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Abstract—Most enterprise applications use logging as a mech-
anism to diagnose anomalies, which could help with reducing
system downtime. Anomaly detection using software execu-
tion logs has been explored in several prior studies, using
both classical and deep neural network-based machine learning
models. In recent years, the research has largely focused in
using variations of sequence-based deep neural networks (e.g.,
Long-Short Term Memory and Transformer-based models) for
log-based anomaly detection on open-source data. However,
they have not been applied in industrial datasets, as often. In
addition, the studied open-source datasets are typically very
large in size with logging statements that do not change much
over time, which may not be the case with a dataset from
an industrial service that is relatively new. In this paper, we
evaluate several state-of-the-art anomaly detection models on
an industrial dataset from our research partner, which is much
smaller and loosely structured than most large scale open-
source benchmark datasets. Results show that while all models
are capable of detecting anomalies, certain models are better
suited for less-structured datasets. We also see that model
effectiveness changes when a common data leak associated
with a random train-test split in some prior work is removed.
A qualitative study of the defects’ characteristics identified by
the developers on the industrial dataset further shows strengths
and weaknesses of the models in detecting different types of
anomalies. Finally, we explore the effect of limited training
data by gradually increasing the training set size, to evaluate
if the model effectiveness does depend on the training set size.

Keywords–Anomaly detection; Deep learning; Log mining;
Software engineering;

1. INTRODUCTION

Software in the present day consists of many interconnected
systems that rely on each other to handle requests. Recording
run-time logs is a common practice in such systems [1], and
the logs are frequently the main source for debugging [2]. Logs
are routinely written by an application to a central location,
often at various logging priority levels (e.g., error, warning,
info etc.). As logging is done in real-time, logs provide an
insight into the current system health and how it is failed.
This then points to the natural next step: by monitoring the
system logs in real-time, we can quickly and accurately detect
when system failures occur, reducing system downtime.
Large-scale industrial applications often have a large amount

of logs being printed every second [3], making manual in-
spection of those logs in real-time a difficult task. This is
further compounded by different types of errors, and errors
that require inspecting the entire event sequence, as opposed
to a single log line. Servers also handle multiple requests in
parallel, resulting in data from different requests being logged
at the same time. All those issues, combined with the sheer
volume of logs printed by large-scale complex applications,
have rendered real-time manual inspection unfeasible. There-
fore, an automated approach is required to shift through all
the data and correctly detect anomalies.
A common automated method used in the industry to detect
anomalies using logs is to utilize deterministic rules. By
creating a set of regular expressions or search terms, it’s
possible to search through the log sequences to find potentially
anomalous events. The search terms could include words such
as “error” or “failure”. While this does help with detecting the
more obvious of anomalies, it is not accurate: those search
terms could easily appear in non-anomalous sequence, or it
could be an error that is self-corrected and does not result in a
more severe anomaly. In addition, some anomalies could be a
result of an incorrect sequence, which may appear benevolent
on the surface. For example, if a file is opened, but not closed,
the log sequence may not show any errors: it would just end
before the closing of the file. Those anomalies cannot be
detected by the use of a deterministic algorithm. In order to
evaluate whether the sequence is anomalous or not, the entire
sequence needs to be considered, not just the current log event.
To evaluate its effects, this type of deterministic algorithm was
implemented on our industrial partner’s logs, and the results
were less than satisfactory. Results in terms of F1-score, one
of the metrics that will be defined in section 3-D, were 40%
below that of the lowest performing state-of-the-art anomaly
detection model.
Therefore, in this paper, our goal is to study the effectiveness
of state of the art log anomaly detection techniques. Our data
comes from our industrial partner’s microservice hosted on
AWS Lambda, whose logs are collected from AWS Cloud-
Watch.
There have been several studies done on evaluating automatic
detection of anomalies using execution logs in the past, but
most these studies are on large open-source data. We identify
some differences between the characteristics of such studies
and our interest in this paper (industrial system with limited
logs), as follows:
1) Data size: Open-source log collections have large amounts
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of data, usually over 10 million lines of logs [4]. A
recently developed microservice in a small company, for
example, may only have logs in the range of thousands,
often produced by the underlying platform during testing.
If this microservice is deemed sensitive to the business,
the anomaly detection model will need to be trained (or
fine-tuned) and evaluated on the limited dataset, before
being deployed to production. Therefore, the evaluation
mechanism of the models stated above using large open-
source datasets and the corresponding findings may not
hold during many industrial practices.

2) Data uniformity: As most of the open-source log col-
lections are typically retrieved from well-established in-
dustrial applications, they are often uniform in nature.
This means the logs do not change much over time, due
to modifications of source code logging statements. In a
relatively new industrial application, the source code logs
would be updated frequently to show missing data, and
would undergo additions/removals of logging statements
as well. In addition, the logs may lack structure, and
have more of a natural language free format of logging
information. These aspects are less studied in most of the
automated log anomaly detection methods.

To fill this gap (evaluation of log anomaly detection for small
industrial datasets), in this paper, we have selected several state
of the art models and trained them on our datasets.
Replication package: The source code for analyzing data is
publicly available at https://zenodo.org/record/7553290. This
includes the open-source dataset as well. Please note that the
industrial dataset has not been included due to confidentiality
reasons.

2. BACKGROUND

Log anomaly detection is generally performed in 3 steps: Pre-
processing, Model training and Prediction. As logs are written
by developers, they are often in free-form natural language
format, and the pre-processing step includes converting them
into a more structured form, which can then be fed into a
model for training. Common pre-processing steps include:
1) Log cleaning: A single log line often comprises of several

elements, such as timestamp, log level and log content.
During this step, the log content is extracted and added as
a property of an object. This object may also contain the
log level and timestamp, based on the model requirements.

2) Template mining: A log comprises of two distinct parts:
a constant and a variable. The constant part, often also
called log template or log key, has the overall structure of
the log statement, as well as words that do not change for
each statement. The variable part includes the parameters
of the log, which may change for each log statement of its
kind. For example, a log message such as “Received block
3587508140051953248 of size 67108864” can be split into
the log key “Received block * of size *”, and the parameter
values [3587508140051953248, 67108864]. Popular log
template miners include Spell [5], which uses a longest
common sub-sequence based approach, and Drain [6],

which uses a parse tree with a fixed depth during the log
group search.

3) Sequence generation: Since multiple requests can be
handled by a system at a given moment, log messages cor-
responding to a specific request would be scattered among
other log statements. During this step, logs corresponding
to each request/event is grouped together, by using a field
that denotes the request/event that log belongs to. The field
name differs between systems: Hadoop Distributed File
System (HDFS) for instance uses block ID, while AWS
CloudWatch uses request ID.

4) Vectorization (optional): While log sequences can be
directly used to train a model, several papers go a step
further to vectorize the log keys. During this step, each
word of the log key is converted to a vector (by using
a method such as Word2Vec) and then aggregated over
the entire log. Additional steps would include semantic
information integration, such as replacement of synonyms
by using a lexical database and domain knowledge. The
final result is either a one-dimensional or 2-dimensional
array for each log key.

The type of model varies between papers, but can be divided
into 2 broad categories: classical techniques and deep learning
techniques.

2.1 Classical Techniques

Classical techniques for anomaly detection have been in use
for over a decade. Statistical methods, such as statistical
workflow execution [7], state machine-based modeling [8] and
Hidden Markov Models [9] have been used in several papers.
Frequent pattern mining, also called invariant mining, has also
been used with promising results [10] [11] [12].
Classical machine learning based approaches have also been
used in several papers, with varying degrees of success.
Classical machine learning based approaches include modeling
anomaly detection as a type of machine learning algorithm.
One possible method is to treat this as a clustering problem,
where normal log events need to be in one cluster and anomaly
events should be far away from the normal cluster (which
may themselves belong to either a single cluster or multiple
clusters). LogCluster used a similar mechanism, and used the
centroid of each cluster to depict the log sequence [13]. This
log sequence could then be used to identify the underlying
root cause. Log3C used a method called Cascading Clustering
to group log sequences, and a linear regression model to find
issues related to deterioration of system KPIs [14]. Another
approach is to use classification methods to categorize input
log sequences into normal or anomalous sequences, using
supervised learning. Logistic Regression was used in one
paper on several open-source datasets, using event count vec-
tors [15]. Liang [16] used a Support Vector Machine (SVM)
based model and a K-Nearest Neighbour (KNN) model on
vectorized logs, using several features such as event counts.
Another paper proposed an SVM based model that used
empirical properties of logs, such as frequency and periodicity,
to detect anomalies [17].

https://zenodo.org/record/7553290


A different approach was taken in another experiment, where
anomaly detection was modeled as a dimensionality reduction
problem [18]. This was done by transforming the data to rely
on limited dimensions (as opposed to the high dimensionality
of the original dataset). Anomaly detection was then performed
by identifying logs at a distance higher than a specified
threshold. An important aspect to note here is that they used
parameter value vectors in addition to log event count, as
parameter value vectors are often unused in machine learning
models. Graphical methods have also been used in this area
of research, with promising results. A CFG mining method
was used to detect sequence and distribution anomalies on
synthetic traces and log datasets [19]. Another paper employed
statistical inference methods to infer dependencies among log
events, by using a 3 step algorithm [20]. NLP based log
parsing methods were evaluated in a different paper, by using
different n-gram models and hashing [21]. Modelling was done
via Bisecting K-Means and Latent Dirichlet Allocation (LDA),
followed by Random Forest for classification.
While classical methods have shown some performance, they
have recently been out-shined by models based on deep neural
networks.

2.2 Deep Learning Techniques

In deep learning techniques, the log templates/vectors of the
training set are fed into a neural network, and validated
with a separate set of data. Most models use Long Short-
Term Memory (LSTM), which is a type of Recurrent Neural
Network (RNN), with promising results.

2.2.1 LSTM Based Techniques

LogRobust is one such model [3]. LogRobust used Drain [6]
to mine for log templates, followed by a textual preprocessing
stage to assist with word vectorization. The words were then
vectorized using FastText [22], then aggregated using TF-IDF
of each word, so that a single vector represented a single log
event. The goal behind semantic aggregation was to reduce
noise in the data, which can occur from incorrect log template
parsing and continuously evolving logs. The TF-IDF aggre-
gation ensured that the effect of evolving log statements and
incorrect log parsing was reduced, resulting in a more uniform
vector for each variation of log event. An attention-based
bidirectional LSTM was then trained using the semantic vec-
tors, with injected instabilities in the logs. The model results
were compared to classical methods, and showed promising
results. Vinayakumar [23] proposed a similar model, which
used a stacked-LSTM (created by adding recurrent LSTM
layers on top of existing LSTM layers) and was trained
with both normal and anomalous logs. Experiments were then
performed to optimize the hyper-parameters of the model using
the CDMC2016 dataset. Wang [24] compared performances of
different natural language processing feature extraction meth-
ods, namely Word2Vec and TF-IDF. The extracted features
were fed into an LSTM to perform anomaly detection, and
compared against Gradient Boosting Decision Tree (GBDT)
and Naive Bayes methods. Zhao [25] proposed a tokenization

method based on ASCII values of log characters. Each log
event was considered a sentence, and converted to a string
of ASCII values normalized to start with 0. This was then
used to train an LSTM model. Another paper explored the
temporal-spatial information in microservices, in the form of
logs (temporal) and query traces (spatial) [26]. By combining
the data and training an LSTM model, they were able to
segregate anomalies from normal data and detect failures.
Several other models in this category are evaluated on this
paper (DeepLog[27], LogAnomaly[28] and LogBERT[29]),
and are explained in detail in the next section. They were
selected due to their high metrics, recentness and readily-
available source code.

2.2.2 Other Techniques

While RNNs have been most widely-used type of neural
network, there have been some research on other types of
neural networks as well. Liu [30] proposed a model based
on Gated Recurrent Unit (GRU) networks, which is another
type of RNN, combined with a Support Vector Data De-
scription (SVDD) model. PCA was initially applied on the
dataset to reduce dimensionality, followed by the GRU-SVDD
model. This was evaluated on classical KDD Cup99 datasets.
Lu [31] used a Convolutional Neural Network (CNN) for
anomaly detection. After parsing log events into log templates,
a custom trainable matrix called Logkey2Vec was used to
map each log key into a vector. The CNN was then trained
using the vectorized logs, from the HDFS dataset. Another
model, LogGAN, was proposed as an LSTM-based Generative
Adversarial Network (GAN) [32]. By using a generator and a
discriminator, LogGAN was able to analyze distribution of the
training set and create artificial data points. This was then used
to mitigate data imbalance between normal and anomalous
datasets.
Failure prediction and diagnosis are two other avenues of log-
based reliability engineering, but are out of scope for this
paper, and therefore have not been explored in detail.
Among these papers, only a limited set have applied models
on industrial datasets. To our knowledge, this is the first
time those state-of-the-art models (DeepLog, LogAnomaly and
LogBERT) have been evaluated in an industrial dataset, with
limitations on data size and uniformity.

3. METHODOLOGY

3.1 Objectives and RQs

The main objective of this study is to evaluate the effectiveness
of current state-of-the-art anomaly detection models on an
industrial dataset, to determine which would be the best
candidate to be potentially deployed to production. To address
the this objective, we explore the following research questions
in this paper:
RQ1: How effective are the current log anomaly detection
models in detecting failures, in an industrial dataset?
The goal of this research question is to explore the
effectiveness of each model applied to an industrial dataset.
We compare and contrast our findings with reported results



on a well-known open source dataset in this domain (the
HDFS dataset).
RQ2: Does the type of train-test splitting affect the reported
effectiveness of the models?
There has been a recent observation in the literature of a
data leak during the random sampling process [33] in many
similar studies. The issue is that using a random split for
generating train/test sets results in future logs potentially
being used to predict past logs, resulting in incorrect reports
of metrics. In this research question we explore the effect of
using a time-based split instead of a random split on both the
industrial dataset and HDFS dataset.
RQ3: How successful are the models in detecting different
types of failures?
In RQ3, we conduct a qualitative analysis of different types
of anomalies in the industrial dataset. The goal is to explore
if the failures can be categorized to types (identified by our
industrial partner), and to see if certain models are better at
predicting certain types of failures.
RQ4: How does the size of training set affect the model
effectiveness?
One of the driving factors of this research is the impact of
limited data on training anomaly detection models. In this
research question, we aim to find if the model effectiveness
can be improved by increasing the training set size.

3.2 Datasets
The models are evaluated on two datasets:
1) Industrial dataset: A collection of logs from an industrial

application. This application is a microservice hosted on
AWS Lambda, which deals with incoming requests from a
user application. The logs themselves have been collected
from AWS CloudWatch. Both CloudWatch and Lambda
are part of the Amazon Web Services cloud platform [34].
As part of the larger AWS features, CloudWatch has built-
in support for log correlation, visualization and monitoring.
A set of sample log templates can be found in figure 1
(raw logs have not been shown here due to confidentiality
reasons).

2) Open-source dataset: the HDFS dataset, from the Logpai
repository [4]. The HDFS dataset has been widely used
to benchmark anomaly detection models, and comes with
over 10 million lines of logs that have been labeled. A
selected set of log templates from this dataset can be found
in figure 2.

The industrial microservice is a small-to-medium scale user-
facing application, and is assumed to be dealing with ap-
proximately a hundred user requests per day in production.
The endpoint itself has been in use for over 2 years, and has
recently undergone changes to allow for containerization. Due
to this, it was decided to retrieve the more recent logs, in order
to ensure stale data are not used to train the models.
Anomalies on this application are not monitored. Therefore,
the time to detect an anomaly could range between several
minutes or hours, depending on the severity of the anomaly

Table 1. Dataset properties

Dataset Number
of logs

Templates
count

Time
/duration

Industrial
microser-
vice

170,566 142 2 months

HDFS 11,175,629 53 39 hours

Figure 1: Sample logs from the industrial microservice

Figure 2: Sample logs from the open-source HDFS dataset

(which could raise alarms in a related but different application)
and based on how often a developer may manually check
the logs. In the event of an anomaly, the system could be
unresponsive for some time, or it could be returning failure
responses to the systems that call it. Those anomalies may
require restarting the service, or deploying a code change to fix
the underlying issue. Therefore, an anomaly detection model
could have a significant impact on reducing the application
downtime.
Table 1 outlines the properties of the two datasets. As can
be seen from the table, the industrial dataset is much smaller
than the HDFS dataset, which is in-line with the characteristic
mentioned earlier regarding dataset size. The template count,
on the other hand, is much higher in the industrial dataset,
even with its small size. This shows that it is loosely-structured
compared to the HDFS dataset, with the logs appearing in a
more natural language free-form format. The time duration is
also higher in the industrial dataset, which shows that as a
new microservice, a longer time duration is required to gather
logs (since it does not get requests as often).

3.3 Models

For all models, the logs undergo a preprocessing stage, where
data such as timestamps and large objects are removed from
the logs. Afterwards, Drain3 [6] is used to mine for log
templates (as explained in the Section 2), and log sequences
are generated for each sequence ID. Then the logs are split
into 3 parts: training set, normal test set and anomaly test set.
Then a sliding window method is used to generate history
sequences. After training the model with the given training
set, the two test sets are used to evaluate model performance.
It is important to note that the training set constitutes of only
normal logs. This is due to the fact that anomalous logs are



Figure 3: High level illustration of the log anomaly detection process.

rare to find in real-world, and there is a high data skew towards
normal data points in any industrial dataset. This is followed
in all the models evaluated in this study.
A diagram of the experiment workflow can be found in figure
3.
In this paper, we compare the following state-of-the-art models
published in past papers:
• DeepLog [27]
• LogAnomaly [28]
• LogBERT [29]
• Baseline LSTM Model
These models are selected because (1) they have showed great
results in their original paper, (2) they are relatively recent (all
have been published in the last 6 years), and (3) their source-
code is readily available and is replicable. In the following
sub-section, we explain them in details.

3.3.1 DeepLog

DeepLog [27] is an LSTM model for anomaly detection, but
unlike most models, DeepLog considers both the log template
as well as the parameter values of the log event as inputs.
DeepLog consists of two main models: a log key anomaly
detection model and a parameter value anomaly detection
model. The log key sequence is used to train the log key
anomaly detection model, which uses an LSTM. This is treated
as a multi-class classification problem, where each distinct log
key is assigned a class. By using the history of recent log
keys (named window size), the model outputs the probability
distribution over all log keys for the next log. If the actual
log is included in the top k candidates, it is treated as non-
anomalous. If it is not included, then it is classified as an
anomaly. The parameter value anomaly detection model uses
a separate LSTM, and is trained with parameter vectors, which
includes variable parts of the log as well as the time difference
between the current and previous log event. The model outputs
a predicted parameter value vector, which is then compared
with the one from the actual log event. Error is calculated
as the difference between predicted and actual, and compared
against previously generated Gaussian error distribution. If it
is within a pre-specified confidence interval, it is classified as
normal, and as an anomaly otherwise.
In addition to anomaly detection, DeepLog also includes a
workflow creation aspect. By using the anomaly detection
model and a density clustering approach, DeepLog can re-
create the flow that resulted in a failure, allowing developers to
investigate root causes of failures more effectively. While this

is not part of anomaly detection itself, it provides a significant
enhancement for failure diagnosis.

3.3.2 LogAnomaly

LogAnomaly [28] is another model proposed within the last
few years for anomaly detection. It considers anomalies of
2 types: sequential anomalies and quantitative anomalies.
Sequential anomalies occur when a log sequence deviates
from normal patterns, which are learned during the training
phase as training data only consists of normal logs. This is a
common method for anomaly detection, which is also used by
several other models described earlier. Where LogAnomaly
differs, however, is when it comes to the second anomaly
type: Quantitative anomalies occur when linear relationships
are broken between log sequences. For example, a normal
sequence may have one log statement for opening a file and
another for closing it. This is a 1:1 relationship between two
logs, which means the number of file opening logs should
equal the number of file closing ones. In a test sequence, if a
file opens but does not close, this would constitute an anomaly,
and would be detected as the linear relationship between the
two logs has now been violated.
LogAnomaly starts off by using Frequent Template Tree
(FT-Tree) [35] to parse logs and extract templates. The log
templates are then encoded by using a mechanism named
Template2Vec. In Template2Vec, first a set of synonyms and
antonyms is created using the lexical database WordNet and
domain knowledge. Then the distributed lexical-contrast em-
bedding (dLCE) model is used to create word vectors. Finally,
template vectors (for each log template) are calculated by
taking the weighted average of each word vector in the log
template.
Once the template vectors have been calculated, they are fed
into an LSTM model for training, which is then used to detect
sequential anomalies. For quantitative anomaly detection, the
model counts the different templates present in the history.
During detection phase, the model predicts the next log
based on its sequential history, and patterns learned during
quantitative relationships training phase. This outputs a vector
of probabilities for the next log, with one probability for
each log template. If the actual log is observed in the top k
candidates, it is classified as normal. Otherwise, it is flagged
as an anomaly.
LogAnomaly also does template approximation on new logs
unseen during the training phase. This is done by extracting
a temporary template using FT-Tree, calculating a template



vector and matching it to an existing one based on similarity.
The reasoning is that the majority of ”new” templates are
minor variants of existing ones, which have occurred due to
small updates to a logging statement.

3.3.3 LogBERT

A more recent deep learning model is LogBERT [29]. This
uses a transformer, based on BERT (Bidirectional Encoder
Representations from Transformers). During preprocessing,
log templates are first mined from log sequences. The tem-
plates sequence is then represented as a summation of a log
key embedding (a randomly generated matrix) and position
embedding (generated using a sinusoidal function). Then a
transformer encoder with multiple layers of transformers is
used to learn relationships in a log template sequence.
The model itself is trained by using two self-supervised train-
ing tasks: Masked Log Key Prediction (MLKP) and Volume
of Hypersphere Minimization (VHM). In MLKP, LogBERT is
trained to predict several masked log keys in a sequence. This
is done by replacing a set of random log keys in a sequence
with a [MASK] token, and having the model predict the
masked log keys. This gives the model contextual knowledge
of log sequences. The underlying goal is that if normal
and anomalous log sequences are sufficiently different, the
contextual knowledge can be used to differentiate anomalous
from normal sequences, since the model is only trained on
normal logs. In VHM, a hypersphere enclosing normal data is
created. Similar to Deep SVDD, the goal is to minimize the
volume of this hypersphere. The motivation is that normal logs
should be similar to each other in the embedding space, while
anomalous should be as far from the hypersphere as possible.
The final objective function is the addition of the two training
tasks, with a hyper-parameter α that adjusts the weight of the
VHM output.
The model’s final output is a vector of probabilities for the
next log key, similar to DeepLog and LogAnomaly above.
This is of length g, which includes the candidates with the
highest probabilities. If the actual log key is in this vector, the
log key is considered normal, and as an anomaly otherwise.
If a log key sequence consists of more than r log keys, the
sequence itself is considered anomalous.

3.3.4 Baseline LSTM Model

To establish a baseline, we use a basic LSTM model. This
model, similar to the models above, only use normal logs for
training. The LSTM model itself is built using 4 LSTM layers,
followed by a dropout layer composed of 100 neurons each.
The last layer is a fully connected Dense layer with a size
of X neurons, where X corresponds to the number of unique
log templates. The last layer is a softmax, which outputs a
list of probabilities for the next log, showing the most likely
candidates. Anomaly detection is done by checking whether
the next log is in the top k candidates. If it is within the
candidates list, it is classified as a normal sequence, otherwise,
as an anomalous sequence.

Table 2. Baseline LSTM model parameters

Layer type Output shape Parameters count
LSTM (3, 100) 40800
Dropout (3, 100) 0
LSTM (3, 100) 80400
Dropout (3, 100) 0
LSTM (3, 100) 80400
Dropout (3, 100) 0
LSTM (3, 100) 80400
Dropout (3, 100) 0
Dense (170) 17170
Dense (170) 29070

The anomaly detection mechanism is identical to the state-
of-the-art models, which is intentional. This allows us to test
whether the additional logic parts implemented in the state-of-
the-art models are useful at giving better predictions compared
to using a pure LSTM model.
The model was trained using the Adam optimizer, using
categorical cross-entropy as the loss function. The model
hyper-parameters were calculated using a simple grid-search
approach. The model details can be found in table 2.

3.4 Evaluation Metrics

Since anomaly detection is considered to be a type of clas-
sification problem, we use F1 score, precision, and recall to
evaluate model performance. All values are calculated using
Confusion matrix (true positives count, true negatives count,
false positives count and false negatives count). We excluded
the accuracy metric, which is calculated as the proportion
of correct predictions out of all predictions for our anomaly
detection models, due to the skew of data. Most of the logs
in any dataset are normal logs, with anomaly logs being only
a fraction of it. Therefore, a model can predict all logs as
normal, and still end up with a high degree of accuracy.
Precision calculates the relevancy of the predicted results. It’s
calculated as the proportion of true positives out of all the
positives detected. A high degree of precision is an indicator
of a stable model that does not raise many unnecessary alarms.
Recall is calculated as the proportion of detected anomalies
out of all anomalies. A model with high recall means it does
not miss many anomalies.
F1-Score is the harmonic mean of precision and recall. The
label F1 comes from the fact that both precision and recall
are weighted evenly. This is often used in anomaly detection
models as the single criterion to evaluate the model.
In this paper, we will be using the F1-score as the primary
metric for evaluating the models. Recall will be used as the
secondary metric, since it shows the ability of the model to
detect actual anomalies.

Precision =
TP

TP + FP
(1)



Table 3. AWS SageMaker Notebook Instance properties

Parameter name Value
Instance type ml.m5.4xlarge
Platform Amazon Linux 2
vCPU 16
Memory 64 GB

Recall =
TP

TP + FN
(2)

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

3.5 Experiment Setup

AWS SageMaker was used as the machine-learning platform
to conduct the experiments. AWS SageMaker is a cloud-based
machine learning platform, that allows the creation, testing
and deployment of ML models [36]. It also facilitates con-
nectivity between other AWS services, such as CloudWatch.
The industrial dataset was imported from AWS CloudWatch,
and the open-source HDFS dataset was downloaded from their
GitHub repository.
All experiments were run on a high-performance AWS Sage-
Maker Notebook Instance with a high virtual CPU count
and RAM, using Jupyter Notebook. Details regarding the
SageMaker Notebook Instance can be found in Table 3.

4. EMPIRICAL STUDY

4.1 RQs design and results

4.1.1 RQ1: How effective are the current log anomaly detec-
tion models in detecting failures, in an industrial dataset?

a) Design
To answer this research question, all four selected models
were trained on both the industrial dataset as well as the
HDFS dataset. As the state-of-the-art models all used random
sampling in their original papers, we used the same split type
for consistency. In the original papers of the selected models,
a relatively small portion is used to train the model (in the case
of DeepLog, 4855 logs were used for training, which is less
than 1% of the dataset). In order to keep a valid amount of logs
for testing, we opted for K-fold validation with 5 folds, with
one fold used for training and the rest for testing. The results
were then calculated as the mean of all the folds. Our focus
in this paper is to examine the effect of having a small dataset
for training, which could be even smaller than the amount of
data we had for the industrial service. Therefore, using only
one fold for training would give us a better idea of how each
of the models perform when there is not an abundance of data.
For consistency, the training size was kept the same with the
HDFS dataset. As the HDFS dataset is quite large, this allowed
us to use a significant amount of it for testing.

Figure 4: Model effectiveness on the industrial microservice
dataset using random split. Each bar reports the corresponding
metric’s average over 5 folds.

Figure 5: Model effectiveness on the HDFS dataset using
random split. Each bar reports the corresponding metric’s
average over 5 folds.

b) Results
The models’ effectiveness was measured using metrics out-
lined in the earlier section. The model performance on the
industrial dataset is shown in figure 4 and the HDFS dataset
shown on figure 5.
For the industrial dataset, LogAnomaly has the best perfor-
mance by far, with all other models significantly behind (the
F1-score of LogAnomaly is 70.3%, which is over 12% higher
than the F1-score of the other models). Even though the
baseline method achieves perfect recall, this is undermined
by its very low precision, and results with the lowest F1-score
of all the models.
On the contrary, when using the HDFS dataset, LogBERT out-
shines all other models with both F1-score (87.5%) and recall
(78.7%). The F1-score of LogBERT is over 30% higher than
that of the other models, while the recall is over 31% higher.
While LogAnomaly is slightly higher in terms of precision,
its low recall results in an overall lower effectiveness.
It should be noted that the baseline LSTM has the lowest
performance out of all the models. This shows that a simple
LSTM is not capable of inferring the patterns of log templates;
additional logic is required.



The effectiveness of the models on the two datasets can
be explained by the metrics and the nature of the datasets
themselves. Based on table 1, it can be seen that while being
smaller, the industrial dataset has a higher number of log
templates, showing it’s largely unstructured. Comparatively,
the HDFS dataset has a much lower template count, even
though it’s significantly larger. LogAnomaly is shown capable
of inferring relationships between logs with less structure,
resulting in its high performance in the industrial dataset.
LogBERT, on the other hand, needs a highly structured dataset
to be of proper use. Even though the HDFS dataset is struc-
tured, only a very small amount (only 0.01% of the entire
dataset) was used as training, showing LogBERT can easily
infer relationships even with a small training size, as long as
the data itself is structured.
Comparing the mechanisms of the three state-of-the-art mod-
els, DeepLog and LogAnomaly both use LSTM networks and
differ only in a few aspects. DeepLog makes use of parameter
value vectors in addition to the log key anomaly detection
LSTM, with the parameter values having their own models
for each log key. LogAnomaly uses vectorization along with
template approximation, and an added quantitative anomaly
detection model. This vectorization step likely reduces noise
in the logs, since minor updates to logging statements result
in similar semantic vectors. It can also be hypothesized that
template approximation helps with an unstructured dataset, as
any templates that were not in the training set can be assigned
a value. This could potentially be one of the reasons as to
why LogAnomaly has a higher performance on the industrial
dataset. On the other hand, having a large number of templates
likely hinders the Masked Log Key Prediction (MLKP) task
for LogBERT, since there can be more than one candidate
for the missing [MASK] token. This likely results in mis-
classifications during this step, reducing its effectiveness on
loosely structured datasets.
The performance of DeepLog, LogAnomaly and LogBERT
on the HDFS dataset is much lower than the metrics
quoted in their original papers, showing the reduced training
size severely impacted those models. The performance of
LogBERT, however, is much closer to the metrics quoted in
its origin paper, showing its ability to work even with a much
smaller dataset.

RQ1 Summary: The experiment results from three state-
of-the-art models and the baseline LSTM model show that
LogAnomaly works best with the industrial dataset, which is
much less structured. LogBERT works best with the HDFS
dataset, showing it requires a structured dataset to work
effectively. The baseline LSTM has the weakest performance
out of all the models.

4.1.2 RQ2: Does the type of train-test splitting affect the
reported effectiveness of the models?

a) Design
According to a recent study [33], the data leak during random
sampling makes the effectiveness of models seem higher than

Figure 6: Splitting data based on time-series. Note that the
dark-colored segments refer to the training set, while the light-
colored segments are the test set.

they actually are. Effectively, when doing random sampling,
future logs are used as part of the training set, resulting in
past logs being predicted using future logs. To explore this
effect, we used a time-based split to train the models, while
keeping the training size the same. This ensured that only past
logs are used to predict future logs, which in turn helped us
explore the realistic use-case of anomaly detection models: in
practice, only past logs can be used to predict anomalies.
Figure 6 shows the train and test sets created by using the
time-series split. Note that by keeping the train size constant,
only 4 folds could be created with this type of split; the last
fold cannot be used for training, as there are no logs after it.
b) Results
The model performance on the industrial dataset using a time-
based split is shown in figure 7 and the HDFS dataset is shown
on figure 8.
Similar to the results from random split, LogAnomaly has the
highest effectiveness with an F1-score of 77.2%, but this time
is closely followed by DeepLog with an F1-score of 77.0%.
They both have a similar recall as well, at approximately
84.6%. LogBERT effectiveness has decreased significantly
from earlier results, showing that the data leak plays an impor-
tant role with increasing performance. Interestingly, DeepLog
and LogAnomaly have increased in effectiveness. This is likely
due to the fact that even with a time-based split, the amount
of information conveyed through a single fold is sufficient for
the model to be trained.
In the HDFS dataset, LogBERT outperforms the other models,

Figure 7: Model effectiveness on the industrial microservice
dataset using time-based split. Each bar reports the correspond-
ing metric’s average over 4 folds.



Figure 8: Model effectiveness on the HDFS dataset using
time-based split. Each bar reports the corresponding metric’s
average over 4 folds.

similar to RQ1, with an F1-score of 85.5%. DeepLog has
the highest recall (at 100%), but is undermined by its low
precision, resulting in the lowest F1-score along with the
baseline LSTM model (at 41.5%). The effectiveness of all
models have decreased from RQ1, showing with a large
dataset, the data leak plays a bigger role in improving the
model performance, compared to a smaller dataset. Similar to
the earlier research question, we can see that LogBERT works
best with a well-structured dataset, while LogAnomaly is more
performant on the dataset with less structure.
In all of the above experiments, the baseline LSTM model
has shown the weakest performance. Due to this, we have
omitted it from the subsequent research questions, and focus
only on the 3 state-of-the-art models.

RQ2 Summary: Using a time-based split reduces the effi-
ciency of the models for the most part, showing the data leak
during random split plays a significant role in improving the
model performance. LogBERT still shows a higher effective-
ness with the HDFS dataset, while LogAnomaly works best
with the industrial microservice dataset.

4.1.3 RQ3: How successful are the models in detecting dif-
ferent types of failures?

a) Design
In the previous research questions, several existing anomaly
detection models were evaluated on different datasets. In
this section, a novel evaluation is performed on the model
effectiveness when it comes to detecting specific types of
errors. This aligns with the goal of selecting a suitable anomaly
detection model for the application under study as well, since
it gives us insights into how each model works with each type
of errors.
In this question, we perform a qualitative analysis of the
3 state-of-the-art methods and the errors they detect in the
industrial microservice dataset. By discussing with domain
experts, we found 4 anomaly types, which can be classified
into 2 categories, listed in table 4. Note that the anomaly

Table 4. Anomaly types found in the industrial microservice
dataset

Anomaly type Anomaly category Av. seq. length
1 Request error 163.4
2 Request error 170.25
3 Redis error 109
4 Redis error 7

Figure 9: Model anomaly detection rates

types have been enumerated instead of being given descriptive
names, for confidentiality reasons.
A brief description of each of the anomaly categories is
provided below:
• Request error: Occurs when the request made to the server

is invalid. This could be due to various reasons, such as
a feature not being available in a region, invalid request
payload etc.

• Redis error: Redis [37] is an open-source data structure
store, that’s used as a cache for the servers. The errors
of this type often stem from timeouts, which occur due to
bandwidth limits, too many requests and high CPU/memory
usages [38].

To explore the effectiveness of each model in detecting the
different types of anomalies, we trained the models using a
5-fold time-series split, and examined whether each error type
was detected by the model. Since the model was trained using
only normal logs, we used the entire anomalous sequences set
for testing.
b) Results
Figure 9 shows the ability of each of the 3 models in detecting
the 4 anomaly types (note that the detection rate for type 1, 2
and 3 anomalies for LogBERT is zero).
In the earlier research question, DeepLog and LogAnomaly
had the best results with the industrial dataset time-series split,
which is shown again by the results above. Both DeepLog
and LogAnomaly are capable of fully detecting type 1, 2 and
3 anomalies, and has a comparatively higher performance on
the type 4 anomalies as well. LogBERT, however, can only
detect type 4 anomalies, but even this is poor compared to the
other two models.



Comparing the log sequence length from Section 4, it seems
LogBERT only partially works with very short sequences
(type 4 has an average sequence length of 7, compared
to other sequences which are over 100 in average length).
Even though DeepLog has the same recall as LogAnomaly
(at 84.6%), it should be noted that its precision is slightly
less than that of LogAnomaly, showing LogAnomaly as the
overall best model in this scenario.

RQ3 Summary: While LogBERT is capable of detecting
short sequence anomalies, it does not work with longer
sequences. DeepLog and LogAnomaly both work with long
sequence anomalies, and compared to LogBERT has a better
performance with short sequence anomalies as well.

4.1.4 RQ4: How does the size of training set affect the model
effectiveness?

a) Design
One of the driving factors in our research has been the lack
of rich training data during early development stages for
most systems under test. Due to this, we have opted for
small training sizes, with a split type comparable to that of
papers done on open-source data. In this research question,
we explore if it is possible to improve the effectiveness of the
models by increasing the size of the training set. This would
give us an insight as to which of the parameters play a bigger
role in model performance: data size or data uniformity.
The experiment was performed using a time-series split, with
increasing train sizes from 20% up to 80%, in 20% increments.
b) Results
The results are shown in figure 10. Here, we can see that
LogBERT has the poorest performance, with an F1-score
below 60% that does not increase with an increasing training
size. This further shows that LogBERT is not efficient at
inferring patterns in a loosely-structured dataset. DeepLog
performance does get better with an increasing training size,
peaking at 40% and then dropping, likely due to overfitting.
LogAnomaly also gets better with increasing train size, and
achieves a perfect score of 100% F1-score at a training size of
60%. This too, then drops at 80% training size, also possibly
due to overfitting.
Overall, LogAnomaly works best when the training size is
limited, and increases comparatively better when the training
size is increased. Having a better structured dataset may help
LogBERT achieve a better score, which we have not tested
in this experiment.

RQ4 Summary: Increasing the training size using the in-
dustrial microservice data helps improve performance of
DeepLog and LogAnomaly, which decreases after reaching a
peak, showing effects of overfitting. LogBERT does not get
much better with an increased training size, showing it does
not work effectively with a loosely-structured dataset.

Figure 10: F1-score dependency on training size

4.2 Threats to Validity

Internal validity. Internal validity refers to unforeseen factors
that may influence the outcome of the experiments. One such
aspect are the hyper-parameters used for the models under
test, as different values for the hyper-parameters can affect
the performance of the models. For consistency, we have used
the default values for each of the models in this test, barring
several configuration values that needed to be set to allow
for shorter sequences of logs from the industrial microservice.
The parameters for the HDFS experiments, however, have not
been changed from their default values. This should allow for
a direct comparison with earlier papers using the open-source
datasets. Further hyper-parameter turning of the models with
the industrial dataset, however, may improve the performance
of those models.
External validity. The external threats to validity include
ability to generalize the results of the study. There are two
such major external threats to validity in this study. First is
the limited dataset, as the experiments were conducted on a
single microservice. Application of these models on further
services would increase the exposure of the research. Second
is the limited amount of faults in the industrial dataset. As is
the case with most stable industrial applications, the amount of
anomalous sequences is very limited, compared to the amount
of normal sequences. We believe, however, that it makes
this problem represent real-world problem, and improves the
applicability of this experiment on other stable applications.

5. CONCLUSION AND FUTURE WORK

In this paper, we have conducted an application of several
anomaly detection models on an industrial dataset, with a real-
world limitation on the dataset size and log data uniformity.
Results suggest that the LogAnomaly model works best on less
structured datasets, such as our industrial dataset. A qualitative
analysis on the anomaly types by the experts showed that
LogAnomaly and DeepLog are both effective at detecting
different types of anomalies with short and long sequences,
while LogBERT struggles with even short sequence ones. Ex-
ploring the effect of the training size shows that LogAnomaly



and DeepLog do get better results with a bigger training set,
but over-sized training sets result in the model over-fitting
and a reduced effectiveness. In conclusion, LogAnomaly was
identified as the overall best performing model in our case
study.
Future work on this paper can be pursued on several avenues.
First, the model hyper-parameters can be tuned to work
better with the industrial dataset, possibly improving their
performance. Second, more models, including classical models
such as SVM and LogClustering can be applied on the dataset,
which can provide another set of baselines to compare against.
State-of-the-art models such as LogRobust [3], which have
built-in vectorization, would also be a good candidate for
dealing with loosely-structured logs. Another possible avenue
of future work is using vectorization, by using a natural
language model such as a Generative Pre-trained Transformer
(GPT). With this, the template mining step would become
optional, and the log events can be directly vectorized. This
would help with continuously evolving log messages, as well
as noise within the logs. Another possible extension is to
evaluate the models on more industrial datasets, which may
come with their own limitations. This would shed more light
into the applicability of those models on more real-world
systems.
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