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Abstract—The advent of serverless computing has ushered in
notable advancements in distributed machine learning, partic-
ularly within parameter server-based architectures. Yet, the
integration of serverless features within peer-to-peer (P2P)
distributed networks remains largely uncharted. In this paper,
we introduce SPIRT, a fault-tolerant, reliable, and secure
serverless P2P ML training architecture. designed to bridge
this existing gap.

Capitalizing on the inherent robustness and reliability innate
to P2P systems, SPIRT employs RedisAl for in-database
operations, leading to an 82% reduction in the time required
for model updates and gradient averaging across a variety of
models and batch sizes. This architecture showcases resilience
against peer failures and adeptly manages the integration of
new peers, thereby highlighting its fault-tolerant characteristics
and scalability. Furthermore, SPIRT ensures secure communi-
cation between peers, enhancing the reliability of distributed
machine learning tasks. Even in the face of Byzantine attacks,
the system’s robust aggregation algorithms maintain high
levels of accuracy. These findings illuminate the promising
potential of serverless architectures in P2P distributed machine
learning, offering a significant stride towards the development
of more efficient, scalable, and resilient applications.

Keywords—Distributed Machine Learning, Peer-to-Peer (P2P),
Serverless Computing, Fault Tolerance, Robust Aggregation.

I. INTRODUCTION

Distributed machine learning (ML) has become increasingly
important in tackling the rising complexity and large amounts
of data associated with ML models, which traditional single-
machine learning frameworks struggle to manage. This ap-
proach harnesses multiple computational nodes for simultane-
ous processing, greatly reducing the time necessary to train
larger, more intricate models|[1].

Multiple distributed ML architectures have been introduced
over the years, many of which are fundamentally based on the
structures of the Parameter Server (PS) and Peer-to-Peer (P2P)
architectures [2]. Each of these represents a unique methodol-
ogy for orchestrating the management and distribution of tasks
and data across nodes in a distributed system, with their own
set of benefits and challenges [3]], [4].

In the parameter server architecture, for instance, the worker
nodes perform computations on their respective data partitions

and communicate with the parameter server (PS) to update the
global model [5]. In contrast, peer-to-peer (P2P) architectures
distribute the model parameters and computation across all
nodes in the network, eliminating the need for a central
coordinator [6]].

In the pursuit of optimizing distributed ML architectures,
serverless computing has emerged as a revolutionary devel-
opment. Today, the growing trend of serverless computing,
including platforms such as Amazon Lambdal7/], Google
Cloud Functions[8]], and Azure Functions[9], offers flexibility
and cost-effective solutions for distributed ML systems[10],
[LL1]], [12]. A common trait among existing serverless architec-
tures—whether based on Parameter Server or P2P setups—is
a heavy reliance on databases as a communication channel.
This necessity arises from the stateless nature of serverless
architectures and limitations in directly transmitting large data
sizes[[13]], [14]. As a result, communication latency can arise,
especially during the iterative process of model update and
gradient aggregation[/14], [15]. In fact, in these architectures,
the model parameters and computed gradients must be fetched
from the database, processed, and re-uploaded in each itera-
tion. This recurring cycle imposes a significant burden, leading
to additional computational and communication costs that can
significantly impact overall efficiency.

Notably, while the usage of serverless computing within
parameter server architecture has been extensively studied and
proven to yield benefits like cost reduction [16]], scalability
[17]], [18], and performance efficiency [19]. Surprisingly, how-
ever, the potential of serverless computing within peer-to-peer
(P2P) architectures remains less explored, despite the immense
advantages P2P offers in terms of data privacy, load balancing,
and fault tolerance, as a single node’s failure does not disrupt
the system [20].

In relation to this, our preceding work [21] explored the
integration of serverless computing within VM-based P2P
architecture, aiming to offload excessive gradient computation
when faced with resource constraints. Despite the benefits of
this strategy, it represents a piecemeal approach that does not
fully harness the potential of a completely serverless system.
Adding to these challenges, security is a significant concern in
distributed Machine Learning (ML) environments, particularly
in Peer-to-Peer (P2P) based architectures [22]]. One issue is the
absence of stringent mechanisms to authenticate new peers



joining the network [23]], [24]. Unauthenticated or malicious
peers could join the network, potentially causing significant
disruption to the training process.

Beyond the threat of unauthenticated new peers, even ex-
isting, trusted peers can become compromised, introducing
and contributing malicious gradients intended to sway the
model training in harmful directions, severely compromising
the model’s integrity and performance [25]], [23], [26]. This
risk emphasizes the importance of robust aggregation methods
[27], [28]], [29], which can help mitigate the effect of such
outliers on the overall model’s performance.

Addressing the outlined challenges, we introduce the Server-
less Peer Integrated for Robust Training (SPIRT) Architecture.
In this setup, each peer is identified by its associated database,
e.g., Redis, and executes shard-based gradient computation,
aggregation, and model convergence checks. With orchestrated
workflow coordination, e.g., AWS Step Functions, SPIRT
effectively overcomes the stateless limitations inherent in
serverless computing. Consequently, it takes full advantage
of the serverless architecture within a peer-to-peer setup for
machine learning training.

In this endeavor, we propose a reliable peer to peer, serverless
ML training architecture with the following contributions:

1) Automated ML training Workflow: We propose an au-
tomated ML training serverless workflow within a P2P
architecture, maximizing efficiency and scalability while
reducing operational complexities.

2) Serverless-adapted Redis Enhancement: We modify Re-
disAl for serverless ML training systems that rely on
databases, introducing in-database model updates to elim-
inate the traditional fetch-process-reupload cycle. This
enhancement streamlines communication and reduces over-
head, facilitating more efficient serverless ML operations.

3) Enhanced Fault Tolerance: We integrate secure, scalable
peer-to-peer communication, new participant integration,
and robust aggregation mechanisms to establish a fault-
tolerant environment. This approach ensures reliable dis-
tributed ML training, even in the presence of potential
disruptions or adversarial actors.

Once the paper is accepted, a replication package will be made

available for further research.

II. RELATED WORK

This section reviews literature on distributed machine learning
and serverless computing, focusing on decentralized ML on
P2P paradigm and fault tolerance mechanisms.

1. Distributed Machine Learning Architectures

Distributed machine learning has gained prominence due to
the intense computational requirements and extensive data
involved in training sophisticated ML models [30], [2], [31].
The choice of topology, either Centralized, Tree-like or P2P,
is a critical factor influencing performance, scalability, reli-
ability, and security [32[], [2]], [33], [34]. P2P architectures,
for instance, offer scalability and reliability by eliminating the
"Single Point of Failure". Recent studies have begun to explore

serverless computing for machine learning, a promising yet
nascent field [10]], [12], [35], [17], [13]. While many works
[36], [131, [37], [14], [18], [38] are based on the PS paradigm,
others have started to present decentralized learning solutions
using serverless computing [21]].

Unlike previous studies, we propose a fully automated ML
training serverless workflow within a P2P architecture.

2. Communication and Model Updating in Serverless based
Distributed ML

Serverless computing coupled with database systems has seen
increased application in the field of distributed learning. Works
such as LambdaML [14], SMLT [17]], and MLLess [[16] utilize
a database as a communication channel, collecting interme-
diate local statistics from all workers through a designated
communication pattern. Other works propose in-database dis-
tributed machine learning solutions to reduce communication
overhead [39]. Additionally, libraries such as RedisAl [40]]
enable seamless inference on trained models within Redis, and
other solutions like OML4R [41] and MADIib [42] offer SQL-
based functions for prediction and inference within database
environments.

Differentiating from these works, our architecture utilizes
Redis, a high-performance in-memory data structure store,
serving as both a communication channel and an automatic
model update tool through RedisAl.

3. Security and Robustness in Distributed ML

Fault tolerance in distributed ML is facilitated by techniques
like Availability Zones, retries, architectural decisions, and
checkpointing mechanisms [43]], [44], [45], [13]], [14]. The
heartbeat technique is also used for failure detection [46].
Several studies also propose securing communication within
distributed systems to prevent data leakage [18l], [47], [23],
[48]. In addition, robust aggregation techniques such as
KRUM [27], MULTI-KRUM [27], GeoMed [28], MarMed
[28], and ZENO [29] are used to address Byzantine faults
[49]. These robust aggregations rules have been adapted to
P2P architectures in works like the BRIDGE framework [26]]
and a blockchain-based solution by Xu et al. [23].

We expand on this body of work by implementing a secure,
scalable peer-to-peer communication, new participant integra-
tion into the ML training network, and incorporating robust
aggregation mechanisms for reliable distributed ML.

ITII. DESIGN ARCHITECTURE OF LOGICAL PEER TO PEER
TRAINING ML

In this section, we delve into the design architecture of a
serverless, peer-to-peer machine learning training system. The
discussion encompasses a broad overview of the proposed
architecture, an in-depth examination of the core components,
and an exploration of the operational dynamics driving the
system’s overall functionality and performance.
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Figure 1. Overview of the proposed Peer To Peer training based on Serverless computing

1. Comprehensive Overview of the Proposed Architecture

Our proposed serverless P2P distributed training architecture,
as illustrated in Figure [T] kicks off with system initialization,
followed by the authentication of new peers, if any. In this
configuration, every peer in the network is uniquely identified
by the IP address and port tied to its corresponding stateful
component - a dedicated Redis database. A heartbeat moni-
toring system ensures the constant availability of all peers.
Within the system, the assigned dataset of each peer is divided
into smaller shards (batches). The peer computes gradient
for each shard, averages them, and stores the result in its
Redis database. These averaged gradients are then collectively
aggregated among all peers, filtering out any outliers in the
process by applying robust aggregation. The resultant set of
trusted, aggregated gradients is used to update the model
parameters. The system performs periodic checks for model
convergence i.e.,every ten epochs, assuring optimal progress
during the learning phase. Data integrity and confidentiality
are ensured through secure peer communication.

The entire process is coordinated using AWS Step Functions,
which seamlessly orchestrates the flow of each epoch within
the training process of each peer.

This architecture is deployed on Amazon AWS for its unique
benefits like the 15-minute timeout and 10GB RAM from
AWS Lambda [50]. Notably, comparable services on platforms
like Google Cloud, Azure, and IBM Cloud enable possible

architecture replication.

2. Deep Dive into Core Architectural Components

Following the initial overview, we will now go over each key
facet of our proposed Peer-to-Peer (P2P) serverless architec-
ture.

1) Training Dataset Management and Partitioning

Individual peers have the ability to pull data from multiple dis-
tributed storage systems, including Amazon S3. The specific
data each peer is responsible for is determined by its unique
rank. This data is then divided into smaller units, or shards,
to enable batch processing.

2) Leveraging Serverless Computing Across Peer Training
Tasks

The cornerstone of our architecture is serverless comput-
ing, embodied by Amazon Lambda functions. Incorporated
throughout the peer training workflow—from peer authenti-
cation to model updates—it offers benefits such as isolation
for uninterrupted operations, capacity for managing compute-
intensive tasks like gradient computations, and scalability for
workload fluctuations.

3) Training Workflow Orchestration

Due to the serverless structure of our system, where func-
tions operate independently, their orchestration is crucial.



To manage this, we use AWS Step Functions, a powerful
serverless workflow service. It coordinates the entire machine
learning training process within each peer during each epoch,
including tasks like peers authentication, gradient computation
and averaging, model updates, and convergence assessment.
Notably, our architecture integrate continuous invocation of
step functions for each epoch, which effectively mitigates
AWS Lambda’s cold start delays, thereby enhancing overall
performance and minimizing latency during ML training.

4) State Management and Processing in Database

In our architecture, we use Redis, an open-source in-memory
data store, for quick access to machine learning artifacts such
as model parameters and gradients - a key requirement for any
stateless distributed ML system.

Beyond a simple key-value store, we utilize the RedisAl mod-
ule which supports various deep learning backends, enabling
in-database ML operations, and minimizing data transfer la-
tency. RedisAl is especially efficient at serving models at scale
and in real-time. Unique to our architecture is the extension
of RedisAI’s capabilities to directly modify model parameters
within the database, eliminating the traditional process of
external processing, our routine performs these operations
inside the database itself.

5) Synchronization between Peers

Within our proposed architecture, achieving synchronization
amongst peers is paramount for ensuring the correctness of
the distributed training process. To manage this aspect of
distributed computation, we employ the AWS Simple Queue
Service (SQS).

Once a peer completes gradient computation for its data shards
and averages local gradients, it sends a notification message
to a designated synchronization queue, the “Sync Queue”,
signifying the task completion. If a peer doesn’t respond
or acknowledge within a designated timeout period, others
proceed without waiting indefinitely. The unresponsive peer is
identified as a failed node in the next epoch by our heartbeat
monitoring system.

We note that the messages inside the “sync queue® will be
deleted by any peer in initialisation phase.

6) Secure Communication: Safeguarding Data Integrity
and Confidentiality

Our architecture employs stringent secure communication pro-
tocols to ensure data integrity and confidentiality during inter-
peer interactions, accomplished through the RSA algorithm for
asymmetric encryption, with unique public and private keys
for each peer. Beyond encryption, unique digital signatures
derived from private keys authenticate sender identity and
verify data integrity.

Each peer’s private key is safeguarded by encryption using
a unique key from AWS Key Management Service (KMS),
with access strictly limited to few authorized services (Lambda
functions), enhancing security against unauthorized access.

3. Operational Dynamics of the Proposed Architecture

Within this subsection, we take a closer look on the opera-
tional dynamics that power our proposed architecture. Moving
beyond the standalone examination of the key components, to
their interactions, collaborative processes, and the mechanisms
that drive the overall system performance and functionality.

1) Peers Initialization and Authentication

Our architecture relies on Amazon SQS for two main oper-
ations: peers’ initialization and new peers’ integration. Each
peer has two distinct SQS queues - the first for join requests
and the second for receiving encrypted passwords of other
peers’ databases. Every peer also maintains an AWS Key Man-
agement Service (KMS) encryption key, securing its private
key within its database, and ensuring exclusive key access.
Peers Initialisation
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Figure 2. Sequence Diagram Illustrating the Initialization Process of Peers

This phase involves the setup of individual peers. The process
below outlines an example of initializing a two-peer system,
and it’s also illustrated in Figure [2}

1) At the onset, the admin initiates the peers, by providing
each their own KMS encryption key, URLs of their neigh-
boring peers’ “join requests” SQS queues, and a unique
rank. Each peer then generates private and public keys. The
public key is stored in its plain form, while the private key
is encrypted using the KMS encryption key before storage
in the respective database.

2) Each peer then generates a digital signature and broadcasts
this, along with its public key, database IP address and port,
and the URL of its “databases passwords” queue inside
other peer’s “join requests” queue.

3) Verification ensues as each peer validates the other’s sig-
nature

4) Upon successful verification, peers mutually exchange their
encrypted database passwords. Furthermore, they save each
other details, including the rank, into their respective
databases.



Novel peer integration In this phase, we illustrate the process
of integrating a new peer into an existing training network of
two peers, as shown in Figure [3] The steps are as follows:

1) The process is initiated when the admin provisions the new
peer (Peer 3) with the URLs of the “join requests” SQS
queues of existing peers and their corresponding public
keys, and their ranks. Peer 3, in response, generates a
pair of public and private keys. These keys are stored
in its database, with the private key encrypted using the
designated KMS encryption key.

2) The new peer (Peer 3) generates a digital signature, broad-
casting it and its public key, database port and IP address,
URL of its “databases passwords” queue, and rank. It sends
its password, encrypted with the recipient’s public key, via
their “join request” queues.

3) Once the broadcasting phase is completed, Peer 3 waits for
validation from the existing peers. These peers undertake
the task of validating Peer 3’s authenticity. They accom-
plish this by rigorously comparing the signature provided
by Peer 3 against the information contained in its public
key, ensuring a match.

4) After Peer 3’s successful validation, Peers 1 and 2 send
back their individual signatures, and their databases pass-
words encrypted with Peer 3’s public key, into Peer 3’s
“databases passwords” queue. Furthermore, they incorpo-
rate Peer 3’s details into their respective databases.

5) Finally, Peer 3 validates the sender peers based on their
signatures and public keys. Upon successful validation,
Peer 3 records the details of Peers 1 and 2 into its own
database.
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Figure 3. Sequence Diagram of New Peer Integration into
Training Network

2) Model Initialisation

The model initialization phase involves the establishment of a
unified model to serve all initialized peers. This model can
be initialized with random parameters or pre-trained ones,
depending on the requirements. The chosen model, which
could be a specific ML or deep learning model, is then stored
in each peer’s Redis database using RedisAl. This ensures a
consistent starting point for distributed learning.

3) Distributed Gradient Computation

Leveraging the serverless concurrent abilities of AWS
Lambda, we implement a parallel gradient computation within
our architecture. Each peer partakes in this distributed process
by calculating gradients on assigned data batches and storing
these computed gradients in its local Redis database. To ex-
pedite the gradient computation, data, segmented into smaller
batches, is fetched from S3 storage, and model parameters are
retrieved from Redis.

4) Averaged Gradient Computation

Once the gradients have been computed, an embedded Lua
script calculates the gradients’ average within the Redis
database environment, capitalizing on in-database program-
ming. This approach eliminates costly external data transfers.
Once local averaging is complete, peers send a completion
message to the ’sync queue®, notifying others of the task’s
conclusion.

5) Heartbeat Monitoring

Our system incorporates a ’heartbeat’ mechanism designed
to be triggered every epoch, where each peer checks the
operational status of other peers databases.

Peers send a signal, waiting for responses to confirm others’
activeness. Failure to respond within a set timeframe and a
number of trials denotes a peer as “inactive, subsequently
removed from the trusted peers list and added to the “inactive
peers info* list. This continuous health check is vital for net-
work integrity and uninterrupted peer-to-peer communication.

6) Peers Synchronization

To collate the individually computed average gradients from
each participating peer and derive the aggregated gradient,
a specially designated Lambda function “synchronize* is in-
stantiated. This function serves as a synchronization barrier
that waits until the count of messages in the queue equals
the current number of active peers, those determined by the
preceding heartbeat check.

7) Gradient Aggregation

Once all peers are synchronized, the gradient aggregation
phase begins. Each peer fetches the average gradients from
the databases of all active peers in the network. An aggre-
gation function then amasses these gradients, utilizing robust
algorithms to discard outlier gradients. The final aggregated
gradient is then stored in each peer’s Redis database. This
approach ensures the integrity and accuracy of our gradient
aggregation process.



8) Model Update

Utilizing the in-database programming feature of RedisAl, we
directly update each peer’s model parameters stored in the
Redis database using the aggregate gradient, thereby bypassing
the conventional read-process-write cycle.

9) Convergence Checking

Upon the completion of model parameter updates, a Lambda
function is intermittently called (e.g., after every tenth iter-
ation) to check model convergence. This approach reduces
unnecessary function calls, as significant model changes aren’t
anticipated after each iteration.

10) Update and Trigger new epoch

In the context of our AWS Step Function based workflow,
each step function orchestrates the process for a single epoch.
The stateful nature of this service necessitates the instantiation
of a new Step Function at the end of each epoch to maintain
the continuity of training inside each peer. To facilitate this,
we employ a dedicated Lambda function that is responsible for
spawning the new Step Function. This Lambda function initial-
izes the new Step Function with the correct inputs, including
the subsequent epoch number, the degree of parallelism for
gradient computation tasks, and a flag indicating whether a
convergence check is required (based on the current epoch
number). This process ensures an updated step function based
on current needs. The ARN (Amazon Resource Name) of the
new function is stored in the Redis database, which is reused
in subsequent epochs if no new requirements arise.

The same Lambda function also undertakes the responsibility
of updating the list of inactive peers through a consensus-
driven approach. To ensure the integrity of this process, the
list of inactive peers for each node is cross-validated against
corresponding lists from all other nodes within the network.
An inclusive agreement is applied, meaning a peer is only
marked as inactive if it is listed as such in every peer’s record.

11) Fault Tolerance and Peer Data Redistribution

A core strength of our architecture lies in its fault-tolerance
mechanisms. This resilience is primarily manifested through
our approach to handle instances of peer inactivity or failure.
When one or many peers become inactive, our dedicated
Lambda function first identifies these instances using the
consensus-based approach described previously. Once inac-
tive peers are identified, the data originally assigned to the
downed peers is segmented and distributed among the active
peers based on a predefined ranking system. Here, each peer,
according to their rank, inherits a corresponding portion of the
data from the inactive peer.

Following this data reassignment, the “Update and Trigger
new epoch” Lambda function adjusts the configuration of
the new Step Function to account for the change in data
distribution and the increased workload for each active peer.
This adjustment may include tuning the degree of parallelism
for gradient computation tasks to accommodate the additional
data batches.

IV. EXPERIMENTAL SETUP

In order to evaluate the efficacy of the Serverless Peer Inte-
grated for Robust Training (SPIRT) architecture, we design a
series of experiments to evaluate the performance of various
CNN models across different datasets on the proposed archi-
tectures.

1. Datasets

We utilized two public datasets for our experiments:
MNIST: The MNIST Handwritten Digit Collection [51] con-
sists of 60,000 handwritten digit samples, each belonging to
one of ten classes.

2. Model Architectures and Hyperparameters

The experiments involve three different CNN models:
MobileNet V3 Small: A lightweight CNN developed for
mobile and edge devices, it features inverted residual blocks,
linear bottlenecks, and squeeze-and-excitation modules, with
roughly 2.5 million trainable parameters [52].

ResNet-18: A deep learning CNN model with approximately
11.7 million parameters, featuring 18 layers and using "skip
connections” to aid training of deeper networks [53].
DenseNet-121: A uniquely structured CNN with about 8 mil-
lion parameters and 121 layers. It leverages dense connections,
where each layer is connected to all other layers, enhancing
learning efficiency [54].

3. Redis and RedisAI Configuration

We utilized Redis and RedisAl for in-database model updates.
Each peer’s Redis was deployed within an Amazon EC2
Ro6a.large instance. To access the database hosted on EC2,
we utilized SSH tunnels to forward the port and enable access
from public services such as AWS Lambda.

4. AWS Lambda Configuration

Several AWS Lambda functions, discussed in Section
were set up for the training procedure. Dependencies such
as PyTorch, NumPy, Redis, RedisAl, and sshtunnel were
necessary. Managing these dependencies posed a challenge
due to AWS Lambda’s deployment package size limit. The
zipped package must be less than 50MB, and the unzipped
files cannot exceed 250MB.

We utilized a Virtual Private Cloud (VPC) to minimize the
need for multiple SSH connections between compute gradients
Lambda functions and the database EC2 instance.

V. EFFICIENCY AND PERFORMANCE IN SERVERLESS P2P
ARCHITECTURE

1. Motivation:

Our innovative serverless peer-to-peer architecture marks the
advent of a decentralized era in model training. Peers are
enabled to concurrently compute gradients in parallel based
on their assigned datasets, exchange these gradients for robust
aggregation, and update their model parameters. Yet, a the-
oretically sound architecture is merely the initial phase; the
critical next step is to assess its performance under various
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Figure 4. Comparison of Compute Gradient Time and Average Gradients Across Varying Batch Sizes for Different Number of Peers

operational conditions using multiple deep learning models of
different complexity and computational demands.

Moreover, it’s crucial to explore scalability in two significant
aspects: (1) Intra-peer scalability: The ability of our architec-
ture to manage parallel gradient computations within a single
peer, and (2) Inter-peer scalability: The adaptability of our
architecture to changing numbers of peers in the system.
Our motivation lies in thoroughly understanding our archi-
tecture’s scalability under these two critical dimensions. By
altering the number of peers and harnessing each peer’s
parallelization capabilities, we can observe their impacts on
performance metrics like gradient computation time, aggrega-
tion time, and overall training time per epoch. This approach
gives us a holistic view of our architecture’s performance
under varied operational circumstances.
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2. Approach:

For our experiments, we utilized two distinct deep learning
models, Densenet121 and MobileNet V3 Small, to represent
a range of model complexities, using the standard MNIST
dataset for training.

Intra-peer scalability was explored by adjusting the batch
size, thereby determining the number of concurrent gradient
computations within a peer. With batch sizes of 64, 128, 256,
512, and 1024, we traced the impact on gradient computation
and averaging times.

Inter-peer scalability was assessed by varying the number of
peers, starting from 4 and incrementing by 2, up to 12. This

helped us gauge the system’s adaptability and its effect on
parameters like aggregation time and training time per epoch.

3. results:

As we observed in Figure [ an increase in batch size yields
an increased time to compute gradients. This is expected,
as a larger batch size implies more data to process at once
per peer, which intuitively would increase the time needed
for computation. We observed this increase in computation
time consistently across both Densenet121 and MobileNet V3
Small models, signifying that the effect is model-agnostic.
Additionally, this trend persists across different numbers of
peers. This indicates that the increase in computational burden
due to a larger batch size cannot be offset simply by adding
more peers, as the computation time per gradient computation
still increases.

Table 1
TRAINING TIME PER EPOCH ACROSS DIFFERENT BATCH SIZES AND PEER
COUNTS FOR MOBILENET V3 SMALL AND DENSENET121 MODELS

Mobilenet v3 small (Batch Size) Densenet121 (Batch Size)
# Peers 64 128 256 512 | 1024 64 128 256 512 | 1024
4 96.27 | 57.46 | 39.61 | 41.41 | 42.85 || 375.82 | 202.62 | 125.7 | 90.67 | 81.17
6 68.55 | 43.69 | 33.05 | 36.11 | 44.39 || 268.13 | 150.16 | 98.41 | 73.39 | 73.77
8 54.42 | 38.05 | 32.5 | 35.64 | 39.48 || 209.79 | 121.41 | 83.65 | 67.44 | 65.25
10 48.97 | 36.97 | 31.65 | 37.56 | 41.17 || 182.32 | 11095 | 79 | 67.02 | 63.89
12 4843 | 37.3 | 32.57 | 37.21 | 39.53 || 169.12 | 10439 | 74.41 | 65.19 | 62.03

On the other hand, as we decrease the batch size, we enable
more parallel gradient computations due to the availability of
more smaller-sized batches. Although this parallelization could
potentially lead to faster computation times, we interestingly
notice an increase in the average computation time within each
peer’s database due to the overhead associated with averaging
multiple gradients.

Further dissection of the number of peers’ impact on perfor-
mance, independent of batch size, reveals an interesting trend.
As illustrated in Figure[5] the aggregation time, which includes
both the computation of the aggregated gradient and the time
to retrieve locally averaged gradients from other peers, de-
creases when the number of peers is reduced (as shown in the
bar plot). This suggests an inherent computational overhead
linked with gradient aggregation over larger networks of peers,
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Figure 6. Time taken for calculating gradient averages within and outside the database

a factor that requires careful consideration when designing and
scaling such decentralized learning systems.

This network size impact is further reflected in Table [, which
present the total training time per epoch for both Densenet121
and MobileNet V3 Small models, respectively. We observe
an overall decrease in training time per epoch with a larger
batch size and a higher number of peers. Nonetheless, these
tables also highlight the nonlinear relationship and the trade-
offs between batch size and peers network scale.

VI. OPTIMIZING COMMUNICATION OVERHEAD
1. Motivation:

As we delve deeper into the intricate world of distributed
serverless environments, characterized by numerous au-
tonomous and stateless services, the challenges associated
with frequent database retrieval loads during training phases
emerge. While works such as previous work [21], LambdaML
[14], SMLT [17], and MLLess [16] utilize a database as
a communication channel, storing and retrieving model pa-
rameters as necessary, the exploration of the communication
overhead these operations create remains largely unexplored.
Such conditions often precipitate a significant increase in com-
munication overhead, consequently undermining the overall
training performance. However, within our unique architec-
tural framework, we incorporate a customized Redis. This
component allows us to perform average and update operations
directly within Redis. Through this investigation, we aim to
shed light on how our approach can reduce communication
overhead and subsequently enhance training performance.

2. Approach:

In our experiment, we first explore the efficiency gains that
can be realized by conducting model updates directly within
RedisAl Following this, we delve into the benefits of calcu-
lating gradient averages within Redis. For a comprehensive
evaluation that considers the impact of model size on the
overhead, we will use two distinct models - MobileNetV3
Small and ResNet18 - and run these models on the MNIST
dataset. The insights from these tests will then be compared
with the traditional method of iterative fetch-update-store
operations, typically used with standard Redis, as outlined in
previous studies.

1287118
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(b) Resnet-18 Model
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Figure 7. Time taken for Model Up-
date within and outside the database

3. Results:

An in-depth analysis of the experimental results provides
persuasive evidence of the significant efficiency improvements
facilitated by in-database operations, as vividly depicted in
Figures [6] and [7]

Figure [f] concisely illustrates the substantial reduction in
time for gradient averaging calculations within the database,
as opposed to outside, for both the MobileNetV3 Small
and the ResNet-18 models. As the plot underscores, the in-
database approach yields consistently lower computation times
across the spectrum of batch sizes. The MobileNetV3 Small
model, for example, experiences an impressive decrease in
computation time from 135.29 seconds outside the database
to 78.52 seconds within, for a batch size of 64. The time
efficiency continues to escalate as the batch size increases,
with the largest batch size of 1024 resulting in a striking
82% improvement, requiring only 5.4 seconds for in-database
computations.

A similar efficiency advantage is observed with the larger
ResNet-18 model, where gradient averaging computations
conducted within the database halved the processing time to
37.41 seconds, a stark reduction from the 67.32 seconds re-
quired when computed outside the database, for the batch size
of 1024. This trend equates to a remarkable 69% improvement
in processing efficiency, proving that our approach’s benefits
are applicable even for larger, more demanding models.
Figure [7] delves into the time taken for model updates within
and outside the database. It echoes the efficiency improve-
ments demonstrated by the previous figure, particularly the
sharp decrease in model update times when processed within
the database. MobileNetV3 Small model updates saw an 82%
reduction in time when executed within the database, shrink-
ing from 3.49 seconds outside the database to a mere 0.64
seconds within. Likewise, ResNet-18 updates experienced an
approximately 83% improvement, with update times reducing
dramatically from 27.5 seconds outside the database to 4.8
seconds within.

VII. SCALABILITY AND FAULT TOLERANCE EVALUATION

1. Motivation:

In the dynamic realm of distributed machine learning (ML)
peer-to-peer training, disruptions, such as peer failures, new
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peers joining, and potential Byzantine behaviors, are in-
evitable, and if not effectively managed, can impact the relia-
bility and performance of the ML training. This provides the
impetus for our experiment, which is meticulously designed
to rigorously evaluate the robustness, scalability, and fault
tolerance of a serverless, peer-to-peer ML training architecture.
In this architecture, peers are carefully identified to form a se-
cure training network, and its capacity to handle peer failures,
seamlessly integrate new peers, and resist Byzantine attacks
will be critically evaluated to ensure long-running distributed
ML training sessions can continue to deliver accurate results
amidst these disruptions.

2. Approach:

In our experimental approach, we center on the evaluation
of three crucial aspects using the Mobilenet V3 Small model
trained on the MNIST dataset: peer failures, the addition of
new peers, and Byzantine attacks.

We initiate with the simulation of peer failures where we
begin training with four peers, each processing 15 compute
gradients. A peer failure is then artificially induced, leading
us to measure the time taken by the remaining peers to identify
the failure. In response to this failure, these remaining peers
incorporate the data of the failed peer into their following
epochs, augmenting the compute gradients to 20. This sim-
ulation aids in testing the system’s resilience and ability to
adapt in response to computational loss during peer failures.

To assess the system’s scalability, we execute the addition
of new peers scenario where a new peer is introduced into
the network. We proceed to calculate the time taken by the
existing peers to recognize and integrate this newcomer into
the ongoing training process.

astly, our approach includes countering potential Byzantine at-
tacks using robust aggregation algorithms, Zeno and Meamed.
Zeno [29] ensures resilience by using a validation set to score
and exclude any potentially adversarial local updates. The
medians-based approach, or Meamed [28]], combats Byzan-
tine attacks by creating a vector that minimizes the overall
distance to all local updates, thereby mitigating the influence
of adversarial elements. By simulating adversarial scenarios of

one malicious peer, such as a sign flipping attack [55] where
the malicious peer inverts and amplifies its local gradient,
and a noise attack [56] where the malicious peer introduces
Gaussian noise to its local updates, we track the training
progression to convergence. This comprehensive approach
enables us to gauge the architecture’s resilience and robustness
against adversarial behavior.

3. results:
1) Peer Failure

The flow of the experiment are depicted in Figure 9] for a more
visual understanding. Initially, we began with four peers, each
designed to process 15 batches per epoch. The first epoch
proceeded unimpeded, with the total training time recorded at
52.6 seconds.
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Figure 9. Recovery Time when a Peer Fails

A simulated peer failure has been introduced at the beginning
of the second epoch, immediately after a health check had
validated the ’failed’ peer as operational. This timing rep-
resented a worst-case scenario, as it extended the detection
period. Nonetheless, the remaining peers were in recognizing
the failed peer within the ongoing epoch, taking a total 50.9
seconds to align with the next epoch’s heartbeat step.

Post this single-peer-level detection, the remaining peers
reached a consensus on the failed peer within 9.66 seconds.
This aggregated the total detection time to 61.56s seconds of
the failed peer. we note that, despite the deferred detection of
the simulated failure in the third epoch, the training process
was not interrupted, thus maintaining the progression towards
model convergence. Upon consensus on the peer failure,
the recovery process was triggered. This involved creating
a new AWS Step Function to redistribute the failed peer’s



computational workload, which increased the remaining peers’
load from 15 to 20 batches per epoch. The complete recovery
process, encapsulating the creation, deployment, and database
entry of the new AWS Step Function, required an extra
1.94 seconds. After recovery, the remaining peers continued
training in the 4th epoch with an adjusted workload to account
for the lost peer. By the end of the fourth epoch, the total
training time post-recovery was registered as 55,06 seconds.
Our analysis shows a slight increase in total training time from
52.6 to 55.06 seconds, as the system transitions from four to
three peers. This can be attributed to the increased number of
gradients being averaged due to the redistribution of the failed
peer’s workload.

2) Adding a new peer

We found that in the scenario of adding a new peer, it took
approximately 7.2 seconds for the existing three peers to
recognize and integrate the new peer into their list of trusted
peers.

3) Tolerating Byzantine attacks

The adoption of Meamed and Zeno aggregation algorithms
introduced a computational overhead, leading to an approx-
imate increase of 8.2 and 5.9 times in computational time,
respectively, in contrast to the average aggregation method.

In a scenario without adversarial attacks, all three aggregation
methods — Averaging, Zeno, and Meamed — achieved an
accuracy above 90% within approximately 100 epochs. During
a sign flip attack, the robust aggregations, Zeno and Meamed,
managed to converge to almost 85%, while the normal averag-
ing method did not. During a noise attack scenario, both Zeno
and Meamed reached convergence above 90% after nearly 90
epochs, but the normal averaging method remained divergent.

VIII. DISCUSSIONS

This section critically examines the results of our study and the
performance of SPIRT, identifying its implications for peer-to-
peer serverless ML training and potential directions for future
research.

1. Serverless P2P for ML training

In our research, we created a distributed training workflow
utilizing serverless computing, customized to inherit charac-
teristics from a peer-to-peer (P2P) system, such as robustness,
fault tolerance, and scalability. This design led to the creation
of logical peers, each focusing on training a distinct part of the
dataset. The statelessness of serverless computing necessitates
the use of redis databases into our architecture for maintaining
state information and enabling inter-component communica-
tion. To reduce communication overhead, we incorporated a
modified version of RedisAl into our architecture, enabling
immediate model updates within the database. Our proposed
architecture paves the way for further exploration into the en-
hancement of in-database computing in distributed serverless
ML systems.
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2. Security, reliability, and Fault Tolerance in Machine Learn-
ing Architecture

Exploring scalability, a cornerstone of distributed systems, we
delved into balancing inter and intra-peer scalability. While
handling multiple data batches within a single peer increases
efficiency, it also risks a single point of failure. Conversely,
extending processing power across multiple peers introduces
challenges related to gradient averaging and multiple connec-
tions. By testing our system with varied model and batch
sizes, and different numbers of peers, while further exploration
is required to fully comprehend these trade-offs, our efforts
lay a significant foundation towards improving scalability in
distributed ML systems.

In terms of fault tolerance, our design incorporates a ro-
bust heartbeat system to monitor peer health. Although this
method is generally effective, it can introduce minor delays
in detecting failures due to its periodic checking nature. To
enhance detection speed, more frequent heartbeats could be
implemented. As for fault recovery, our architecture ensures
swift recovery time either by intra-peer scalability (adding a
new peer) or by redistributing the load among existing peers
(inter-peer scalability).

Aiming to augment the security of our architecture, we’ve
implemented sophisticated cryptographic mechanisms which
provide robust safeguards for data integrity, authenticity, and
confidentiality. These measures ensure that data shared be-
tween two peers can only be understood by them. In addition,
we’ve adopted robust aggregation that securely consolidates
gradients from diverse peers. While the robust aggregation
procedure may extend the aggregation time - for instance, take
longer than the average aggregation - its capacity to safeguard
against Byzantine attacks and guarantee model convergence
underscores its importance.

IX. CONCLUSION

In this study, we present SPIRT, a serverless machine learning
(ML) architecture that streamlines training in distributed set-
tings. By minimizing communication overhead, demonstrating
resilience to adversarial attacks, and seamlessly integrating
new peers.

We found that SPIRT’s use of in-database operations in
RedisAl resulted in remarkable computational and commu-
nication efficiency, improving processing times by up to 82%.
Moreover, SPIRT exhibited a high degree of resilience amidst
disruptions, rapidly adapting to peer failures with minimal
impact on training times and integrating new peers swiftly
into the training network. When subjected to adversarial
scenarios, the robustness of the architecture became more
apparent. Through the use of Byzantine-resistant aggregation
methods, Zeno and Meamed, high accuracy levels above 85%
and 90% were maintained during sign flip and noise attacks,
respectively.

These findings provide a robust foundation for the evolu-
tion of distributed ML training frameworks, paving the way
for advancements in efficiency, resilience, and scalability in
serverless environments.
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