inferring code naturalness from the
CodeBERT prediction results.

III. RESEARCH QUESTIONS

Our main objective is to form a flexible and easy-to-use tool
for computing naturalness of code in a cross-project fashion.
We thus, aim at using pre-trained generative language models,
such as CodeBERT, that are powerful, readily available and
trained over very large corpora. Since naturalness is a metric of
how predictable a piece of code is and such pre-trained models
are trained to predict code tokens, given their surrounding
code, there should be a way to exploit them and compute
code naturalness. However, since these models are generative,
they do not compute the probability of the appearance of given
tokens of code thereby obviating the naturalness calculation.
To this end, we investigate the use of potential predictability
metrics, that can be computed based on CodeBERT, and allow
quantifying the predictability of code, which in fact represents
code naturalness.

Since naturalness of code is a relative measure, i.e., it
strongly depends on the models and training data used, we
cannot directly contrast the values of one metric over the
others. We therefore, contrast them based on their performance
on an end task, for which we have a solid ground truth. In
particular, we evaluate the performance of our metrics w.r.t.
the naturalness of bugs hypothesis that states: ”unnatural code
is more likely to be buggy than natural code” [11]. This
means that a good naturalness metric should be capable of
distinguishing natural (clean) from unnatural (buggy) code.
Hence, we ask:

RQ1 (Metrics and aggregation methods): Which metrics
and line-level aggregation methods lead to the best
segregation between buggy and not buggy lines?

To answer this question, we check if any pairs of metric-
aggregation discriminate better the buggy from the clean
lines. To do so, we rank and compare the results of both
- ascendant and descendant - sorting orders on all possible
pairs to determine the one that discriminates best. Using these

matching sorting orders for every pair, we select the most
effective aggregation method for every metric in terms of
ranking buggy lines.

However, getting the best ranking does not necessarily mean
that our metrics perform well. We thus, turn our attention
to the significance of these results and contrast them with
some obvious baselines, such as the random order and source-
code complexity order (ranking the most complex lines first).
Random order offers a sanity check for coincidental results,
and complexity offers an unsupervised baseline [23], i.e.,
shows that our metrics do not simply measure complexity
instead of naturalness. Therefore, we ask:

RQ2 (Comparison with random and complexity based
rankings): How does CodeBERT naturalness com-
pares with random and source-code complexity, in
terms of buggy lines ranking?

To check whether the naturalness captured by CodeBERT is
useful, we compare with 1) a uniform random selection based
technique and 2) a code-complexity based one, where the
complexity is measured in terms of number of tokens and the
most complex lines are considered more likely to be buggy.
To make a fair comparison, we compare the techniques on
ranking the same subject lines and the same buggy versions,
which have each at least one buggy line.

As the above-mentioned baselines are relatively weak, we
also compare our metrics with n-gram models that were orig-
inally used to show the naturalness of buggy code hypothesis.
This leads us to the following question:

RQ3 (Comparison with n-gram): How does CodeBERT
compare with n-gram language models, in terms of
lines ranking by bugginess?

We answer this question by ranking the subject lines based
on their cross-entropies measured by n-gram models trained on
the source-code of the same version of the considered project.
In fact, for every considered bug we create two n-gram models
(using each of UTF8 and Java Parser tokenizers) trained on
the source code of the files that has not been changed by the
fix patch. Then, we use these models to calculate the cross-
entropies of the subject lines. Finally, we compare the ranking
results by the n-gram models with our proposed approach, the
same way as we did in RQ2.

Obviously, the RQ3 comparison does not aim at answering
the question of which model is best, but to show a relative
performance of the models. This is because the training
corpora of the models are significantly different with each
one having significant associated advantages. In particular,
CodeBERT has an advantage of being trained on a much larger
corpus than the n-grams. However, n-grams have the advantage
of operating on an intra-project fashion, which is significantly
more powerful [24] than the inter-project cases, as the one of
CodeBERT.

IV. EXPERIMENTAL SETUP

A. Dataset & Benchmark
To perform our study, we use a recently crafted dataset of

commits; SmartSHARK [14]. This dataset is distributed as a



MongoDB database describing commit-details extracted from
multiple open-source python and java projects. A specificity
of Smartshark is that its data are manually refined, i.e., the
commits are untangled and the fix validated, hence reducing
the threat of noisy data.

In our study, we use the issue-fixing commits of the 40
available java projects the dataset includes.

1) Buggy versions selection: For most of the issues,
SmartSHARK provides one or more related commits, among
which the fixing-commits are labeled as validated fix-commits.
Thus, to build our bugs dataset, we exclude all issues having
no corresponding fix-commit, or having multiple fix-commits.
While the first case is straight forward, the latter is applied to
further reduce noise in the data as pinpointing bugs origin from
multiple fixing commits is harder and more error prone. This
way, we obtain one fix-commit per issue where the changed
lines form the complete set of buggy lines. Then, as we focus
on Java source-code naturalness, we exclude the issues whose
fixes are not involving java files, e.g., configuration files.
Finally, we map the resulting issues to their related buggy
version, i.e., the project version preceding the fix commit.

2) Lines subject to study: For every considered issue, we
retrieve the files changed by the patching commit, among
which we mark as buggy any line changed by the fixed commit
and define as neutral ones the remaining lines in these files.

Then to ensure that the observed ranking performances are
related to code naturalness extraction and not to any non-
uniform distribution of the buggy-lines over the code, we
exclude all lines that are not part of the business-logic of the
program like the imports, the fields declaration, the brackets,
etc. We do so to focus on logic types of faults, which are
unlikely to be caused by non-business-logic statements as also
suggested by the work of Rahman et al. [25]. Moreover, the
naturalness of these lines is unlikely to be insightful.

Additionally, this allows us to exclude any interference
between comparing the ranking-performance by naturalness
and other forms of rankings related to the buggy lines unequal
distribution between business-logic and not business-logic
related source-code portions. In fact, close to half of the
considered bugs see all of their buggy lines located within
the business-logic code, while only 10% of the bugs see all of
their buggy-lines outside of it. Unaccounting for those 10%,
we observe a median of 90% of buggy lines located within
the business-logic code per bug, while this type of line only
amounts to 60% of the lines overall.

To sum-up, by excluding these lines we exclude 257 bugs
out of 2510 to end up with a final dataset counting 2253 buggy
versions, represented by a set of business-logic buggy and not
buggy lines.

B. Experimental Procedure

1) CodeBERT-based naturalness metrics: To infer the nat-
uralness aspect of source-code from CodeBERT predictions
we propose a 3-steps process that we name CODEBERT-
NT. CODEBERT-NT operates in 3 steps as illustrated in the
Figure 1:

For every selected buggy file, the tool starts by parsing
the Abstract Syntax Tree (AST) and extracting the interesting
nodes to mask, excluding the language-specific tokens such as
control flow and import-related tokens, e.g., if, else, for,
while, import, etc. Then, for every line, the tool iterates
over the selected set of nodes and replaces each node’s content
by the placeholder <mask>, thus, generating one masked
version of the input code per selected node.

Next, every masked version is tokenized into a vector of
tokens using the CodeBERT tokenizer, and shrink to only
encompass the masked token and its surroundings, as the
model encoder can only take up to 512 tokens. Once the
shrinking is done, the sequences of masked codes are fed to
CodeBERT to determine the best fitting substitute for the mask
placeholder. By default, the model provides 5 propositions
ranked by likelihood (also called confidence) to match the
masked node original value. In our setting, we only consider
the first proposition as we believe it to be the most naturalness-
revealing one (we discuss this choice further in Section VI-C)
and compute the following metrics from it:

• CBnt conf: the prediction confidence score of Code-
BERT. This metric represents a probability, thus is a
floating number varying between 0 and 1, where the
closer to 1 its value is, the more CodeBERT is confident
about the prediction. We believe that this metric may
mirror directly the naturalness of code as it reflects how
predictable and usual is the code, relatively to the code
knowledge learned by the model through its training
phase on a large scale code dataset. Thus, low confidence
score may imply low naturalness.

• CBnt cos: the cosine similarity between the CodeBERT
embeddings of the predicted and the original source-code.
This metric has a float value varying between 0 and
1, where 1 implies an exact similarity between the two
embeddings and 0 the absence of similarity. This metric
is often used in NLP and has shown some interesting
results in filtering unnatural sentences [26]. CodeBERT
embedding is the encoded representation of the code in
the latin-space, where every token is represented by 1
vector. To calculate the cosine similarity between the
embeddings, we start by concatenating their token-vectors
into two vectors, one for each embedding, then we
compute the cosine as follows:

Cosine(Vo,Vp) =
Vo.Vp

‖Vo‖.‖Vp‖
, (2)

where Vo and Vp are the concatenated embedding vec-
tors of respectively the original and predicted code.
Our intuition is that, the less natural the code is, the more
CodeBERT will have issues to notice small changes in it,
i.e., a difference in a single node, and thus, the higher the
cosine will be. Consequently, the high similarity between
both embeddings – of the original and predicted code –
may be a symptom of unnaturalness of the code.

• CBnt acc: the accuracy of prediction (whether the pre-
dicted code matches the original one or not). This is
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Fig. 1: The CODEBERT-NT source-code metrics calculation workflow.

a boolean metric where 1 is attributed to a matching
prediction and 0 otherwise. Intuitively, we believe that the
more the code is natural, the more CodeBERT predictions
are accurate.

Finally, each line is mapped with its prediction-scores forming
a matrix M ∈ R3×n where n is the number of collected
propositions in that source-code line.

The AST parsing and node-location extraction part has
been implemented in Java and uses Spoon [27], a Java code-
source analysis library. Whereas, the rest of the process has
been implemented in python and uses the CodeBERT Masked
Language Modeling (MLM) task to predict the masked codes.

2) n-gram ranking: To compare CodeBERT with n-gram
models in terms of code naturalness aspect capturing, we
proceed as follows:

For every considered issue, we train two n-gram models
specific to that version of the project using two distinct
tokenization techniques1:

• Java Paraser tokenizer (noted JP) which tokenizes the
code according to the Java grammar, and thus, discarding
empty lines as well as java-doc and code-comment lines.

• UTF8 tokenizer (noted UTF8), which operates on the full
raw representation of the source-code.

We name the created models based on their underlying to-
kenization technique, JP and UTF8 n-gram. In the training
phase, we use all the lines from the files that have not been
changed by the fix commit, then we use each of these models
to attribute a cross-entropy score to the subject lines of the
buggy files, counting buggy and neutral lines as detailed in
Sub-section IV-A2. Finally, we rank the lines according to their
cross-entropy score in a descendant order such-as high values
of cross-entropy are associated with less code naturalness and
higher likelihood of bugginess.

To run this experiment, we use the current version of the n-
gram utilities library Tuna [28] with one of the recommended
configurations by Jimenez et al. [10] for distinguishing buggy
and fixed lines: 4 as n-order, 1 as unknown threshold and
Kneser Ney smoothing (KN). Note that we use KN instead of

1We use UTFLineTokenizer and JavaLemmeLineTokenizer
available in Tuna [28] GitHub repository under tokenizer/line/
(branch=master,repo=https://github.com/electricalwind/tuna, rev-id=44188e1)

the Modified Kneser Ney smoothing (MKN) because it is not
suited for short sequences.

C. Lines ranking

To assess the relevance of the information inferred from the
CodeBERT predictions, we rely on its ability to rank the buggy
lines before the supposed neutral ones. As we do not have any
labelling of ”natural” and ”unnatural” source-code dataset and
based on the naturalness hypothesis which assumes that ”not
natural lines are more likely to be buggy”, we believe that the
prediction variation of CodeBERT under naturalness variation
of the input source-code can be observed through its ranking
of buggy and not buggy lines.

For every considered approach, metric and aggregation
method considered in our experiments, we rank all the lines
by bug first, then normalise the ranks by the total number of
studied lines for that bug. We report two ranking results per
bug per approach:

• the first hit: corresponds to the rank of the first-ranked
buggy line.

• mean: corresponds to the mean ranks of all buggy lines.
To cut ties when multiple lines share the same score, we
attribute the estimated rank by a uniform random selection. For
instance, if we have 100 lines sharing the same rank, among
which 3 lines are buggy, the random first hit rank will be equal
to 25, while the mean rank of the 3 buggy lines will be 50.

To check whether any of the 3 aforementioned metrics
are impacted by the naturalness variance of the source-code
(answer to RQ1), we generate one CodeBERT prediction only
by masked token. Then we aggregate the scores of each
line’ predictions by applying one of the following aggregation
metrics: minimum, maximum, mean, median and entropy.
Where the entropy is calculated as the following:

H(l,m) = −
∑n

i=1 log(si)

n
(3)

where {s1, s2, ..., sn} denotes the set of n scores attributed
to the line l for the metric m.

We then rank the subject lines by each of the metrics using
the different aggregation methods and following both sorting
directions: ascending and descending. As most of the results
are close to each other, we calculate the paired Vargha and

https://github.com/electricalwind/tuna


Delaney Â12 ratios, to conclude which combinations are the
best in terms of buggy lines ranking.

To check whether the extracted naturalness information
from CodeBERT predictions (answer RQ2), we compare the
ranking results of the 3 metrics using their best performing
aggregation method and sorting order, with the rankings re-
sults of random and complexity-based rankings. Where, the
complexity of a line corresponds to its number of Java Parser
tokens. This is inspired from the study of Leszak et al. [29],
where complex source code has been proven to be more likely
to be buggy. For the random ranking, instead of rerunning the
ranking multiple times, we simply used a basic probability
calculation of the rankings.

Finally, to compare the effectiveness of CODEBERT-NT
with similar techniques in capturing code naturalness we com-
pare its buggy-line rankings with the n-gram cross-entropy,
measured as described in Sub-section IV-B2 (answer to RQ3).
For this comparison, we consider the CODEBERT-NT rank-
ings effectuated by its best performing metric, selected from
the previous research questions.

To have a better understanding on the differences signif-
icance we run statistical tests of Wilkixon and Vargha and
Delaney Â12 on all of our comparison results.

D. Threats to Validity

The question of whether our findings generalise, forms
a typical threat to validity of empirical studies. To reduce
this threat, we used real-world projects, real faults and their
associated commits, from an established and independently
built benchmark. Still, we have to acknowledge that these
may not be representative of projects from other programming
languages, domains or industrial systems.

Other threats may also arise from the assumption that all
changed lines by the fix commits are buggy lines. While our
heuristics are the standard in the literature, we believe that
this selection process is sufficient given that we have used a
dataset where the fix commits have been manually untangled.
Additionally, we focus our study on the sole business logic
lines, thus reducing further the risk of considering as buggy,
lines irrelevant to the bug at hand.

Finally, our evaluation metrics may induce some additional
threats. Our comparison basis measurement, i.e., comparing
the ranking of source-code lines that has been trained on the
same source-code’s project with approaches that are agnostic
and has been trained on multiple projects. It is hard to compare
the advantage gained by training CodeBERT on a large number
of projects, including eventually the projects in our dataset,
against the advantage gained by the n-gram models when
trained on a specific project source-code and predicting the
naturalness of lines of that same project.

V. RESULTS

A. RQ1: Metrics and aggregation methods

To evaluate the CODEBERT-NT metrics, we ranked the
subject lines according to the aforementioned metrics. We
start by calculating one score per line for every metric, by
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Fig. 2: Buggy lines ranking using 1 prediction per token and
the three available metrics with different aggregation metrics.
The less CodeBERT is confident when predicting, the more
likely the line is to be buggy.

aggregating the scores of the predictions in that line. Then, we
sort the lines according to their score in both orders - ascendant
and descendant - and calculate the paired (by bug) Vargha
and Delaney Â12 difference between both orders effectiveness
in terms of attributing the lowest ranks to the buggy lines;
more precisely the average ranking of the buggy lines and the
smallest rank attributed to a buggy line, per bug. (Please refer
to section IV for details)

These results are depicted in Table I where values around
0,5 depict that the considered pair of metric-aggregation
method does not bring any advantage in ranking buggy lines
first, while values above 0,5 confirm an advantage for the
ascendant sorting order and below 0,5 an advantage for the
descendant one.

Figure 2 depicts the box-plots of the normalised rankings
by number of lines of each bug. Interestingly, the prediction
confidence score seems to be a good indicator of naturalness
and thus of bugginess likelihood. Noticeably, low confidence
scores are more often attributed to buggy lines than neutral
ones. This explains why aggregating this metric by using the
maximum value by line gives the worst guidance to our target,
while sorting by the minimum score gives the best ranking
over all considered pairs metric-aggregation.

At the same time, we do not observe any relevant differences
when ranking the lines by either the cosine of the embedding
or the correctness of predictions. This is also confirmed by
the Table I where most of the Â12 values are around 0,5
when using each of the aggregation methods on these two
metrics. Nevertheless, we notice that the best method to rank
the buggy lines by cosine similarity is via ranking the lines
by their highest scores of similarity, where the high (max)
values are considered as symptoms of unnaturalness. We also
notice a trend that confirms the correlation between naturalness
and code predictability, such as the lower the mean of correct
predictions in a code is, the less natural is the code.

By checking Table I we also see that the difference of
ranking the lines by low confidence, from the other metric-
aggregation methods is significant, Vargha and Delaney Â12

effect size values are more than 0.6, which are significantly



TABLE I: Paired Vargha and Delaney Â12 effect size values of the buggy lines ranking by different pairs of metrics-aggregation
methods in ascendant and descendant order. cos refers to CBnt cos (the Cosine similarity between the embeddings of the original
code and the predicted one), conf refers to CBnt conf (the CodeBERT-confidence that the predicted code is probably correct)
and the acc metric refers to CBnt acc (whether the predicted code matches the original one).

Metric conf min conf max conf mean conf median conf entropy cos min cos max cos mean cos median cos entropy acc min acc max acc mean acc median

1st hit 0.6196 0.4993 0.5528 0.5542 0.4387 0.5084 0.4763 0.5016 0.4989 0.4980 0.5004 0.4996 0.5118 0.4996
Mean 0.6325 0.5009 0.5613 0.5530 0.4350 0.5138 0.4818 0.5027 0.5058 0.4980 0.5004 0.4996 0.5122 0.4996
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Fig. 3: Comparison of the buggy lines rankings by CodeBERT,
Random and Complexity (number of tokens by line). Code-
BERT outperforms Random and Complexity in ranking buggy
lines.

higher to the rest of confidence aggregation rankings. Less
noticeable, the ranking by increase of the line’s maximum
embeddings cosine-simalirity and mean prediction accuracy
yield respectively Â12 values of around 0,52 and 0,51 when
compared to the other studied aggregation methods when
applied on the same metrics.

CODEBERT-NT can infer the naturalness of code
through masked token predictions. The unnatural in-
formation can be inferred the best from the decrease of
prediction confidence (considering the minimum value
per line), the increase of cosine similarity between the
embedded original and predicted code (considering the
maximum value per line) and the decrease of average
prediction accuracy per line.

B. RQ2: Comparison with random and complexity based
rankings

Figure 3 shows the distribution of the normalised rankings
of the first ranked buggy line and the average rank of buggy
lines by bug when using CODEBERT-NT metric-aggregation
pairs selected from the results of RQ1 (ascendant minimum
CBnt conf, descendent maximum CBnt cos and ascendant
mean CBnt acc), uniform random ranking and token-number-
complexity descendant ranking.

Surprisingly, random and complexity lead to similar rank-
ings with a small advantage for random. This observation
implies that tokens-number-complexity does not capture well

TABLE II: Vargha and Delaney Â12 of (CODEBERT-NT low-
confidence-metric rankings compared to the other ones.)

CBnt conf Vs CBnt cos CBnt acc Complexity Random

1st hit 0.578 0.609 0.605 0.607
mean 0.565 0.619 0.620 0.622

the code naturalness in the studied setup: naturalness on the
line-level-granularity of the business-logic code.

As can be seen from the boxplots, CODEBERT-NT out-
performs the baseline techniques in ranking the buggy lines
first, using any of its three metrics. In fact, except for a small
portion of our dataset bugs, CODEBERT-NT low-confidence
performs the best in estimating the bugginess of the target
lines, with respectively a 1st hit and mean buggy-line ranks
lower in average by around 6% and 4.7% than the following
ranks – attributed by the cosine similarity – and around 11%
and 5% lower than the least performing ranking effectuated
by uniform random. This noticeable difference between the
CODEBERT-NT results with the two considered techniques,
more specifically the low confidence CBnt conf ranking, en-
dorses the fact that CODEBERT-NT can be considered as a
comparison baseline and a new method for naturalness based
tasks.

Although, the two remaining CODEBERT-NT metrics, av-
erage accuracy CBnt acc and high embeddings similarity
CBnt cos, outperform both baselines and yield lower rankings
than uniform random by respectively 3% and 5% in ranking
the first hit buggy line, they perform however similarly to the
baselines when comparing their mean ranking of all the buggy
lines, with a small advantage of only 0,4% for the ranking by
embeddings similarity.

To validate this finding, we perform a statistical test
(Wilcoxon paired test) on the data of Figure 3 to check for
significant differences. Our results showed that the differences
are significant, indicating the low probability of this effect
to be happening by chance. As illustrated in Table II, the
size of the difference is also big, with CODEBERT-NT low-
confidence yielding Vargha and Delaney Â12 values between
0.58 and 0.6 indicating that CBnt conf ranks the buggy lines
the best in the great majority of the cases. However, the
CODEBERT-NT accuracy and embeddings-similarity metrics
outperform random respectively, in only 51% and 48% of the
cases.
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Fig. 4: Comparison of the buggy lines rankings by CodeBERT,
UTF8 n-gram and JP n-gram models (created respectively
using UTF8 and Java Parser tokenizers). CodeBERT ranking
is comparable to the n-gram models one.

CODEBERT-NT metrics describe source-code
naturalness more accurately than the baselines
uniform-random-selection and tokens-count-
complexity based rankings. CODEBERT-NT low
confidence – CBnt conf – is the most effective metric
and outperforms the uniform-random-ranking by 11%
in ranking the first hit buggy line and 5% in ranking
all the buggy lines, in average.

C. RQ3: Comparison with n-gram

To answer this question, we train two n-gram models per
buggy version of our dataset that we then use to compute
the cross-entropies of the subject lines corresponding to the
corresponding bug, then we rank these lines according to the
resulting values and reproduce the same analysis as in RQ2.
We illustrate in Figure 4 the distribution of the normalised
rankings of the first ranked buggy line and the average rank
of buggy lines by bug when using CODEBERT-NT low con-
fidences ranking – CBnt conf –, the descendant cross-entropy
ranking from a UTF8-tokenizer-based n-gram model and a
JavaParser-tokenizer-based one. Additionally, we illustrate the
random ranking in the boxplots as the simplest baseline for
this task.

As expected, the three approaches outperform the uniform-
random-ranking in most of the cases and yield very compa-
rable results with a small advantage to CODEBERT-NT on
ranking the first buggy line over the n-gram techniques and a
small advantage to JP n-gram in regards of the average rank of
buggy lines. In both comparisons, UTF8 n-gram falls slightly
behind these two latter techniques.

To validate this finding, we performed a similar statis-
tical test as in RQ2 on the data of Figure 4 and found
that the differences with random are significant, while the
differences between n-gram cross-entropy and CODEBERT-
NT low-confidence rankings are negligible. As illustrated in
Table III, the size of the Â12 differences are equal to 0.518
and 0.468 between CODEBERT-NT and JP n-gram models

TABLE III: Vargha and Delaney Â12 of CODEBERT-NT low-
confidence-metric rankings compared to n-gram and Random
ones.

Approaches Â12
Random UTF8 JP

1st hit mean 1st hit mean 1st hit mean

CBnt conf 0.606 0.621 0.536 0.502 0.518 0.468
JP 0.575 0.630 0.559 0.588
UTF8 0.560 0.602
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Fig. 5: Comparison of the buggy lines rankings by CodeBERT,
UTF8 n-gram and JP n-gram models (created respectively
using UTF8 and Java Parser tokenizers) when ranking all lines.
CodeBERT ranking is comparable to the n-gram models one
and ranking the business-logic source-code lines first give it
an advantage over the n-gram ranking.

and 0.536 and 0.502 for both reported rankings, meaning that
both approaches yield comparable results, which confirms that
CODEBERT-NT can carry out code naturalness related appli-
cations with similar effectiveness as the statistical language
n-gram models.

CODEBERT-NT masked token prediction confidence
indicates naturalness of bugs as accurately (slightly
better) as program-specific n-gram models.

VI. DISCUSSION

A. Impact of interesting lines selection

Our empirical results show evidence that CODEBERT-NT
can infer source-code naturalness yielding the same results
as n-gram models and outperforming the uniform-random
and code-complexity based techniques in attributing higher
ranks to buggy lines when sorting source-code by naturalness.
These experiments have been driven on the same buggy
versions source-code whose lines count at least one buggy line.
Precisely, we have excluded all the lines outside the business-
logic source-code and kept only the bugs that counted at least
one buggy line within their remaining lines.

To better understand the impact of this line selection step,
we reintroduce all the bugs with their full source-code in
our dataset and reproduce the same study as in RQ3. We
have then attributed the worst rank to all unranked lines



by CODEBERT-NT, i.e., outside of the business-logic. This
implies that for CODEBERT-NT, the business-logic lines are
ranked first by their min-confidence and the remaining lines
are ranked after with a random uniform selection logic. The
n-gram approaches ranking is applied as described previously,
the same way on all lines – business- and non-business-logic
related ones – having each two cross-entropy values from
every corresponding n-gram model. The ranking distributions
are illustrated in Figure 5.

Although the results of the three approaches remain compa-
rable, the trend is that for a noticeable portion of studied bugs,
CODEBERT-NT remains able to rank buggy lines better than
the n-gram models. The difference is wider and more visible
between the ranks of the first buggy line which can be seen
in the left boxplot of Figure 5. Interestingly, we observe that
ranking the business-logic lines with CODEBERT-NT and the
remaining lines with a uniform random ranking outperforms
ranking all the lines (business- and not business-logic related
ones) by their n-gram calculated cross-entropies. These results
lead to the conclusion that the naturalness analysis of the non-
business-logic lines do not contribute with useful information
to the considered ranking tasks, but instead alters its results
when attributing a higher rank to the targeted lines.

To check whether this observed decrease of performance for
n-gram is indeed caused by the additional lines or because they
performed worst on the previously excluded bugs from our
dataset, we reproduce the same comparison on the subset of
our dataset where all bugs are located outside of the business-
logic code, implying that CODEBERT-NT will attribute the
worst score to every buggy line. We illustrate the rankings
distribution of the ”worst-score” strategy (ranking all buggy-
lines last), JP and UTF8 n-gram models and uniform-random
in Figure 6.

Although small, the n-gram models kept some advantage
over random ranking as in the Figures 4 and 5, in contrast
to CODEBERT-NT’s ”worst-score” results.The contrasting re-
sults between the Figures 6 and 5 highlight the negative impact
of ranking the not business-logic lines by naturalness as they
compensated CODEBERT-NT’s disadvantage of attributing the
worst ranks to buggy lines, in 10% of the studied cases.
Consequently, these results reinforce our conclusion that in-
cluding the non-business-logic lines in the analysis adds noise
to the search-space [25], and consequently hinders the ranking
accuracy.

B. Which metric to use for which bug?

The empirical results driven on our large set of buggy
versions highlight the effectiveness of CODEBERT-NT in cap-
turing the naturalness of source-code, especially via its low-
confidence metric. However, from the outliers in the Figures 2,
3, 4 and 5, we notice that CODEBERT-NT does not perform
equally on all considered bugs. Which means for instance that
it outperforms uniform-random ranking in the majority of the
cases, but yields worst rankings for a small portion of the
dataset. Therefore, we turn our attention towards investigating
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Ranking approach
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Fig. 6: Comparison of the buggy lines rankings by worst
possible scores, UTF8 n-gram and JP n-gram models (created
respectively using UTF8 and Java Parser tokenizers) when
targeting the buggy versions not exposing any business-logic-
related buggy line. n-gram techniques perform similarly to
random on these subject buggy versions.
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Fig. 7: Which metric ranks the best the buggy lines, in most
of the cases? CodeBERT confidence CBnt conf performs the
best for around 50% of the cases, followed by CBnt cos then
CBnt acc which perms almost similarly to random. Therefore,
There’s no big benefit in using CBnt acc while it could
be interesting to complement CBnt conf capabilities, using
CBnt cos.

the possibility of better handling those bugs, leveraging one
of the other CODEBERT-NT metrics.

We start by mapping every metric with the bugs on which it
attributed the best mean ranking to the buggy lines. In figure 7,
we illustrate a Venn diagram of this distribution, including
uniform-random-ranking as baseline. As shown in our results,
the CODEBERT-NT confidence is the best naturalness indica-
tor for the majority of bugs, followed by the cosine similarity
and the prediction accuracy. We also notice that except for
a minority of 20 bugs, at least one of the CODEBERT-
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Fig. 8: Distribution of Bugs best-ranking-metric by standard deviation of the metrics measured on their corresponding subject
lines. Except for few scores, CBnt conf ranks the majority of the bugs the best independently from the measured SDs.

.
NT metrics achieves better scores or similar to random-
uniform ranking. Additionally, except the large intersection
set of bugs that are best-ranked by the prediction accuracy
and uniform-random-ranking, the metrics rarely achieve their
best rankings of the buggy lines for the same bugs. This
observation introduces the hypothesis that the metrics are
complementary and eventually, one could rely on different
metrics for different bugs.

Aiming at distinguishing between our dataset bugs, we
measure the metrics standard deviation (SD) per studied lines.
In this setup, we exclude from our clusters the bugs that
are intersecting with random and plot the SD distributions
of the remaining ones, in Figure 8. The plots illustrate that
the bugs from different clusters share similar ranges of SD
with mean values around 0.27, 0.09 and 0.31 for respectively
CBnt conf, CBnt cos and CBnt acc. Also in the majority of
the cases, the SD of the bugs best treated by other metrics
than CBnt conf fall in the same range of this latter, thus,
cannot be distinguished from each other. However, we notice
that for some SD values, CBnt cos ranks better more bugs
than CBnt conf. This difference is noticeable for roughly:
SD(CBnt conf) values between 0.2 and 0.24 or above
0.35, SD(CBnt cos) values above 0.14 and SD(CBnt acc)
values below 0.05 or between 0.19 and 0.28 or between 0.395
and 0.42. These SD ranges represent a small fraction of our
dataset, exactly 357 bugs, among which 193 where CBnt cos
performed the best and 200 where it outperformed CBnt conf,
which correspond respectively to 15.8%, 8.5% and 8.8% of
the studied bugs. Nevertheless, these results may motivate
future investigation on the use of CBnt cos over CBnt conf
in similar cases, on different setups.

C. Impact of generating more predictions per token?

To have a better understanding on whether generating more
predictions from the model could improve the bugginess
information retrieved by CODEBERT-NT, we extend our ex-
periment of RQ1 by comparing the ranking results using the
best proven pairs of metric-aggregation from our results, when
generating 1, 2, 3, 4 and 5 predictions per token. We illustrate
in Figure 9 the box-plots of the normalised rankings by number
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Fig. 9: Buggy lines ranking using 1, 2, 3, 4 and 5 predictions
per token. The more predictions we use, the more the infor-
mation about the confidence gets dissipated, thus the more the
ranking performance decreases, except when considering the
accuracy metric.

of lines of each bug. Although comparable, the results depict
a clear dissipation of the bugginess indicators retrieved from
the prediction confidence and the cosine similarity metric,
when we aggregate the values of more than one prediction
by token. In the other hand, we can see that the ranking
performance effectuated by the prediction accuracy raises
when we consider 2 and 3 predictions then converges to a
stable value. Besides the fact that this increase confirms further
the correlation between code-naturalness and predictability, it
remains negligible and keeps this metric-ranking far below
the low-confidence one. Therefore, we believe that it would
be more cost-efficient and appealing for similar studies, to
generate only 1 – eventually up to 3 – predictions instead of
5, as the default setting of CodeBERT.

VII. CONCLUSION

Naturalness of code forms an important attribute often
needed by researchers when building automated code analysis
techniques. However, computing the naturalness of code using
n-gram requires significant amount of work and a salable
infrastructure that is not often available. An alternative solution
is to use other readily available language models, perhaps more



powerful than n-grams, such as transformer-based generative
models (CodeBERT-like). Unfortunately, these models do not
offer any token-based appearance estimations since they aim
at generating tokens rather than computing their likelihood.
To this end, we investigate the use of predictability met-
rics, of code tokens using the CodeBERT model and check
their appropriateness in bug detection. Our results show that
computing the confidence of the model when masking and
generating a token, irrespective of whether the predicted token
is the one that was actually predicted by the model, offers the
best results, which are comparable (slightly better) to that of
n-gram models trained on the code of the same project (intra-
project predictions).
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