
Approximation and Heuristic Algorithms for Delay Constrained Path Selection

under Inaccurate State Information

Ying Xiao, Krishnaiyan Thulasiraman

University of Oklahoma, Norman, OK
{ying_xiao, thulasi}@ou.edu

Guoliang Xue

Arizona State University, Tempe, AZ
xue@asu.edu

Abstract

Given a communication network modeled as a directed

graph with a delay parameter associated with each link,
we consider the problem of determining the most

probable delay constrained path from a source node to a

destination node. Assuming that the link delays are
random variables with continuous and differentiable

probability density function and using the central limit

theorem this problem can be formulated as a path
problem which involves simultaneously optimizing two

additive path parameters. Two cases arise. When there is

one path with mean delay less than the delay bound, we
present an exact pseudo polynomial algorithm, a fully

polynomial time -approximation algorithm and a

strongly polynomial heuristic algorithm. In the unlikely
case when this assumption is violated, the problem is

shown to be NP-hard and no constant factor
approximation algorithm exists if P NP. We also study

the path protection problem under inaccurate state

information.

1. Introduction

The constrained shortest path (CSP) problem is to

identify a minimum cost path from a source node to a

destination node whose delay is within a specified bound.

This problem has attracted considerable attention from the

telecommunications community. This is a result of a great

deal of emphasis on the need to design communication

protocols that deliver certain performance guarantees.

This need, in turn, is the result of an explosive growth in

high bandwidth real time applications that require

stringent QoS guarantees. The CSP problem is known to

be NP-hard. As a result, research efforts have focused on

designing efficient heuristic and approximation

algorithms for this problem. Works in [1] - [7] and the

references therein contain most of the results reported to

date on the CSP problem.

The above results for the CSP problem have been

developed assuming that the exact state of the network is

known. However, in practice this is not the case. For

several reasons [8], [9], full knowledge of the network

state is not available. The existence of inaccuracy in state

information has led researchers to study the routing

problem with uncertain parameters [8] - [10]. The

objective in these papers is to identify a path that is most

likely to satisfy the delay requirement. This problem is

referred to as the MP-DCP problem. In their pioneering

works [8] and [10], the authors studied several aspects of

this problem and related computational issues. In their

study, they also highlighted the role of the CSP problem

and other combinatorial optimization problems in the

study of the MP-DCP problem. For the simplicity, unlike

the CSP algorithm considering link cost and link delay

together on deterministic networks, only one link metric,

say delay, is considered in this paper. However, our

algorithms can be easily extended to handle multiple

constrains.

The MP-DCP is known to be NP-hard [8]. To simplify

this problem, Korkmaz and Krunz [9] use the central limit

theorem and make mild assumptions on the probability

distribution of link delays which lead to a formulation that

requires determining an optimal path with respect to a

metric involving mean path delay and path variance. They

considered two cases, one of which requires minimization

of both the mean path delay and path variance and the

other requires minimization of mean path delay and

maximization of path variance. Using Lagrangian

relaxation techniques (as in [3], [5], [6], [7]), they

developed heuristic approaches. Intensive numerical

simulations given in [9] show that this formulation

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

produces high quality solutions.

In this paper we develop approximation algorithms for

the MP-DCP problem using the formulation developed in

[9]. In the following, we formally define the MP-DCP

problem and its formulation.

MP-DCP Problem: Consider a network represented

by a graph G(V, E), with n = |V|, m = |E|. Given a

maximum delay requirement D for a flow between a

given source node s and a destination node t s, and

probability density function (pdf) pl(d) for all l = (i, j)

E, such that pl(d) is the probability that the link l will

introduce a delay at most d units, i.e., dl < d. Let d(i, j) be

the random variable(RV) associated with the delay of the

link (i, j). For a path p, define

d(p) =
pji

jid
),(

),(and D(p) = Pr[d(p) D].

The MP-DCP problem is to find an s-t path popt such

that for any s-t path p, D(popt) D(p).

To simplify this problem and following Korkmaz and

Krunz [9], we assume that d(i, j)’s are nonnegative RV’s

with mean µ(i, j) > 0 and variance 2(i, j) > 0 and that for

all links (i, j) E, d(i, j)’s are mutually independent.

Without loss of generality, we assume µ(i, j)’s and 2(i,

j)’s are integers (this is because all numbers are

represented by finite digits in computers and other digital

devices). Furthermore, we assume that the pdf of d(i, j) is

continuous and differentiable on some interval (a, b).

Under this assumption and using the central limit

theorem, the path delay is approximately normally

distributed. Without loss of generality, we assume each s-

t path is long enough (Note: The sum of as small as three

RVs tends to a normal distribution [9]) that d(p) is a

normally distributed RV with mean µ(p) > 0 and variance
2(p) > 0 computed as follows.

 µ(p) =
pji

ji
),(

),(and 2(p) =
pji

ji
),(

2),(

With the above assumption,

 D(p) (
)(

)(

p

pD
),

where (x) = (1/2)1/2
x

y dye 2/2

Since (x) is an increasing function, we can reduce the

MP-DCP problem as identifying the path p that

maximizes

 D(p) = (D – µ(p))/ (p),

where (p) 2/1

),(

2)),((
pji

ji .

We call µ(p) and 2(p) as the mean delay and delay

variance of path p. The difficulty with this problem arises

from the nonseperable square root () function. As in [9],

we distinguish two cases:

Case 1: There exists a path with mean delay less than

or equal to the specified delay bound D.

Case 2: The mean delay of each path is greater than D.

Obviously, in Case 1(resp. Case 2), D(popt) 0 and

µ(popt) D (resp. D(popt) < 0, µ(popt) > D).

The rest of the paper is organized as follows. In

sections 2 - 4 we consider Case 1. In section 2 we present

a pseudo polynomial time exact algorithm for the MP-

DCP problem. In section 3 a fully polynomial time -

approximation algorithm is presented. This is followed by

a strongly polynomial time heuristic algorithm and the

numerical simulation results for the heuristic algorithm

presented in section 4. In section 5 we study the problem

for Case 2. Section 6 discusses the application of these

results in provisioning two disjoint paths under inaccurate

information and its value in designing path protection

schemes. Section 7 concludes with a summary of our

contributions.

2. An exact algorithm: case 1

In the next three sections, we first assume that there

always exists some path p such that µ(p) D. We will

also study the MP-DCP problem without invoking this

assumption in section 5. In fact, if this assumption does

not hold, the value of D may not be a realistic delay

bound because in this case, p, D(p) < (0) = 0.5, i.e.,

any path p meets the delay bound with probability less

than 0.5.

Since (p) is nonadditive , Procedure exact-mp-dcp

enumerates all the possible values of 2(p) that lie in [1,

U] with U = min{ 2(p*) | p* P}, where P = {p* | µ(p*)

= min (µ(p) | p is an s-t path)}.

For the sake of completeness we also present next the

main algorithm for computing argmin{µ(p)| 2(p) Ti} in

Procedure exact-mp-dcp. When we compute argmin{µ(p)

| 2(p) Ti} for the first time, we call the Algorithm CSP

adopted from the exact algorithm in [2] for the

constrained shortest path problem with two metrics on

Procedure exact-mp-dcp

 1 T0 U

 2 i 0

 3 opt -

 4 while (Ti > 0)

 /* see next paragraph for special care */

 5 p* argmin{µ(p) | 2(p) Ti}

 6 opt max{ opt, (D – µ(p*)) / (p*)}

 7 i i + 1

 8 Ti
2(p*) – 1

 9 end while

10 return opt and the corresponding path p*

 end procedure

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

deterministic networks. This is a simple dynamic

programming algorithm with time complexity O(m T).

We only need to call the Algorithm CSP once and then we

can directly use the table fl(d) (defined in the Algorithm

CSP below) created by its first invocation. With the table,

for a given Ti and p* = arg min{µ(p) | 2(p) Ti}, it can be

seen that µ(p*) = ft(Ti) and 2(p*) = T* where T* is the

least value such that ft(T*) = ft(Ti). In fact, the value of
2(p*) can be computed in constant time using extra data

structures.

We keep the formulation of exact-mp-dcp as above to

make the algorithm conceptually simple.

Theorem 1: Procedure exact-mp-dcp finds an optimal

solution in O(U m) steps if for all links (i, j), 2(i, j) 0.

Proof: The computation of argmin{µ(p) | 2(p) T} for

the first time is done by the constrained shortest path

algorithm which takes O(T m) steps if there are no 0 delay

variance links.

Obviously, the computation time of Algorithm CSP

dominates all the other computations and so the

complexity of the whole algorithm is O(U m).

Let popt be one of the optimal solutions with the least

delay variance and p* be the path such that U = 2(p*).

We first show that U = 2(p*) (popt). By the definition

of popt and p*,

 (D – µ(popt)) / (popt) (D – µ(p*)) / (p*) and

 D µ(popt) µ(p*).

If D – µ(popt) > 0, we have (p*) / (popt) (D – µ(p*)) /

(D – µ(popt)) 1 or (p*) (popt).

If D – µ(popt) = 0, then D(p*) = D(popt) = 0 and D =

µ(popt) = µ(p*). Hence (p*) (popt) because popt is the

optimal path with the least delay variance and p* is one of

the optimal paths.

We next show that Procedure exact-mp-dcp will find

one of the optimal solutions at termination. Suppose in

iteration i, pi = argmin{µ(p)| 2(p) Ti}. To prove the

correctness of the algorithm, it suffices to show that if
2(popt) Ti and pi is not optimal, then 2(popt) < 2(pi) =

Ti+1 + 1. Then we can see that the algorithm has

enumerated all possible value of 2(popt) at termination.

If this were not true, then Ti
2(popt)

2(pi).

Obviously, D µ(popt) µ(pi) by the definition of pi and
2(popt) Ti. We obtain

 (D – µ(popt)) / (popt) (D – µ(pi)) / (pi).

Since pi is not optimal by the assumption, this is the

desired contradiction.

In the next section, based on exact-mp-dcp, we shall

design a fully polynomial time approximation algorithm.

3. A fully polynomial time approximation

algorithm: case 1

To design a fully polynomial time approximation

algorithm, we use scaling and rounding described in [4].

Without loss of generality, assume U >> n and < 1.

Lemma 1: Let G(N, E, µ, , D) denote a network with

two metrics µ and on the link set E. Let G (N, E, µ, ',)

be the network transformed from G such that

(i, j) E, ' 2(i, j) = 2(i, j) / upper + 1,

where (= O(n)) is some integer (to be discussed later)

and lower < upper U.

Let popt be the optimal solution to the MP-DCP

problem on G and p be any path such that

 (D - µ(p)) / '(p) (D - µ(popt)) / '(popt).

If lower 2(popt) upper, then

)(

)(
)

)(
1(

)(

)(2/1

opt

optopt

p

pDpL

lower

upper

p

pD
,

where L(p) is the number of links of path p.

Proof:We have

 2(i, j)(/upper) ' 2(i, j) 2(i, j)(/upper) + 1.

 So

)(')/(

)(

)(')/(

)(

)(

)(

2/1

2/1

opt

opt

pupper

pD

pupper

pD

p

pD

)(

)(
)

)(
1(

)(

)(
)

)(

)(
1(

2/1

2/1

2

opt

optopt

opt

optopt

opt

p

pDpL

lower

upper

p

pDpL

p

upper

.

We next present an approximation algorithm

Procedure approx-mp-dcp for the MP-DCP problem. In

each iteration of approx-mp-dcp, the algorithm computes

a path whose objective is no less than the optimum values

among all the paths whose delay variance lies between

given values of lower and upper. This is achieved by

calling approx-max-mp-dcp(lower, upper, , opt) which

applies Procedure exact-mp-dcp on an appropriately

scaled network.

Let fj(d) be the minimum mean delay among

 all 1- j paths with delay variance d.

/* T is the delay variance upper bound*/

Algorithm CSP (T):

 /*1 is the source node, n is the target node*/

 f1(d) = 0, d = 0, …, T,

 fj(0) = , j = 2, …, n,

 fj(d) = min {fj(d -1),

djkk),(| 2

min {fk(d – 2(k, j)) + µ(k, j)}}

 , j = 2…, n, d = 1…, T

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

Lemma 2: If popt is the optimal solution to the MP-

DCP problem and lower 2(popt) upper, where lower =

upper / 2, = 2 n / , approx-max-mp-dcp finds a solution

p such that D(p) D(popt)/(1 +)1/2 in time O(m n /)).

Proof: The complexity is easy to show (See Theorem

1).

We next prove the first part of this lemma.

Observe that for any path p in G with lower 2(p)

upper, / 2 ' 2(p) + n, where ' is the metric defined

in the line 1 of algorithm approx-max-mp-dcp.

Let p = argmax{(D – µ(p)) / ' (p) | / 2 ' 2(p) +

n }. We have

 (D – µ(p)) / (p) (D – µ(p)) / (p) and,

 (D – µ(p)) / '(p) (D – µ(popt)) / '(popt)

This first inequality holds because p is among all the

paths delivered by the CSP algorithm invoked in line 4 of

approx-max-mp-dcp and at termination, p must have

been compared with p (p is the winner at termination) in

updating opt (line 5 in Procedure approx-max-mp-dcp).

By the first inequality and Lemma 1, we obtain

 D(p) = (D - µ(p))/ (p) (D - µ(p))/ (p)

 (1 + L(popt) upper/(lower))-1/2 (D - µ(popt))/ (popt)

 (1 +)-1/2(D - µ(popt))/ (popt) = D(popt)/(1 +)1/2.

Theorem 2: Procedure approx-mp-dcp finds in time

O((m n /) log U) a path p* such that D(p*) D(popt) (1

+)-1/2, where popt is the optimal path for the MP-DCP

problem.

Proof: Obviously, the procedure terminates in O(log U)

iterations of Procedure approx-max-mp-dcp. Next, we

can see that approx-mp-dcp must have searched the

interval containing the optimal path before termination as

shown in Lemma 2 and thus the theorem is proven.

Notice that with proper value of , our algorithm can be

seen as fully polynomial -approximation algorithm

defined in [2], [4]. An interesting question is whether we

can adopt the techniques in [2], [4] to derive a strongly

polynomial algorithm (the time complexity does not

depend on U). Unfortunately, (due to the nonseparable

nature of objective function), optimality conditions for the

MP-DCP problem are not known. So, we are not able to

design the test or -test procedures which are critical for

the methods in [2], [4].

4. A strongly polynomial heuristic algorithm:

case 1

In this section, using parametric search we design a

strongly polynomial heuristic algorithm for the MP-DCP

problem. The solution obtained by this heuristic can be

used to achieve considerable speed up of the Procedure

approx-mp-dcp presented in the previous sections.

We notice that the objective function of the MP-DCP

problem is close to the form of fractional optimization

problems that can be solved by Newton method or

parametric search [11], [12]. For the MP-DCP problem,

the only difficulty is the nonadditive nature of (p). In

order to remove this barrier, we change the objective

function and consider the following modified problem.

H-MP-DCP: Max H D(p) = (D - µ(p)) / 2(p),

where (p) 2/1

),(

2)),((
pji

ji .

Let pH be the optimal path to the H-MP-DCP problem.

Assume H D(pH) = OPT. In parametric search, for any

given , we need an oracle test to determine whether OPT

is greater or less than [11], [12]. Even though the value

of OPT is unknown, this can still be achieved by applying

Dijkstra’s algorithm on the weights µ(i, j) + 2(i, j) for

all links (i, j) E. Let p denote the shortest path with

respect to W (i, j) = µ(i, j) + 2(i, j). For the sake of

brevity, we present our heuristic algorithm h-mp-dcp(G, s,

t) using Bellman-Ford-Moore shortest path algorithm

instead of Dijkstra’s algorithm. For node u, define N(u) =

{v | (u, v) E}. Each node v of the network is associated

with a pair Mv = (xv, yv), where xv and yv keep track of the

mean delay and delay variance of some s-v path during

the execution of the h-mp-dcp algorithm. M is initialized

as Ms = (0, 0) and Mv = (,) for v s. The algorithm

computes the path pH without knowing OPT. By the

assumption that there always exists a path such that µ(p)

D, it can be seen that OPT 0.

Procedure approx-mp-dcp
 1 2 n / , upper U, lower U / 2

2 opt -

3 while lower 1

4 p* approx-max-mp-dcp(lower, upper, , opt }

 5 opt max{ opt, (D – µ(p*)) / (p*)}

 6 upper lower - 1

 7 lower upper / 2

8 end while

9 return opt and the corresponding path

 end procedure

Procedure approx-max-mp-dcp(lower, upper, , opt)

 1 2(i, j) = 2(i, j) / upper + 1 for all link (i, j)

 2 L = (lower / upper) , + n

 3 while (L)

 /* Using CSP Algorithm on ' */

 4 p argmin{µ(p) | ' 2 (p) }

 /* Using (p) not '(p) */

 5 opt max{ opt, (D – µ(p)) / (p)}

 6 ' 2(p) – 1

 7 end while

 8 return opt and the corresponding path

end procedure

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

In h-mp-dcp, extra steps are required to implement the

following oracle test with unknown OPT.

xv + OPT yv xu + OPT yu + µ(u, v) + OPT 2(u, v).

If xv = , yv = , then the inequality holds. Assume xv

and yv are finite (non-negative) values. Then it suffices to

evaluate the following Boolean expression.

 xu + µ(u, v)-xv)+OPT(yu + 2 (u, v)-yv) = p + q OPT 0,

where p = xu + µ(u, v) – xv and q = (yu + 2(u, v) - yv).

We then only need to determine the sign of p + q OPT

(> 0, < 0 and = 0). If p · q 0, the sign of p + q OPT is the

same as that of p or q recalling that OPT 0. In this case

implementing the oracle test is obvious.

Consider p · q < 0, i.e., - p / q > 0. Let = - p / q and let

p = Dijkstra(s, t, W), where Dijkstra(s, t, W) computes

the minimal s-t path with respect to W . Now three cases

arise.

1. µ(p) + 2(p) < D: This implies that

 < (D – µ(p)) / 2(p) OPT.

2. µ(p) + 2(p) = D: This implies that

 µ(p) + 2(p) = D µ(pH) + 2(pH).

Thus (D – µ(p)) / 2(p) = (D – µ(pH)) / 2(pH) =

OPT which implies = OPT.

3. µ(p) + 2(p) > D: Then µ(pH) + 2(pH) > D and

 > (D – µ(pH)) / 2(pH) = OPT.

With the path p , we can easily decide the sign of p + q

OPT by the above three cases.

Theorem 3: (a). The time complexity of algorithm h-

mp-dcp is O(m n (m + n log n)). If h-mp-dcp is based on

Dijkstra’s algorithm, then the complexity of h-mp-dcp is

O((m + n log n)2).

(b) Let popt be the optimal solution to the MP-DCP

problem (the original problem). Then

 (i) D(pH) ((popt) / (pH))-1/2
D(popt), and

 (ii) µ(popt) µ(pH), (popt) (pH).

If pH does not meet the requirements of the

applications, we may need a second phase to close or

reduce the gap between the heuristic solution and the

optimal solution by applying the approximation algorithm

with proper approximation factor or the exact algorithm if

necessary. On the other hand, the solution obtained by the

heuristic algorithm can be used to reduce the

computational time of the approximation and exact

algorithms. According to (b) in Theorem 3 we know that
2(pH) 2(popt) U. So the Procedure approx-mp-dcp

(resp. Procedure exact-mp-dcp) can terminate safely once

upper < 2(pH) (resp. Ti < 2(pH)). Note that using h-mp-

dcp as an initial pruning step does not affect the

polynomial time complexity of these algorithms. The

number of invocations of Dijkstra’s algorithm in the

parametric search can also be greatly reduced using

techniques described in [12].

We present in Table 1 numerical simulation results for

this heuristic. The experiments are carried out on two

different classes of graphs: regular graph [13], and

Waxman’s random graph [14]. In these classes of graphs,

for each link (i, j), µ(i, j) is randomly independently

generated integers uniformly distributed in [1, 20] and
2(i, j) is randomly independently generated integers

uniformly distributed in [1, 200]. The value of D is 115%

of µ(p*) where p* is the s-t path with minimum mean

delay. (Now, MP-DCP problem can be seen to be defined

on a deterministic network with two independent metrics:

mean delay µ and delay variance 2). It can be seen that

the optimal values and the approximate values of D(p)

are very close.

Table 1. Numeric simulation results on two
classes of graph topologies

| V | OPT (OPT) H-OPT (H-OPT)
Error

(%)

1000 0.835 0.7981 0.826 0.7956 0.313

1500 1.043 0.8515 1.036 0.8499 0.188

2000 1.209 0.8867 1.196 0.8842 0.282

2500 1.341 0.9100 1.327 0.9077 0.253

3000 1.456 0.9273 1.437 0.9246 0.291

(a) Regular graph (out degree = 6)

|V | OPT (OPT) H-OPT (H-OPT)
Error

(%)

1000 0.643 0.7399 0.628 0.7350 0.662

1500 0.526 0.7006 0.515 0.6967 0.557

2000 0.505 0.6932 0.492 0.6886 0.664

2500 0.418 0.6620 0.413 0.6602 0.274

3000 0.459 0.6769 0.459 0.6769 0.000

(b) Waxman’s random graph

|V|, OPT, (OPT), H-OPT and (H-OPT) denote the
number of nodes of the network, the optimal D(p),
the optimal D(p), the solution for D(p) obtained by
Algorithm h-mp-dcp and the corresponding D(p).

The Error column is computed as
 100 ((OPT) – (H-OPT)) / (OPT).

Algorithm h-mp-dcp(G, s, t)

1 Mv = (xv, yv) = (,) for all nodes

2 Ms = (0, 0)

3 for i 1 to n – 1 do

4 for each node u in the network

5 for each v such that v N(u)

 /*oracle test*/

6 [if (xv + OPT yv

 xu + OPT yu + µ(u,v) + OPT 2(u,v))]

 Mv (xu + µ(u, v), yu + 2(u, v))

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

5. MP-DCP Problem: Case 2

In this section we consider the MP-DCP problem in the

case when p, µ(p) > D.

Theorem 4: If p, µ(p) > D, the MP-DCP problem is

NP-hard.

Proof: Let us consider an instance of the longest path

problem on graph G(V, E). It is known that finding the

longest simple path in terms of the number of links is NP-

hard and it can also be seen that finding the longest

simple path from a given node s to a node t is also NP-

hard [15].

To prove the NP hardness of MP-DCP problem in Case

2, it suffices to show that the longest path problem is a

subclass of the MP-DCP problem.

Define an MP-DCP problem instance on G with given

bound D = 1 as follows:

Let 2(i, j) = 1 for each link (i, j) E (now 2(p) is

equal to the number of hops of path p).

Let M = n / ((1 + 1/n)1/2 - 1) = O(n2)

Assign the µ(i, j) on each link (i, j) E as follows:

otherwise,1

,1
),(

tjM
ji

We next show that the optimal path for the above MP-

DCP problem is the longest s-t path in G.

Let popt and pl denote the optimal MP-DCP s-t path and

a longest s-t path, respectively.

We obtain

 (1 - µ(pl)) / (pl) (1 - µ (popt)) / (popt)

Assume that 2(popt) < 2(pl) (< n).

Then we have the following contradiction.

 1 + 1 / n < 2(pl)/
2(popt) ((µ(pl) – 1)/(µ(popt) – 1))2

 < ((n + M)/M)2 = 1 + 1 / n.

Theorem 5: No pseudo polynomial exact algorithm or

fully polynomial constant factor approximation algorithm

can be obtained for Case 2 of the MP-DCP problem

unless P = NP.

Proof: According to Theorem 4, the longest path

problem is a subclass of the MP-DCP problem with D = 1

(Case 2) and thus a pseudo polynomial exact algorithm

for this problem, which involves only numbers bounded

by polynomial function of n, is also applicable to the

longest path problem. This would then contradict the fact

that there is no pseudo polynomial algorithm for the

longest path problem unless P = NP.

If there exists a fully polynomial constant factor

approximation algorithm for the MP-DCP problem for

Case 2, then let < 1 be the approximation factor, and let

p and pl be the approximate solution to MP-DCP problem

and the longest s-t path, respectively. By the definition of

approximation factor for maximum problem, we have

 | (D(popt) - D(p) | / D(popt)

Hence

 D(p) (1 –) D(popt)

So, (1 - u(p)) / (p) (1 -)(1 - u(pl)) / (pl).

Hence 2(pl) /
2(p) ((1 -) (u(pl) – 1) / (u(p) – 1))2

 (1 -)2 (1 + 1 / n) 2 (1 -)2.

So, p is a constant factor approximate solution to the

longest path problem. This leads to the contradiction of

the fact that no constant factor polynomial time

approximation algorithm exists for the longest path

problem [15].

The barrier to extend the heuristic algorithm of section

4 is that the optimum value OPT may be negative under

the assumption that p, µ(p) > D. Dijkstra’s algorithm is

not applicable due to the likely presence of negative link

weights. So we need to use the Bellman-Ford-Moore

algorithm. Even this algorithm will fail if there is a

directed circuit of negative weight in the network.

6. Path protection under inaccurate state

information

Path protection requires selection of a pair of disjoint

paths such that the individual delays of the two paths or

the total delay of the two paths is bounded by some

specified value [16]. In this section, we only consider the

latter case. In this scenario, from a pair of paths, we

usually choose the quicker path (with smaller delay) as

the primal path and use the slower path as the backup

path. We use upper case letter, e.g. P, to denote a pair of

disjoint paths and use P(1) and P(2) to denote the two

individual paths in P. With accurate state information,

Suurballe and Tarjan [17] proposed an efficient algorithm

requiring only O(m + n log n) time for computing a

shortest pair of link disjoint s-t paths (We can use link

splitting to get node disjoint paths). Most recently, Orda

and Sprintson [16] presented approximation algorithms

for computing a delay constrained shortest pair of disjoint

paths and provided several insightful results. In this

section, we shall consider extension of our algorithms

developed in the previous sections to the path protection

problem under inaccurate state information.

Suurballe and Tarjan’s algorithm is given next for the

sake of completeness.

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

When the state information is inaccurate, we need to

generalize the MP-DCP problem to the Most Probable

Delay Constrained Pair of Disjoint Paths (MP-DCPDP)

problem defined below.

MP-DCPDP Problem: Given a maximum total delay

requirement D for a pair of disjoint paths and source s and

destination t s, the MP-DCPDP problem is to find a pair

of disjoint s-t paths P* such that for any pair of disjoint s-

t paths P, D(P*) D(P), where D(P) = (D – µ(P)) / (P)

and µ(P) = µ(P(1)) + µ(P(2)), 2(P) = 2(P(1)) + 2(P(2)).

In the following, to simplify the writing, cost and delay

of a path in the context of the MP-DCPDP problem, refer,

respectively, to mean delay (µ) and mean variance (2) of

the path or pair of paths, i.e., we call µ(p) (resp. µ(P)) and
2(p) (resp. 2(P)) as the cost and delay of path p (resp. a

pair of paths P), respectively.

In this section, we only consider the case that there

exists a disjoint pair of paths P such that µ(P) D

(corresponding to Case 1 for the single path version).

Notice that the MP-DCPDP problem defined here only

consider the total cost and total delay of the two disjoint

paths. We don’t consider the individual delay of the

disjoint paths as in [18], [19] since this problem is much

more intractable.

We first consider the heuristic Algorithm h-mp-dcp

presented in section 4 for extension to the MP-DCPDP

problem. Define

 D(P) = (D – µ(P)) / 2(P) and

 OPT = max{H D(P) | P is a pair of disjoint s-t paths}.

As in the single path case, if OPT is unknown, we can

still compute the path using the same algorithm as if OPT

were known, but we need an oracle test to decide the

relationship (<, =, >) between OPT and any given value

in computing the two shortest paths in the Algorithm

shortest-link-disjoint-path. The oracle test procedure is

based on Algorithm shortest-link-disjoint-path on the link

weight µ(i, j) + 2(i, j) for all links (i, j) E. The oracle

test procedure works in exactly the same way as in the

single path version.

Since we are not aware of any pseudo-polynomial

algorithm for the delay constrained shortest pair of

disjoint paths problem (which requires identifying a

shortest pair of disjoint paths with the total delay of the

two paths bounded by a specified value) we do not

attempt to extend our algorithms of sections 2 and 3 for

the MP-DCPDP problem on general networks.

6.1. Algorithms on DAG

Even on DAG determining a delay constrained shortest

pair of disjoint paths is NP-hard, since adding a link with

zero cost and delay from source node s to destination

node t reduces the CSP problem on DAG to delay

constrained shortest pair of disjoint paths on DAG. The

key issue in designing exact and approximation

algorithms on DAG is first to find a pseudo polynomial

algorithm for the Constrained Shortest Pair of Node

Disjoint Paths (CSPNDP-DAG) problem which requires

identifying a shortest pair of node disjoint paths with the

total delay of the two paths bounded by a specified value.

Link disjoint path algorithm can be designed similarly.

We can then derive exact and approximation algorithms

for the MP-DCPDP-DAG problem by replacing the CSP

algorithm with the CSPNDP-DAG algorithm in the

algorithms of sections 2 and 3.

Our exact algorithm for the CSPNDP-DAG problem is

the extension of the methods first proposed by Perl and

Shiloach [19] and enhanced by Li, et al. [18] and Eppstein

[20]. It consists of two phases. The first phase is the DAG

transformation.

6.2. DAG transformation

Given a DAG G = (V, E), we construct a larger DAG

G* = (V*, E*), such that there is a one to one

correspondence between a pair of node disjoint paths in G

and a single path in G*. Assuming that the nodes of G are

labeled 1, 2 …, n = |V| in topological order such that if (u,

v) E, then u < v. Without loss of generality, assume (s,

t) E (we can introduce a dummy node between link (s,

t) if the assumption is violated). The construction of G* is

as follows:

V* = {(u, v) | u, v V and

 u v unless u = v = s or u = v = t}

E* = {((u, v), (u, w)) | (v, w) E and

 v u} {((v, u), (w, u)) | (v, w) E and v u}

Following the argument in [18] and [19] with straight

forward extension, it can be seen that there are two node

Algorithm shortest-link-disjoint-path(s, t)

Step 1) Compute a shortest path tree from node s to all

the other nodes. Let di represent the shortest

path length from node s to node i.

Step 2) Replace the length of all links l = (i, j) with

 w(l) – dj + di, where w(l) is the original link

weight.

Step 3) Let p1 be a shortest s-t path. Reverse the

directions of all the links on p1 without

changing the newly computed weights.

 Step 4) Compute the shortest s-t path in the transformed

network.

 Step 5) Let p2 be the shortest s-t path obtained in step 4.

Discard every link in one path whose reversal

appears in the other and group the remaining

links into two paths.

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

disjoint s-t paths in G with total cost C and total delay T if

and only if there exists a directed path from (s, s) to (t, t)

in G* with cost C and delay T. On the other hand, the

corresponding node disjoint pair of paths in G can be

constructed from the (s, s)-(t, t) path in G* [18]-[20].

Now, the CSPNDP-DAG problem is equivalent to

finding the minimal cost path from (s, s) to (t, t) with

delay bounded by a specified quantity T. It can be seen

that |V*| = O(n2) and |E*| = O(mn). Then we can apply the

second phase to complete the algorithm. The second

phase is just to apply the CSP algorithms given in section

2 on G* to compute the constrained shortest path with

delay bounded by T.

Theorem 6: CSPNDP-DAG problem is solvable in

O(Tmn) steps.

The -approximation algorithm for the CSPNDP-DAG

problem can be derived as in section 3.

7. Summary

We have studied the stochastic shortest path problem

aimed at identifying the most probable delay constrained

path (MP-DCP problem). Our work is based on the

formulation given in [9]. The work in [9] focused on

developing heuristic approaches using the Lagrangian

relaxation or line search techniques. In contrast, our focus

has been on developing polynomial time -approximation

and heuristic algorithms. For the case (Case 1) when there

is a path whose mean delay is less than or equal to the

specified delay bound D, we have presented an exact

algorithm of pseudo polynomial time complexity, a fully

polynomial time -approximation algorithm and a

strongly polynomial time heuristic algorithm. In the

unlikely case (Case 2) when every path violates this

assumption we have shown that the problem is NP-hard.

We have also shown that for this case no pseudo

polynomial time exact algorithm or fully polynomial time

constant factor approximation algorithm is possible unless

P = NP. The difficulty in this case arises because we need

to find a path minimizing one path metric and maximizing

another path metric simultaneously. See [9].

We have considered application of our results to the

path protection problem under inaccurate state

information. For this problem we have shown how to

develop a strongly polynomial time heuristic algorithm.

We have also shown for this problem how to develop

exact and -approximation algorithms for DAGs.

Acknowledgment: The works of K. Thulasiraman and

Guoliang Xue have been supported by NSF ITR grants

ANI-0312435 and ANI-0312635, respectively.

REFERENCES

[1] A. Goel, K. G. Ramakrishnan, D. Kataria and D.

Logothetis, “Efficient computation of delay-sensitive routes

from one source to all destinations,” IEEE INFOCOM,

2001.

[2] R.Hassin, “Approximation schemes for the restricted

shortest path problem,” Math. of Oper. Res., 17(1), 1992,

pp.36-42.

[3] A. Jüttner, B. Szviatovszki, I. Mécs and Z. Rajkó,

“Lagrange relaxation based method for the QoS routing

problem,” IEEE INFOCOM-2001, pp. 859-868.

[4] D. Lorenz and D. Raz, “A simple efficient approximation

scheme for the restricted shortest paths problem,” Oper.

Res. Lett., vol. 28, pp. 213-219, June 2001.

[5] K. Mehlhorn and M. Ziegelmann, “Resource constrained

shortest paths,” Proc. 8th European Symposium on

Algorithms (ESA2000).

[6] Y. Xiao, K. Thulasiraman and G. Xue, “Equivalence,

unification and generality of two approaches to the

constrained shortest path problem with extension”, Allerton

conference, Oct., 2003, Urbana-Champaign, IL.

[7] G. Xue, “Minimum-cost QoS multicast and unicast routing

in communication networks,” IEEE Trans. on Comm., vol.

51, no.5, May 2003, pp.817-824.

[8] R. Guerin and A. Orda, “QoS routing in networks with

inaccurate information: theory and algorithms,” IEEE/ACM

Trans. on Networking, vol. 7, pp. 350-364, June 1999.

[9] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained

path selection under inaccurate state information,”

IEEE/ACM Trans. on Networking, June 2003.

[10] D. H. Lorenz and A. Orda, “QoS routing in networks with

uncertain parameters,” IEEE/ACM Trans. Networking, vol.

6, pp. 768-778, Dec. 1998.

[11] N. Megiddo, “Combinatorial optimization with rational

objective functions,” Math. of Oper. Res., vol. 4, no. 4,

Nov. 1979.

[12] T. Radzik, Fractional combinatorial optimization, in

handbook of combinatorial optimization, Editors DingZhu

Du and Panos Pardalos, vol. 1, Kluwer Academic

Publishes, Dec. 1998.

[13] K. Thulasiraman and M. N. Swamy, Graphs: Theory and

Algorithms, Willey Interscience, New York, 1992

[14] M. Waxman, “Routing of multipoint connections,” IEEE J.

Selected Areas in Comm. 6(9), Dec. 1988.

[15] D. Karger, R. Motwani and G. D. S. Ramkumar, “On

approximating the longest path in a graph”, Algorithmica

18, pp. 82-98, 1997.

[16] A. Orda and A. Sprintson, “Efficient algorithms for

computing disjoint QoS paths,” IEEE INFOCOM, 2004.

[17] J. W. Suurballe and R. E. Tarjan, “A quick method for

finding shortest pairs of disjoint paths,” Networks, vol. 14,

pp. 325-336, 1984.

[18] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, “The

complexity of finding two disjoint paths with min-max

objective function,” Discrete Applied Math. 26, 1990, pp.

105-115.

[19] Y. Perl and Y. Shiloach, “Finding two disjoint paths

between two pairs of vertices in a graph,” J. ACM 25, 1978,

pp. 105-115.

[20] D. Eppstein, “Finding common ancestors and disjoint paths

in DAGs,” Tech. Report 95-52, Dec. 1995.

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04)

0-7695-2233-5/04 $20.00 © 2004 IEEE

