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Abstract—Previous researchers conducting Just-In-Time (JIT)
defect prediction tasks have primarily focused on the per-
formance of individual pre-trained models, without explor-
ing the relationship between different pre-trained models as
backbones. In this study, we build six models: RoBERTa-
JIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and
CodeGPTJIT, each with a distinct pre-trained model as its
backbone. We systematically explore the differences and con-
nections between these models. Specifically, we investigate
the performance of the models when using Commit code and
Commit message as inputs, as well as the relationship between
training efficiency and model distribution among these six
models. Additionally, we conduct an ablation experiment to
explore the sensitivity of each model to inputs. Furthermore,
we investigate how the models perform in zero-shot and few-
shot scenarios. Our findings indicate that each model based on
different backbones shows improvements, and when the back-
bone’s pre-training model is similar, the training resources that
need to be consumed are closer. We also observe that Commit
code plays a significant role in defect detection, and different
pre-trained models demonstrate better defect detection ability
with a balanced dataset under few-shot scenarios. These results
provide new insights for optimizing JIT defect prediction tasks
using pre-trained models and highlight the factors that require
more attention when constructing such models. Additionally,
CodeGPTJIT and GPT2JIT achieved better performance than
DeepJIT and CC2Vec on the two datasets respectively under
2000 training samples. These findings emphasize the effec-
tiveness of transformer-based pre-trained models in JIT defect
prediction tasks, especially in scenarios with limited training
data.

Keywords–Just-In-time defect prediction; pre-trained model;
few-shot scenario; model sensitivity

1. INTRODUCTION

The existence of software defects may lead to significant
economic loss to the end users. Defect prediction can
help developers identify defects before deploying buggy
software.Just-In-Time(JIT for short) defect prediction predicts
the presence or absence of defects based on software change
characteristics[1].
Feature extraction using deep learning technology has become
a common method for deep JIT defect prediction models like

DeepJIT[2] and CC2Vec[3]. DeepJIT is an end-to-end JIT
defect prediction model that predicts defects with the Com-
mit code and Commit message in a submission[2]. CC2Vec
improves DeepJIT by a pre-trained distributed change-code
vector in advance, resulting in performance improvements on
both the QT and Openstack[3].
Hong[3] believes that the extra pre-trained code vector is an
important reason for the improved performance of CC2Vec
model in JIT defect prediction. For the traditional two-step
deep learning models based on train-test such as DeepJIT,
they only learn domain knowledge from scratch without any
external knowledge. Different from DeepJIT, CC2Vec utilizes
pre-trained code vector as a part of the input in JIT defect
prediction model.
However, CC2Vec introduces extra information before train-
ing a model, that information is still intra-domain which
means all the information learned by DeepJIT and CC2Vec
are from the same dataset. The appearance of pre-trained
models provides deep learning methods with a new way of
pre-training and fine-tuning to resolve the previous tasks.
Some transformer encoder-based pre-trained models like
RoBERTa[4], CodeBERT[5], decoder-based pre-trained mod-
els like GPT2[6], CodeGPT, encoder-decoder based model
like BART[7], PLBART[8], T5[9] have shown huge improve-
ment in previous natural languages tasks. Benefit from the
emergence of pre-trained models some researchers improve
program language tasks like clone detection, code search and
vulnerability detection to construct a pre-trained model based
framework[10, 11]. Zhou[11] evaluated the performance of
CodeBERT in JIT defect prediction, showing that CodeBERT
can achieve consistent performance with the current optimal
model CC2Vec. But one problem is that most of the program
lanauage related work is based on CodeBERT model but
few works have explored how transformer-based pre-trained
models perform in JIT defect prediction tasks other than Code-
BERT. Which means they tend to use transformer encoder-
based model without considering other types. Therefore, it is
crucial to systematically explore how different models behave
and what they are sensitive to.
In this study, we build six deep JIT prediction models: RoBER-
TaJIT, CodeBERTJIT, GPT2JIT, CodeGPTJIT, BARTJIT, and
PLBARTJIT, using corresponding pre-trained models and
CNN network. To comprehensively evaluate these pre-trained
JIT defect prediction models, we selected three transformer-
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based models and their natural language and programming
language versions as backbones. Our primary motivations
were to investigate the performance of different transformer
structures in JIT defect prediction tasks and how they behave
in different situations. We used Commit code and Commit
message as model inputs and evaluated the models based
on metrics such as AUC score, accuracy, precision, recall,
and F1 score to compare their performance. Additionally,
we compared the training efficiency and distribution sim-
ilarity of prediction results among the six JIT prediction
models. We also conducted ablation experiments on differ-
ent input parts of the four models to analyze the influence
of input data on their performance. Lastly, we explored
the models’ performance under zero-shot and few-shot sce-
narios. Our implementation of experiments is accessible at
https://github.com/AresXD/JIT defect prediciton.
The contribution of this work is fourfold.

• First, rather than concentrating solely on individual model
performance, our research delves deeply into the com-
parative analysis of these models based on different
backbones.

• Second, we analyze the correlation between training
efficiency and model distribution across the six models
and we find that when the backbone’s pre-training model
is similar, the training resources that need to be consumed
are much closer.

• Third, we conduct an extensive ablation experiment to
gain insights into the sensitivity of each model to various
inputs and find that Commit code plays a significant role
in defect detection between Commit code and Commit
message, which provides the idea of optimization: re-
searchers can focus on the processing of Commit code.

• Finally, we explore the performance of different models
under zero-shot and few-shot learning scenarios. We find
that the pre-trained models demonstrate superior defect
detection abilities with a balanced dataset, and we obtain
two models which can outperform DeepJIT and CC2Vec
under a 2000-shot scenario, which provides the possibility
to optimize a model under the few-shot scenario.

2. BACKGROUND ON JIT DEFECT PREDICTION AND PRE-
TRAINED MODEL

In this section, we will revisit background information on JIT
defect prediction and pre-trained models.

2.1 Definition of submission in JIT defect prediction

Developers often modify more than one file when submitting
code to a project. Figure 1 presents an example of a Commit
message while Figure 2 presents the example of a Commit
code within one submission. The Commit message shows the
developer who submitted the code (line 4), the commit time
(line 5), the task number (line 17), and the change ID (line
18). The most important information in the Commit message
is the developer’s annotation ( lines 7-13). The developer’s
annotation is made up of natural language text that reflects
the developer’s intention for submission. Annotation is a useful

Figure 1. An example Commit message

Figure 2. An example Commit code

feature often used in deep JIT defect prediction tasks, which
is one of the input data used in our model. For convenience,
we call the annotated data “Commit message”.

Figure 2 shows the part of the changed
code in a submission whose changed ID is
“Ifbb3c31fa22159df0c39b264e95e2f1ccd16e5ff”. The green
and red code identifies changed code in the file whose
path within the project is “src/tools/androidtestrunner/main”,
the green part represents the added code and the red part
represents the deleted code. In Figure 2, we can see that the
major bug of this submission is replacing the variable “ret”
with “result” and changing the symbol “&&” to “&”. From
Figure 2, we know that there are two types of changed code
in a submission, added code and deleted code. Changed code
in a submission is important information, which is another
part of the input data used in our model. For convenience,
we also call the changed code “Commit code”.

 https://github.com/AresXD/JIT_defect_prediciton


2.2 DeepJIT and CC2Vec
Hong et al. introduced a novel deep Just-In-Time (JIT) defect
prediction model, utilizing Commit code and Commit message
as the model input. In contrast to previous approaches that
relied on traditional handcrafted features, DeepJIT represents
an end-to-end JIT defect prediction model, eliminating the
need for manual feature extraction[2]. The model utilizes a
Convolutional Neural Network (CNN) to extract meaningful
features to achieve classification tasks.
To find a suitable vector representation with generalization,
Hong et al.[3] propose a neural network model that can learn
a representation of code changes by pre-training the Commit
code into a distributed vector CC2Vec in advance. CC2Vec
uses HAN[12] network architecture to better extract semantic
information from code by training vectors using information
from Commit messages submitted by developers at a time.
Hong et al. achieved performance improvements in the JIT
defect prediction task by concatenating the CC2Vec vector
with other input data from DeepJIT.

2.3 Pre-trained model
Word embedding or distributed vector is a technique for
converting natural language words into vectors or matrices
such that computers can process and manipulate. Only by
using reasonable word representation can we carry out sub-
sequent machine learning more easily. The development of
a pre-trained model is closely related to the research of
word embedding. The first generation of pre-trained models is
pre-trained word embedding. Some models, such as one-hot,
Word2Vec[13], N-Gram[14] and Glove[15], can capture cer-
tain semantic information. But they are context-free. The first
generation of pre-trained models has obvious shortcomings.
For example, the embedding is static and is unable to consider
the context, semantic role, and syntactic characteristics of the
text, which makes it hard to distinguish polysemous words
effectively. Therefore, another stage of the development of
word embedding is to study context-related word embedding.
The second generation of the pre-trained model depends
on the proposed transformer structure[16]. The main pre-
trained models fall into three categories: encoder based such
as ELMo[17], BERT[4], and RoBERTa[18], decoder based
such as GPT[19], GPT2[6], encoder-decoder based such as
BART[7]. These pre-trained models are usually trained on
massive corpora and support many training tasks. Large-scale
pre-training can learn more general language representation,
provide a better initialization model for downstream tasks, im-
prove the performance of target tasks, and accelerate the con-
vergence of models. By continuously improving the existing
model structure and adding code-related corpora, researchers
have derived code-related versions of the corresponding pre-
trained models like CodeBERT, CodeGPT, PLBART, etc.
Which models obtain great performance in clone detection,
vulnerability detection[10, 11]. But for JIT defect prediction
task, the role of these models, and the scenarios in which
they work, remains unexplored. Figure 3 shows the process
of using a pre-trained model that feeds a set of tokens into

the pre-trained model and outputs a generalized language
representation vector. Finding suitable word embedding has
been the focus of natural language research for a long time.
Code is a semi-structured language similar to natural language,
so when we use deep learning to solve problems related to
program language, it is also necessary to find an appropriate
embedding accordingly.

푡�1 푡�2Input 푡��푡��−1푡��−2...푡�3

Pre-Trained Model

�� �� �� ... ��−� ��−� ��Output

Embedding Process in PTM

Figure 3. The process of using Pre-trained models

3. MODEL STRUCTURE

In our research, we developed six distinct JIT defect prediction
models by leveraging pre-trained models as backbones and
employing CNN networks for feature extraction. Specifically,
we incorporated three transformer-based models: RoBERTa
(an encoder-based model), GPT2 (a decoder-based model), and
BART (an encoder-decoder-based model) to create RoBERTa-
JIT, GPT2JIT, and BARTJIT, respectively. Additionally, we
extended the scope by selecting three code-related versions
from the RoBERTa, GPT2, and BART models to establish
CodeBERTJIT, CodeGPTJIT, and PLBARTJIT models. These
models were designed to explore the effectiveness of different
transformer structures in the JIT defect prediction task, aiming
to provide comprehensive insights into their performances and
capabilities.

Backbone Model

Commit code

Backbone Model

Commit message

CNN+Max pooling Fully-connected Layer

Fully-connected Layer

Prediciton

Figure 4. The framework of JIT defect prediction models with
different pre-trained model as backbones

Figure 4 illustrates the framework of our six JIT defect
prediction models, all of which utilize Commit code and
Commit message as the model input. In the process of
handling the Commit code, we adopt a similar approach as
the DeepJIT model[2], where we select the most recent four



patches from each submission. The Commit code, denoted as
C = [P1, P2, ..., P|C|], comprises |C| patches in a submission,
where |C| = 4 represents the number of patches. In cases
where the number of patches in a submission is less than 4, we
employ ”empty patches” to pad the remaining slots on the left.
Each individual patch Pi is then treated as a sequence within
the Commit code, which serves as input to our backbone pre-
trained model for obtaining the embedding representation P̄i

using Equation (1).

P̄i = BackboneModel(Pi) (1)

When Commit code in each submission is processed by back-
bone pre-trained model, we obtain the vector representation of
Commit code C̄ using ⊕ operation following Equation (2).

C̄ = P̄1 ⊕ P̄2 ⊕ ...⊕ ¯P|C| (2)

For the process of Commit message, we treat the whole
Commit message as sequence M = [w1, w2, w3, ...w|m|] in
a submission whose sequences content contains 13-17 lines in
Figure 1, M is a sequence composed of a set of words, and |m|
is the length of the sequence. Then we input Commit message
M into the backbone model to get embedding representation
M̄ following Equation (3).

M̄ = BackboneModel(M) (3)

Then we conduct feature extraction for C̄ and M̄ respectively.
We use CNN and max-pooling to extract the features of code
embedding C̄. We define a filter f ∈ Rk×d and use K
windows to extract new features of the Commit code. For
the code patch P̄i in C̄, we obtain new vector xi following
Equation (4).

xi = ReLU(f ∗ ¯Pi:i+k−1 + bi) (4)

In this paper, symbol ∗ is the sum of the product of the
element, ReLU is the nonlinear activation function and bi ∈ R
is the bias value. New features are generated by applying filter
f to every k file of the Commit code. The new feature xi is
strung together into vector X , as shown in Equation (5).

X = [x1, x2, ..., x|C|−k+1] (5)

Then we use the max-pooling method to process vector X to
obtain the most significant feature Zc, as shown in Equation
(6).

Zc = max
1≤i≤|C|−k+1

(xi) (6)

Because the sequence length of the Commit message is shorter
than that of the Commit code, only one layer of a fully
connected network is used for feature extraction in message
embedding M̄ . We can obtain feature vector Zm following
Equation (7).

Zm = wm · M̄ + bm (7)

After obtaining the feature vector Zc for the Commit code and
Zm for the Commit message, we fuse the Zc and Zm to get

the feature vector Z for one submission, as shown in Equation
(8).

Z = Zc ⊕ Zm (8)

Then we input Z into a layer of a fully connected network as
a classifier. Finally, the high-dimensional vector is mapped
to the one-dimensional vector by the sigmod function to
complete the prediction task of binary classification, as shown
in Equation (9).

y = sigmod(ReLU(wh · Z + bh)) (9)

4. EXPERIMENTAL RESEARCH

4.1 Research Questions

RQ1: What is the performance of six pre-trained based JIT
defect prediction models with different backbone structures?
RQ2: What is the relationship between the training effec-
tiveness of different models and the distribution of predicted
results?
RQ3: How sensitive are the different models to the input data?
RQ4: How do different models behave in few-shot scenarios?

4.2 Datasets

All of our experiments are carried out on QT and Openstack
datasets. This dataset was originally collected and cleaned by
McIntosh and Kamei and come from two famous open source
project QT and Openstack[20]. Table I shows the statistical
description of QT and Openstack dataset. There are 25704
submissions in the QT dataset, including 1825 submissions
that are labeled as defective. There are 1627 submissions in
the Openstack dataset, including 1627 submissions that are
labeled as defective. In this paper, 80% of the data is used as
the training set, and the left 20% of the data is used as the
test set for evaluation.

TABLE I
STATISTICS OF THE DATASET

Project Commit Defect %Defect

QT 25704 1825 7.1

Openstack 13304 1627 12.2

4.3 Experiment Setup

We use a desktop PC as our experiment environment. The
PC is running Ubuntu 18.04 and is equipped with RTX3090
with 24GB of memory. All experiments are implemented by
Python3 and we use the official Python release version 3.7.
We select the set of parameters that can minimize the loss
of the validation set, the corresponding model is saved as the
final model in our training process.
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Figure 5. Distribution of prediction results for different models in QT and Openstack datasets

4.4 Criteria for evaluation

When a binary model is used for prediction, four different
results are produced. A commit that introduces a defect is
predicted to be defective namely True Positive(TP), a commit
that does not introduce a defect was predicted to be defect-free
namely True Negative(TN), a commit that does not introduce a
defect was predicted to be defective namely False Positive(FP)
and a commit which introduces defect was predicted to be
defect-free namely False Negative(FN). AUC Area under the
Curve of ROC(AUC) is often used to evaluate the training
effect of a binary model. A high AUC score shows off the
stability of a model.
Accuracy In particular, Accuracy (ACC) is the ratio of the
number of correct predictions over the total number of predic-
tions.

ACC =
TN + TP

TN + TP + FN + FP

Precision Precision rate refers to the proportion of correctly
predicted defects among all predicted defects.

Precision =
TP

TP + FP

Recall Recall refers to the proportion of defects correctly
predicted to all defects submitted.

Recall =
TP

TP + FN

F1 score F1 score is a metric used to evaluate the performance
of a binary classification model. It is the harmonic mean of
precision and recall, and it takes both false positives and false
negatives into account. The F1 score is a value between 0
and 1, where 1 represents perfect precision and recall, and 0
represents the worst possible performance.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

4.5 Results and Discussions

Results and analysis for RQ1. For this research question, we
try to explore the overall performance of different models in
JIT defect prediction task under full fine-tuning scenario. To
achieve this, we compare six models, each utilizing different
backbone pre-trained models: RoBERTaJIT, CodeBERTJIT,
GPT2JIT, CodeGPTJIT, BARTJIT, and PLBARTJIT. Addi-
tionally, we include two state-of-the-art models, DeepJIT and
CC2Vec, for comparison. Most of the previous work only
select auc score as evaluation index for JIT defect prediction
model, we acknowledge that relying on a single metric may be
limiting. To comprehensively explore the performance of these
models, we additionally considered other evaluation metrics in
this section and performed results analysis. Table II and Table
III shows the experimental results of these six models on QT
and Openstack projects.

TABLE II
EXPERIMENTAL RESULTS OF THE DIFFERENT MODELS ON QT PROJECT

Model auc score accuracy precision recall F1 score

DeepJIT 0.79 0.73 0.17 0.70 0.27

CC2Vec 0.81 0.56 0.13 0.87 0.23

RoBERTaJIT 0.81 0.87 0.27 0.48 0.35

CodeBERTJIT 0.81 0.87 0.26 0.42 0.32

GPT2JIT 0.81 0.81 0.21 0.58 0.31

CodeGPTJIT 0.81 0.89 0.29 0.39 0.33

BARTJIT 0.82 0.82 0.23 0.62 0.34

PLBARTJIT 0.82 0.90 0.32 0.34 0.33

As shown in Table II and Table III, all models with various
pre-trained models yield significant enhancements across the



evaluation metrics, with the exception of recall. It is clear
that decoder-based models and encoder-decoder-based models
are typically well-suited for generation tasks. However, in the
JIT defect prediction task, which involves understanding, we
observe that pre-trained models deliver excellent performance
regardless of their different architectures. This suggests that
when the model size is sufficiently large, it demonstrates
adaptability to tasks that may not be inherently suited to its
architecture.

• Results 1: All JIT defect prediction models constructed
with three different transformer structures exhibit im-
provements in both datasets.

Figure 5 illustrates the distribution of prediction results for
the six models on both the QT and Openstack datasets. It
is evident that the models tend to predict most submissions
as non-defective commits in the QT dataset, whereas this
behavior differs in the Openstack dataset. This observation
is also reflected in the results presented in Table II and Table
III, where the recall value for the six models on the Openstack
dataset significantly outperforms that on the QT dataset. While
the difference in recall performance in the previous two state-
of-art models, DeepJIt and CC2vec, is very small. To further
investigate this phenomenon, we compared the existing results
with the results obtained after extending the model’s training
time. Figure 6 depicts the differences between the base results
and those achieved with longer training times. It is apparent
that with increased training time, the accuracy of all six models
improves, while the recall value deteriorates. This observation
can be attributed to the strong learning ability of JIT defect
prediction models based on pre-trained models, owing to their
deep and complex network structures. Consequently, during
the training process, when faced with an imbalanced dataset,
the models’ parameters tend to favor the class with more data.
This provides an explanation for why these large pre-trained
models exhibit lower recall rates in the JIT defect prediction
task.

• Results 2: Complicated Model is sensitive to the balance
of the dataset.

TABLE III
EXPERIMENTAL RESULTS OF THE DIFFERENT MODELS ON OPENSTACK

PROJECT

Model auc score accuracy precision recall F1 score

DeepJIT 0.74 0.61 0.17 0.76 0.28

CC2Vec 0.76 0.27 0.11 0.98 0.19

RoBERTaJIT 0.79 0.80 0.32 0.50 0.39

CodeBERTJIT 0.80 0.80 0.33 0.56 0.42

GPT2JIT 0.79 0.71 0.26 0.76 0.39

CodeGPTJIT 0.81 0.76 0.30 0.70 0.42

BARTJIT 0.81 0.71 0.27 0.77 0.40

PLBARTJIT 0.81 0.79 0.32 0.62 0.42

Results and analysis for RQ2. We investigate the overall

training efficiency of different JIT defect prediction models
with pre-trained models as backbones, as well as whether
there is any relationship in the distribution of prediction
results among the models. We first compare the training
time, parameter size, and training loss changes. Table IV
shows training time and model size respectively in RoBER-
TaJIT, CodeBERTJIT, GPT2JIT, CodeGPTJIT, BARTJIT, and
PLBARTJIT models. Figure 7 and Figure 8 respectively show
training loss change of these six models in QT and Openstack
projects. We also conduct T-test experiment to analyze the
distribution similarity between 6 models, and Table V shows
the T-test results between the six models on both two datasets.
Table IV respectively shows the training time and model size
of 6 models. We can find that the training time and model size
of different models are not very different in general. BARTJIT
and PLBART are a little faster than other models in the same
training setting on both datasets. Additionally, it is evident that
the training time and model size of JIT defect prediction mod-
els with similar backbone models are more comparable. For
example, RoBERTaJIT is close to CodeBERTJIT, GPT2JIT is
close to CodeGPTJIT, and BARTJIT is close to PLBARTJIT.
Moreover, Figure 7 and Figure 8 show the loss changes
during the training process of the six models. It is observed
that RoBERTaJIT, GPT2JIT, and BARTJIT perform slightly
worse than CodeBERTJIT, CodeGPTJIT, and PLBARTJIT
in terms of coverage performance. This indicates that code-
related backbones provide better initial representations in the
JIT defect prediction task, even though both Commit code and
Commit message are treated as token types.

• Results 1: The training time and model size of differ-
ent JIT defect prediction models with similar backbone
models tend to be closer, backbone model which is code-
related converges better than their corresponding non-
code-related model.

TABLE IV
TRAINING TIME AND MODEL SIZE OF DIFFERENT JIT DEFECT PREDICTION

MODELS

Model QT Openstack QT Openstack

RoBERTaJIT 1938s 1005s 2.56 GB 804 MB

CodeBERTJIT 1942s 1007s 2.57 GB 821 MB

GPT2JIT 2184s 1132s 2.57 GB 815 MB

CodeGPTJIT 2150s 1114s 2.57 GB 821 MB

BARTJIT 1460s 757s 2.61 GB 863 MB

PLBARTJIT 1489s 808s 2.61 GB 860 MB

In RQ2, we explored the relationship between different models
in terms of training efficiency, but it remained unclear whether
these models exhibited the same distribution in their prediction
results. To investigate this further, we conducted T-test experi-
ments between the prediction results of the six models. Table V
presents the T-value and P-value for these models, The number
on the left represents the T-value between the two models, and
the number on the right represents the corresponding p-value,
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Figure 6. Variation of accuracy and recall with training time on QT and Openstack datasets
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Figure 7. Loss changes during training process on QT project

we keep the result to two decimal places. Symbol ⊘ means
duplicate results that is omitted from the calculation of T-
value and P-value. This suggests that despite sharing similar
backbone models, the JIT defect prediction models still yield
different prediction result distributions in a statistical sense.

• Results 2: Despite the similarity of some backbone mod-
els, the distribution of results in JIT defect prediction
tasks is significantly different.

Results and analysis on RQ3. In this research question,
we aim to explore how the inclusion of Commit code and
Commit message as model input affects the performance of
defect detection in JIT defect prediction models. To do so,
we conduct an ablation experiment where we remove either
the Commit code or Commit message from the input data and
analyze the impact on recall and precision, which are the most
intuitive representations of defect detection and false positives.
Figure 9 displays the experimental results of the six JIT defect
prediction models under the ablation settings. Specifically, the
“-msg” operation refers to using only Commit code in the
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Figure 8. Loss changes during training process on Openstack project

model input, while the “-code” operation refers to using only
Commit message in the model input. The ablation experiment
reveals that Commit code plays a crucial role in defect
detection.
Recalls mean we correctly predict a defective submission as a
defect. When we conduct the “-msg” operation on all six JIT
defect prediction models for both QT and Openstack datasets,
most of the results show a direct improvement in recall. This
indicates that removing the Commit message from the input
data helps the models identify more defects correctly. It is
worth noting that Commit message, being provided entirely
by the developer and not strictly regulated, may introduce
information that does not exactly match the code description
for a given commit. On the other hand, when we conduct the
“-code” operation on the six models, more than half of the
results show a decrease in recall value, while other results
vary only slightly from the base model results. This further
supports the finding that Commit code plays a significant role
in defect detection. In addition to the main results, we made



TABLE V
T-TEST RESULTS FOR THE DISTRIBUTION OF PREDICTION RESULTS OF DIFFERENT MODELS

Model RoBERTaJIT CodeBERTJIT GPT2JIT CodeGPTJIT BARTJIT PLBARTJIT

RoBERTaJIT ⊘ 18.41/ 0.0 -8.73/ 0.0 6.48/ 0.0 -11.95/ 0.0 14.88/ 0.0

CodeBERTJIT ⊘ ⊘ -29.21/ 0.0 -13.22/ 0.0 -33.01/ 0.0 -3.21/ 0.001

GPT2JIT ⊘ ⊘ ⊘ 16.38/ 0.0 -3.3/ 0.001 25.01/ 0.0

CodeGPTJIT ⊘ ⊘ ⊘ ⊘ -19.98/ 0.0 9.45/ 0.0

BARTJIT ⊘ ⊘ ⊘ ⊘ ⊘ 27.6/ 0.0

PLBARTJIT ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

an interesting observation during the ablation experiment.
Regardless of whether we removed Commit code or Commit
message from the model input, the other three evaluation
indicators (accuracy, precision, and F1 score) show a decline.
This suggests that both parts of the data, Commit code, and
Commit message, together play a crucial role in determining
the overall performance of these three evaluation indicators.
These findings provide valuable insights into the importance
of each input data component and can guide researchers in
optimizing their models for JIT defect prediction.

• Results: Commit code plays the main role in defect
detection, both Commit message and Commit code are
responsible for prediction precision, accuracy, and F1
score.

Results and analysis on RQ4. In this research question,
we aim to explore the performance of JIT defect prediction
models with different backbone models in a few-shot scenario
with a balanced dataset. To simulate real software engineering
projects where defective submissions are less common, we
downsampled the two datasets and set different scales (0, 10,
100, 500, 1000, and 2000) to explore the performance of the
models. We used the same training setting as in RQ1 and keep
the same test datasets. Figure 10, Table VI, and Table VII
present the experimental results of these 6 models in the few-
shot scenarios. In the zero-shot scenario, the F1 score could
not be calculated due to the problem of zero division, so we
focused on comparing the model performance under the four
evaluation metrics: auc score, accuracy, precision, and recall.
As shown in Figure 10, we observed that in the zero-shot sce-
nario, the performance of the six models is almost abnormal,
with recall and accuracy values taking on extreme values of
0 and 1. This indicates the unavailability of the models in
the zero-shot scenario. However, as the dataset size gradually
increases, the performance of the six models becomes more
consistent and improves significantly.

• Results 1: With the gradual increase in dataset size, the
performance of the six models will tend to be consistent
and normal.

Table VI and Table VII show the results with 2000 training
samples. From the results, we can observe interesting patterns
when the dataset size shrinks to a fraction of the original
datasets (0.07 times for QT and 0.15 times for Openstack).

TABLE VI
RESULTS OF QT PROJECT IN 2000-SHOT SCENARIO

Model auc score accuracy precision recall

RoBERTaJIT 0.81 0.87 0.27 0.48

2000-shot 0.80 0.61 0.14 0.82

CodeBERTJIT 0.81 0.87 0.26 0.42

2000-shot 0.79 0.74 0.17 0.65

GPT2JIT 0.81 0.81 0.21 0.58

2000-shot 0.80 0.75 0.18 0.69

CodeGPTJIT 0.81 0.89 0.29 0.39

2000-shot 0.81 0.73 0.18 0.75

BARTJIT 0.82 0.82 0.23 0.62

2000-shot 0.79 0.63 0.14 0.81

PLBARTJIT 0.82 0.90 0.32 0.34

2000-shot 0.80 0.58 0.13 0.86

While the difference in AUC scores between the models
becomes less obvious, ranging from 0 to 0.04, there is a
significant difference in accuracy and recall. The significant
decrease in accuracy when training the models on a much
smaller dataset can be attributed to the convergence of the
model. Training on a smaller dataset with the same epoch
leads to a less stable convergence compared to training on
larger datasets. However, despite the challenges posed by the
smaller dataset size, we find that training the models on such
limited data can still improve the recall rate significantly. On
average, the recall rate improves by 36% in the QT dataset and
14% in the Openstack dataset. This finding suggests that when
using a balanced dataset, JIT defect prediction models based
on pre-trained models can effectively detect defects even in
few-shot scenarios.

• Results 2: Few shot scenarios with balanced data at the
right size can bring the capability of defect detection
increased.

We observed that some models achieved lower evaluation
scores compared to the base model in this question. However,
it is interesting to note that despite lower scores, CodeGPTJIT
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Figure 9. The results of ablation experiments of six models on two QT and Openstack datasets
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Figure 10. Model performance of different models in few-shot scenario

and GPT2JIT still outperformed the two state-of-the-art mod-
els, DeepJIT and CC2Vec, under the few-shot scenario. This is
evident from the results presented in Table VIII and Table IX
for CodeGPTJIT and GPT2JIT on QT and Openstack datasets,
respectively. CodeGPTJIT and GPT2JIT demonstrate optimal
performance on QT and Openstack datasets, respectively,
indicating their effectiveness in handling few-shot scenarios.
These results highlight the potential of fine-tuning based on
pre-trained models in situations where training data is limited.

5. RELATED WORK

Finding defects in time can reduce the cost of repairing
defects and improve the quality of software. Researchers have
proposed a large number of defect prediction techniques,
which mainly include module-level, file-level, and change-

level defect prediction based on different prediction granu-
larity. In 2008, Kim [1] proposed a code classification method
using machine learning, i.e., codes are classified into bug
and bug-free categories, and the recently submitted codes are
classified with or without defects. In 2013, Kamei officially
named the technique predicting defects based on software
change characteristics as JIT defect prediction.

JIT defect prediction can remind software developers to review
their submitted code for defects as early as possible, which
significantly reduces the cost of software maintenance. Most
of the traditional JIT defect prediction techniques rely on
manually extracted features and use different machine learning
methods such as logistic regression, SVM, etc., to train a suit-
able classifier. Mockus et al.[21] were the first to propose the
selection of manually extracted features, which they divided



TABLE VII
RESULTS OF OPENSTACK PROJECT IN 2000-SHOT SCENARIO

Model auc score accuracy precision recall

RoBERTaJIT 0.79 0.80 0.32 0.50

2000-shot 0.79 0.75 0.27 0.62

CodeBERTJIT 0.80 0.80 0.33 0.56

2000-shot 0.78 0.53 0.19 0.83

GPT2JIT 0.79 0.71 0.26 0.76

2000-shot 0.76 0.65 0.23 0.78

CodeGPTJIT 0.81 0.76 0.30 0.70

2000-shot 0.77 0.71 0.25 0.69

BARTJIT 0.81 0.71 0.27 0.77

2000-shot 0.78 0.74 0.27 0.69

PLBARTJIT 0.81 0.79 0.32 0.62

2000-shot 0.77 0.66 0.23 0.74

TABLE VIII
EXPERIMENTAL RESULT OF CODEGPTJIT IN 2000-SHOT SCENARIO

ON QT PROJECT

Model auc score accuracy precision recall F1 score

DeepJIT 0.79 0.73 0.17 0.70 0.27

CC2Vec 0.81 0.56 0.13 0.87 0.23

CodeGPT
0.81 0.73 0.18 0.75 0.29

(2000-shot)

into different categories, such as changes in code lines and de-
veloper expertise. These features have been extensively studied
in previous works[22, 23]. Some other studies have extended
the traditional features by adding characteristics like code
complexity, number of changed files, and word frequency of
code modules to improve code change characterization[1, 24–
29].
The general process of JIT defect prediction technology
usually includes data annotation, feature extraction, model
construction, and experimental evaluation. Data annotation is
used to determine whether code changes introduce defects.
Sliwerski et al.[30] first proposed the algorithm to identify
the changed code introducing defects in 2005, namely the
SZZ algorithm. Based on the original SZZ algorithm, the
researchers continue to improve to obtain more accurate code

TABLE IX
EXPERIMENTAL RESULT OF GPT2JIT IN 2000-SHOT SCENARIO

ON OPENSTACK PROJECT

Model auc score accuracy precision recall F1 score

DeepJIT 0.74 0.61 0.17 0.76 0.28

CC2Vec 0.76 0.27 0.11 0.98 0.19

GPT2JIT
0.76 0.65 0.23 0.78 0.36

(2000-shot)

annotation[31, 32].
Before 2015, the research on software defects was coarse-
grained. With Hinton’s research in the field of deep
learning[33–35], the trend of cross-fusion among various fields
became more obvious. Depending on the development of deep
learning technology in recent years[36–39], the proposal of
various network structures provides new ideas for feature ex-
traction. In 2015, Yang et al.[40] proposed a method that uses
deep learning technology to improve the performance of JIT
defect prediction. In this study, Deep Belief Network(DBN)
was used to process and map the dimensions of manually ex-
tracted features. It was the first case using deep learning in JIT
defect prediction technology. In traditional JIT defect predic-
tion technology, researchers often connect the extracted feature
with a classifier to construct the model. The classifier is usually
a common algorithm in machine learning, such as random
forest, support vector machine(SVM), logistic regression(LR),
etc.[41, 42]. However, all the studies mentioned above are
based on traditional manual features. In recent years, with
the development of natural language processing, researchers
realize that automatic feature extraction can be carried out
from the code and submitted information itself[2][3].
Many researchers have found that in a submission, the commit
information provided by the developer is natural language,
while the code is a semi-structured language and also has
naturalness. These features naturally provide the relevance
of JIT defect prediction techniques to natural language pro-
cessing. Due to the proposed network structures such as
convolutional neural network (CNN)[36] and recurrent neural
network (RNN)[43], feature extraction in JIT defect prediction
technology is not limited to the traditional features extracted.
Hoang proposed an end-to-end JIT defect prediction frame-
work, DeepJIT. This framework uses CNN to extract features
from Commit message and Commit code in a submission, and
then inputs the fused features into a layer full connection for
classification, so as to achieve JIT defect prediction without
manually extracting features[2].
In 2020, Hoang[12] proposed a distributed vector represen-
tation of code change called CC2Vec based on GRU and
hierarchical attention Network. CC2Vec vector was obtained
by using information of submitted logs as training labels[3].
Both of these JIT defect prediction models using deep learning
methods performed well. In view of the excellent performance
of CC2Vec, Zeng et al.[44] made a more detailed analysis
and comparison between DeepJIT and CC2Vec, and expanded
the dataset on the original basis. While confirming the perfor-
mance of CC2Vec, they also analyzed its defects, and proposed
a logistic regression classifier called LApredict. It is confirmed
that deep learning methods still have a lot improvement to
make.
At present, the research of deep JIT defect prediction is still
active. The research of embedding model and pre-trained
model in natural language field makes it possible to ap-
ply many new network structures and models to JIT defect
prediction. In 2017, Google proposed Transformer, a neural
network structure, which provides a full attention mechanism



without using CNN and RNN[16]. Devlin et al. proposed
BERT pre-trained model using Transformer structure[4]. Liu
et al.[18] improved the BERT model, optimized its parameter
selection, expanded the BERT model corpus, and proposed
the RoBERTa model. CodeBERT, proposed by Feng et al.,
provided a bi-modal pre-trained model for both natural and
programming languages, which can be used for downstream
tasks in software engineering and natural language[5]. For
better explore the ability of CodeBERT model applied in code-
related task, Zhou[11] conduces two experiments: code search
and JIT defect prediction task. Some other researchers have
also tried pre-trained model applied in vulnerability detection
task, they rebuild vocabulary table of CodeBERT make it more
suitable for obtaining tokens in the a task specific scene[10].

6. CONCLUSIONS AND FUTURE WORK

Our work mainly focuses on the task of JIT defect prediction
based on pre-trained models with different architecture. The
findings in the experimental analysis showed that each model
based on different backbones exhibited improvements. Models
with similar backbone pre-training showed predictions with
closer distributions. Commit code played a significant role in
defect detection, and balanced datasets improved defect pre-
diction ability under few-shot scenarios. These results provide
new insights for optimizing JIT defect prediction tasks using
pre-trained models and highlight the factors that require more
attention when constructing such models.
We have also identified some future works. Based on the
results of the experiments, we can find that the Commit code
largely determines the defect prediction ability of all models
with different pre-trained models as the backbone. This pro-
vides an idea for our future work, that is, different treatments
of Commit code can be adopted in model optimization, which
may bring higher benefits. And another important finding
is that a balanced dataset can bring improvement in defect
prediction capacity under a few-shot scenario. This means that
we can further optimize our model in a few-shot scenarios.
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