
Towards the Application of Classification Techniques
to Test and Identify Faults in Multimedia Systems ∗

M. Y. Cheng
The University of Hong Kong

mycheng@cs.hku.hk

S. C. Cheung
Hong Kong University of
Science and Technology

sccheung@cs.ust.hk

T. H. Tse †

The University of Hong Kong
tse@cs.hku.hk

Abstract

The advances in computer and graphic technologies
have led to the popular use of multimedia for information
exchange. However, multimedia systems are difficult to
test. A major reason is that these systems generally
exhibit fuzziness in their temporal behaviors. The fuzziness
is caused by the existence of non-deterministic factors
in their runtime environments, such as system load and
network traffic. It complicates the analysis of test results.
The problem is aggravated when a test involves the
synchronization of different multimedia streams as well as
variations in system loading.

In this paper, we conduct an empirical study on the
testing and fault-identification of multimedia systems by
treating the issue as a classification problem. Typical
classification techniques, including Bayesian networks, k-
nearest neighbor, and neural networks, are experimented
with the use of X-Smiles, an open source multimedia
authoring tool supporting the Synchronized Multimedia
Integration Language (SMIL). The encouraging result of
our study, which is based only on five attributes, shows that
our proposal can achieve an accuracy of 57.6 to 79.2% in
identifying the types of fault in environments where common
cause variations are present. A further improvement of
7.6% is obtained via normalization.

Keywords: Software testing, multimedia, classification,
Bayesian networks, k-nearest neighbor, neural networks

1. Background of the Problem

The advances in computer and graphic technologies
have led to the popular use of multimedia for information
exchange today. Many applications, whether based on

∗ This research is supported in part by a grant of the Research Grants
Council of Hong Kong and a grant of The University of Hong Kong.

†All correspondence should be addressed to Dr. T. H. Tse, Department
of Computer Science, The University of Hong Kong, Pokfulam Road,
Hong Kong. Telephone: (+852) 2859 2183. Email: tse@cs.hku.hk.

personal computers or cellular phones, are designed to
deliver rich multimedia contents. It is important to ensure
the quality of the multimedia systems, especially for the
temporal behaviors of rich content presentations. For
example, e-learning is one of the well-known multimedia
applications and has become a popular trend in education
owing to its flexibility. Students can learn at their own pace
at their own time. If an e-learning slide show and the voice-
over are not synchronized, however, students may not able
to understand the course materials. This may discourage the
use of e-learning.

Conventional approaches in software testing construct
test cases and apply them to the implementation under
test (IUT) against the expected results, that is, the test
oracles [9]. Such approaches, however, may not be
appropriate to the testing of multimedia systems with
intrinsic fuzzy behaviors. The fuzziness in multimedia
systems is often caused by uncertainty or uncontrollable
factors in their environments, such as intrinsic random
noises. They are known as common cause variations [23],
which are inherent in all multimedia processes. It is,
for instance, difficult to start playing several multimedia
contents at exactly the same time. In the previous e-
learning example, the slide show and its audio narration are
supposed to be played simultaneously. Nevertheless, if we
measure the start time of the slide show and that of the audio
narration, we may find that they are not played exactly at the
same time. There are many possible causes of variations,
such as the degrees of real-time support of the underlying
hardware, the network, and the operating system.

Little work has been done on the testing of multimedia
systems, especially with respect to temporal relationships.
According to Ziv and Richardson [25], uncertainty is
inherent and inevitable in the software development
process, including the testing phase. When testing temporal
relationships of multimedia systems, uncertainties may be
introduced by the execution environment [26]. Hence,
the testing accuracy will be affected. In our previous
work [13], we have also shown that it is difficult to test

1

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

temporal relationships in multimedia systems owing to
many uncontrollable factors in the environments, such as
network congestion, transmission delays, packet loss, and
so on. We have developed a generic framework to test the
timing in distributed multimedia software systems. There
are, however, a few limitations in our first attempt:

(a) To solve the problem of common cause variations, we
used the conventional technique of a tolerance zone,
which is an acceptable range of values. Thus, users are
required to specify the tolerance range of the temporal
relationships under test. The resultant values within
the range will be regarded as equal to the expected
value. It is, however, difficult to set a suitable tolerance
zone. If the tolerance range is too large, some failures
may not be revealed. On the other hand, if it is too
small, testers may wrongly reject acceptable systems.
As a result, the subjective tolerance may affect the
judgment as to whether the systems contain faults.

(b) We proposed to test one temporal relationship at
a time. We assumed that an n-ary temporal
relationship can be expressed in terms of multiple
binary relationships to be tested individually. In
the e-learning example, for instance, testers may be
interested in whether the slide show and its audio
narration are played over the same period of time.
In this case, two temporal relationships need to be
considered: One is the difference between the start
times of the slide show and the audio narration, and
the other is the difference between the end times of the
slide show and the audio narration. When the number
of media objects increases, the number of temporal
relationships may increase exponentially.

(c) Furthermore, we could not detect faults that will only
exhibit their effects when multiple relationships occur
at the same time. Consider, for example, a media
object with an expected start time of 0 second and an
expected end time of 1 second. Suppose the tolerance
is set to 2 seconds. Consider two implemented
systems: A system A1 with a start time of 1 second and
an end time of 3 seconds, and a system A2 with a start
time of 2.1 seconds and an end time of 3.1 seconds,
as shown in Figure 1. If we review the start and end
times independently and compare each variation with
the tolerance, system A1 will be accepted while system
A2 will be rejected. However, the media playback is
much more distorted in system A1 than that in system
A2 — the duration of system A1 is actually doubled.

In this paper, we propose to consider the testing and fault-
identification of multimedia systems as a classification
problem. It defines the features of the systems under
test using the statistical characteristics of the sample

0 1 2 3 4
time

reference system

system A1

system A2

Figure 1. Time-line diagram of potentially
faulty systems A1 and A2.

data, without the need to set tolerance limits subjectively.
Furthermore, the statistical features are independent of
the number of temporal relationships involved and, hence,
the classification approach may also alleviate the problem
described in paragraph (c) above. A preliminary empirical
study has been carried out to investigate the feasibility of
applying existing classification techniques to the situation.

The rest of this paper is organized as follows. The
next section describes related work on testing multimedia
systems. Section 3 describes an empirical study on the
application of classification techniques to test an open
source multimedia program X-Smiles that accepts SMIL
documents as input. Three commonly used classification
techniques (Bayesian networks, k-nearest neighbor, and
neural networks) are described. The experimental results
are reported in Section 4. In Section 5, we discuss further
observations regarding the effectiveness of the classification
techniques with respect to the characteristics of multimedia
systems. Finally, we draw conclusions and summarize
future work in Section 6.

2. Related Work

According to Blakowski and Steinmetz [10], a
multimedia system should be one that can process several
media types with at least one time-dependent medium. A
temporal dependency among media objects is known as a
temporal relationship. Allen [6] has proposed seven main
types of temporal relationship between two media objects,
as shown in Figure 2. In our previous work [13], we
recognize that three temporal relationships, as shown in
Figure 3, should be more fundamental. They include

A before B: which stands for media object A terminating
before media object B begins;

A starts after B: which stands for media object A starting
after media object B has begun; and

A ends ahead of B: which stands for media object B
terminating before media object A has ended.

Various researchers have developed synchronization and
storage models for multimedia objects. For example, Little

2

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

A during B

A meets B

A finishes B

A before B

A overlaps B

A equals B

A starts B

A B

A

B

A

B

A B

A

B

A

B

A

B

Figure 2. Temporal relationships between two
media objects.

A before B A starts_after B A ends_ahead_of B

A B

A

B A

B

Figure 3. Fundamental temporal relationships
between two media objects.

and Ghafoor [18] have proposed a model known as Object
Composition Petri Net, which is a Petri net with time values
to model synchronization in multimedia. An algorithm to
retrieve the media elements from the database is proposed.
They suggest a tree-based approach to store and retrieve
multimedia objects.

Previous work related to the handling of uncontrollable
factors in multimedia systems, such as the use of
tolerance zones, has already been highlighted in Section 1
and will not be repeated here. Various researchers
recommend different tolerance values for different temporal
relationships. For example, the tolerance limit between an
audio and a video is set as ± 80 ms in [20]. This type
of suggestion, however, is rather subjective. It may not
be appropriate for us to apply the same suggested value
for multimedia applications in environments with different
characteristics. For instance, the same value may be too
conservative for desktop computers and too aggressive for
cellular phones, since people are usually more tolerant
about multimedia applications in cellular phones than those
in desktop computers.

Cheung, Chanson, and Xu [13] have discussed the
problems of testing temporal relationships and developed
a generic framework for temporal testing for distributed
multimedia software systems. The paper uses a statistical
approach to test temporal relationships. It proposes to
consider one temporal relationship at a time. Testers are
required to explicitly specify the tolerance value of the

0 1 5 10
time

reference system

system B2

system B1

Figure 4. Time-line diagram of faulty systems
B1 and B2.

temporal relationship under test. They run the test several
times and calculate the mean and sample variance. From
the lookup table, one can obtain the confidence level of
rejecting the implementation under test. Nevertheless, there
are a couple of limitations. First, when the number of media
objects increases, the number of temporal relationships
may increase exponentially. It may not be feasible to
consider one relationship at a time when the number is
large. Secondly, the technique does not help identify the
type of fault. Suppose, for example, that a faulty system B1
sets the value of the start and end times of a media object
to be identical, while another faulty system B2 sets the start
time of a media object to be exactly 1 second. Figure 4
shows both faulty systems with respect to the reference
system, which is expected to be free from fault. Using the
technique of [13], both B1 and B2 will be rejected with a
high level of confidence. There is no additional information
to reveal the most likely fault.

3. Applying Classification Techniques to Solve
the Problem: an Empirical Study

We have conducted an empirical study on the application
of classification techniques to help test and identify faults
in multimedia systems. Two media objects are used in each
implementation under test, involving a slide show and an
audio narration. We assume that the implementations under
test have already gone through functional tests.

Three standard classification techniques, namely
Bayesian networks, k-nearest neighbor, and neural
networks, are frequently used in classification problems.
For instance, references [7, 8, 17, 19, 24] have reported
their applications in various domains ranging from weather
forecasting to data mining in medical databases.

Our thesis is to apply the classification techniques to
identify faults in multimedia systems. There are, in general,
two phases in the classification process, namely training
and testing. In the training phase, information will be
collected from a reference system, which is expected to
be free from faults, and from different classes of systems
with known faults. For each system, values of a set of

3

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

attributes are collected by running the system several times
with the same input. In our study, we collect (a) the
difference in start times between two media objects, (b)
the difference in end times between two media objects,
(c) the duration of each of the two media objects, and (d)
the maximum memory utilization. As discussed in the
previous paragraphs, fuzziness in multimedia systems can
be due to various reasons such as system load or faults in
temporal relationships. The attribute “maximum memory
utilization”, besides placing the training and testing systems
under different system loading, is a preliminary attempt
to capture non-temporal attributes for identifying faults in
multimedia systems. The list of attributes collected are by
no means exhaustive. More discussions can be found in
Section 5.

In the testing phase, values of the same set of attributes
will be collected several times from the implementation
under test (IUT). Each set of attribute values from the IUT is
compared with those collected in the training phase. Based
on the results, the probabilities that the IUT resembles the
respective training systems will be computed. More details
of the experiment will be described later.

3.1. X-Smiles and SMIL

The X-Smiles system [5], is used as the IUT in our
experiments. SMIL documents are used as the inputs
to X-Smiles. X-Smiles is an XML-browser developed in
Java by the Telecommunications Software and Multimedia
Laboratory at Helsinki University of Technology. It is an
open source browser that can display documents written
in various XML languages. SMIL is one of the XML
languages supported by X-Smiles. X-Smiles version 0.71
is used in the experiments to test the temporal relationships
among media objects.

The Synchronized Multimedia Integration Language
(SMIL) [3] is designed by the World Wide Web Consortium
(W3C) to provide a simple means of authoring interactive
audiovisual presentations. It is targeted for integrating
audios, videos, images, and text for “rich media”
presentations. It is an XML language to describe the
temporal relationships of such presentations, the layouts of
the presentations, and associate hyperlinks with other media
objects.

3.2. Experimental Setup

In order to conduct the experiments, the following
software have been installed: (i) Java Development Kit 1.3,
(ii) Java Media Framework 2.1.1, and (iii) X-Smiles 0.71.

As mentioned in Section 2, the three temporal
relationships in Figure 3 are fundamental. Hence, we have
developed three SMIL documents with faults related to

slide show

audio narration

audio narration

slide show audio narrationslide show

Set1 Set2 Set3

Figure 5. Test cases with different temporal
relationships.

them. Two objects are specified in each document. One is a
slide show and another one is an audio narration. The slide
show is in animated GIF format with dimensions of 640 ×
480 pixels, while the audio narration is in WAV format with
a sampling rate of 44.1 kHz. The three SMIL documents
are

Set 1 (Simultaneous): Slide show starts after audio
narration immediately by 0 delay and slide show
ends ahead of audio narration also by 0 delay;

Set 2 (One During Another): Audio narration starts after
slide show and audio narration ends ahead of slide
show; and

Set 3 (One Before Another): Slide show before audio
narration

as shown in Figure 5.
For Set1 and Set2, the selected features include the

duration of the slide show, the duration of audio narration,
the difference in start times between the slide show and its
audio narration, and the difference in end times between the
slide show and its audio narration. For Set3, the features
include the duration of the slide show, the duration of audio
narration, the start time of the slide show, and the difference
between the end time of the slide show and the start time of
the audio narration. The maximum memory utilization of
the system is also recorded in all the sets.

The performances of the reference system used for the
training include both the situations when the CPU is almost
idle and when it is extremely busy. To simulate a low CPU
utilization situation, all other utilities and applications are
turned off. To simulate a high CPU utilization situation, a
CPU-hungry utility is kept running to ensure that the system
is heavily loaded.

The experiments have been carried out on different
machines. For the training phase, it is conducted on a
standalone Pentium Celeron 500 MHz computer with 256
MB of memory. For the testing phase, we have used two
machines. One is the training machine and the other is
a Pentium Celeron 550MHz computer with 512 MB of
memory. All the machines are run under Windows 2003
Enterprise Edition.

The details of the four types of systems used in the
training phase are as follows:

4

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

Sys0: This is the reference system.

Next, in order to simulate the faulty systems, three
different types of fault have been seeded into the reference
system:

Sys1: A priority error is simulated. It reduces the priority
of execution threads. It simulates an inappropriate
priority configuration in multimedia systems.

Sys2: A pagination error is simulated. It causes X-Smiles
to consume a large amount of system memory and,
hence, the system will have excessive pagination.
This fault can be the result of inappropriate resource
handling in multimedia systems. Since the effects
of system operations such as pagination are non-
deterministic and may vary from system to system, it
is difficult to replay the situations and detect this kind
of failure.

Sys3: A start time error is simulated. It delays the start
time of any given media object by a fixed parameter.
In this experiment, it is set to 10 seconds. It is one
of the simplest errors found in multimedia systems. It
models a multimedia system having some erroneous
internal operations or calculations that delay the start
time of its media objects.

480 data are used for training and 1760 data for testing.
For the training phase, 20 repeated experiments have
been carried out for each combination of high-low CPU
utilizations, the 3 sets of SMIL specifications, and the 4
types of systems. We have re-run the same experiment
20 times to cater for common-cause variations. The same
training set is used in all classification techniques to ensure
a fair comparison.

Similarly, in the testing phase, we group multiple runs
of the same experiments as data suites. Each data suite
is compared with the data collected in the training phrase
using the three classification methods to be discussed
later. The probabilities of resemblance with the respective
training systems are computed accordingly. For each
test suite, the classification results are recorded. Table 1
shows the classification result of a sample test suite. This
particular example shows that Sys1 system has the highest
probability (0.8) and, hence, we classify the IUT as a system
with priority error.

One important issue in classification is the overfitting
problem. Overfitting [22] refers to the situation in which
a complex function is learned almost to perfection during
training, but the classification results remain poor because
all test cases, except the training data themselves, are
regarded as dissimilar. In order to avoid overfitting, test data
with larger error sizes and test data collected from another
machine are also examined in our testing phrase.

Probability of Sys0 0
Probability of Sys1 0.8
Probability of Sys2 0.1
Probability of Sys3 0.1

Table 1. The classification result of a sample
test suite.

C

A B

P(A | C)

A = 0 A = 1

C = 0 0.3 0.7

C = 1 0.95 0.05

P(B | C)

B = 0 B = 1

C = 0 0.001 0.999

C = 1 0.8 0.2

P(C)

C = 0 C = 1

0.01 0.99

Figure 6. Example of Bayesian network.

3.3. Classification Techniques Investigated

Three common classification techniques have been used
in this study.

3.3.1. Bayesian Networks

Bayesian networks (also known as Bayesian belief
networks) [25, 26] is a probabilistic learning method to
model uncertainties. A Bayesian network is a directed
acyclic graph whose nodes represent the attributes of the
training data. A Bayesian network can be represented
by a triple (N, E, P), where N is a set of nodes, E ⊆
N × N is a set of edges, and P is a set of conditional
probabilities [25, 26]. It will learn from the training data
about the structure (namely, the interrelationships among
attributes) and the set of conditional probabilities. For
example, Figure 6 shows a simple Bayesian network that
relates node C to nodes A and B separately. It also indicates
that the probabilities of nodes A and B are affected by
that of node C. The interrelationships and conditional
probabilities are then used to classify the test data. Similar
to other graphic languages like UML, a Bayesian network
can allow users to present and reason about structural
properties more easily than conventional mathematical or
textual formulations.

In our experiments, Belief Network PowerPredictor [1]
is used. The training data are processed by a data
preprocessor so as to convert them into a suitable format and
to discretize any continuous attributes. Then, the training
data (including structures and parameters) are passed to
a belief network predictor to construct a belief network
classifier from the data set, so that the network is to classify
the test data. Figure 7 shows one of the belief networks

5

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

class mem_d

dur1_d start_d

end_d dur2_d

Figure 7. Example of generated Bayesian
network structure.

i = 0

x1

Σ
y =

1

1 + e -net

x2

xn

w1

w2

w0

net = Σ

n

wi xi

wn

x0 = 1

Figure 8. A perceptron (adapted from [21]).

generated by the constructor (according to Set1 under high
CPU utilization). In this figure, class is the result of
the classified type of faulty system; mem is the memory
utilization; dur1 d is the duration of the slide show;
dur2 d is the duration of the audio narration; start d is
the difference between the start times of the slide show and
the audio narration; and end d is the difference between
the end times of the slide show and the audio narration.
An arc between nodes in the graph represents a direct
dependency (also known as a casual relationship) between
the corresponding attributes. For example, there is a direct
dependency between dur1 d and start d, but not between
end d and start d. Finally, we simply input the test data
to obtain the test results according to the trained Bayesian
network.

3.3.2. k-Nearest Neighbor

k-nearest neighbor was first introduced by Fix and
Hodges [15] back in 1952. It is a non-parametric
classification technique, which does not make any
assumption about the underlying distribution of the data
in question [14]. The algorithm is quite simple, because
no training process is required. Nearly all the computation
effort takes place at the testing phase.

Given n training data sets, let xi = (a(1)
i , a(2)

i , . . . , a(m)
i)

represent the values of the attributes of the ith data set,

where i = 1, 2, . . . , n. A query with respect to a test

case x = (a(1), a(2), . . . , a(m)) can be input to the classifier,

which will find a set S′ = {x′1, x′2, . . . , x′k} of k training

data from the training set S = {x1, x2, . . . , xn} such that

max
x′i∈S′

d(x′i, x) ≤ min
xi∈S\S′

d(xi, x)

where d() is the distance function.
In our experiment, we have implemented a k-nearest

neighbor classifier in C++. It uses the standard Euclidean

distance d(xi, x) =
√

∑m
j=1(a

(j)
i −a(j))2 as the distance

function. We have selected k to be 3. Since there is
no training phase for this technique, we simply store the
training data into the four classes Sys0, Sys1, Sys2, and
Sys3. For every test data x in the testing phase, we compute
the Euclidean distances of all the training data from x. We
then select 3 training data with the minimum distances from
x. If at least 2 of these 3 training data fall into one class, then
the latter will be reported as the classification for x. If there
is no clear majority, then x is discarded.

3.3.3. Neural Networks

Neural networks [21] are designed to model the human
brain, which consists of billions of neurons interconnected
with one another. In neural networks, a perceptron
models a neuron. It sums up a number of weighted
inputs (xi)i=1,2, ...,n to give net = Σn

i=0 wixi, and generates
an output y via some transfer function, as shown in
Figure 8. Usually, a sigmoid transfer function 1/(1+e−net)
is used owing to its differentiable property. Multilayer
perceptrons (MLPs) are a layered feed-forward network
typically trained with static backpropagation as shown in
Figure 9. Initially, the network chooses a set of random
weights for each node. During the training phase, inputs are
fed into the network and the actual outputs are compared
with the expected results to estimate the errors. The
network then adjusts the weights according to the feedback
from the estimated errors. This process is known as
backpropagation. With its remarkable ability to derive
meanings from complex or imprecise data, neural networks
can be used to extract patterns and detect trends that are
too complicated to be noticed by humans or other computer
techniques.

In our experiments, a neural network classifier
NeuroSolutions [2] is used. It has been developed by
NeuroDimension, a Computational Neural Engineering Lab
at the University of Florida. MLPs are used by default as
the model for training. In our experiment, there are five
input nodes (representing the five attributes), four output
nodes (representing the classes of systems), and one hidden
layer (with four processing elements) in the neural network.
First, inputs for the training data are recorded in a column-
formatted ASCII file, while a separate file records the

6

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

Input

Nodes
Output
Nodes

Hidden

Nodes

Figure 9. Multilayer perceptrons.

Classification Method Set 1 Set 2 Set 3 Mean

Bayesian Networks 57.1% 75.0% 60.7% 64.3%
k-Nearest Neighbor 60.7% 65.6% 67.9% 64.7%
Neural Networks 71.4% 40.6% 60.7% 57.6%

Table 2. Successful test results under low
CPU utilization, by classes of test cases.

expected outputs. Then, we run the neural builder with
the input data to train the neural network to perform the
classification. During the testing phase, we simply input
the test data to the neural network to obtain the test results.

4. Experimental Results

We have conducted experiments using 480 training data
sets and 1760 test cases. The same training and test data
have been used across all the investigated classification
methods. As described before, three sets of test suites with
different temporal relationships have been investigated. The
experimental results are summarized in Tables 2 and 3.
The numbers represent the percentage of test suites that are
correctly identified by the respective classification methods.

In general, the results of the three classification
techniques exhibit more or less the same percentage of
accuracy in fault-identification. Under different CPU
utilizations, the three classification techniques achieve an
average accuracy of 69.3% in identifying the faults of the

Classification Method Set 1 Set 2 Set 3 Mean

Bayesian Networks 75.0% 75.0% 87.5% 79.2%
k-Nearest Neighbor 78.6% 75.0% 75.0% 76.2%
Neural Networks 71.4% 75.0% 75.0% 73.8%

Table 3. Successful test results under high
CPU utilization, by classes of test cases.

multimedia systems. Furthermore, we find that it is more
likely to identify faults under high CPU utilization than
under low utilization.

Under low CPU utilization, an average of 62.2% of
the test suites can be correctly classified. We observe
that for Set2, neural networks can only obtain an accuracy
of 40.6%, which is far below the accuracy of the other
two classification techniques. The reasons are still to be
determined.

Under high CPU utilization, all the classification
techniques can identify an average of 76.4% of the faults
correctly. Table 4 shows the results according to the classes
of faulty systems under high CPU utilization using each
classification technique.

Sys3, which simulates a simple type of error, can be
handled by any of the classification techniques with a
success rate of 100%. As it is a simple fault, however,
it may also be identified by conventional techniques such
as tolerance zones. We can also see from Table 4
that the classification techniques only produce an average
correctness of 54.8% for the faulty system Sys2. It may
suggest that this kind of error is difficult to identify and
requires more fine-tuned features. More investigations are
needed on these aspects.

5. Discussions

By the nature of our experimental setup, if one conducts
random guessing, the accuracy should be about 25%
because of the four possible choices with a uniform
distribution. Hence, the application of classification
techniques to fault-identification is shown to be significant.
On the other hand, the average success rate is only 69.3%.
This indicates that there is still room for improvement:

(a) The most obvious enhancement is to train the
classification systems using more data with a wider
range of faults.

(b) Besides, the data collected may be in different units
of measure. Normalization may be applied during
data collection in the training phase. Informally,
normalization is a process to fit the data in any
range into a new range varying from 0 to 1. After
normalization, all the data collected (no matter
whether they are originally in units of “seconds” or
“bytes”) no longer have any unit of measure. The same
normalization process should then be applied during
data collection in the testing phase. Even when the
same unit of measure is used, the collected data may
fall into different scales. For example, “1” in a scale
of 0 to 10 is similar in percentage to “10” in a scale of
0 to 100. However, they differ a lot when compared in
absolute terms.

7

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

Classification Method Sys0 Sys1 Sys2 Sys3

Bayesian Networks 67.1% 82.9% 66.7% 100.0%
k-Nearest Neighbor 72.6% 81.0% 51.2% 100.0%
Neural Networks 72.0% 76.8% 46.4% 100.0%

Table 4. Successful test results under high
CPU utilization, by classes of systems.

We have repeated our experiment by normalizing the
data before performing classification. We find that
the success rate is improved by an average of 7.6%.
Hence, it is useful to apply normalization when the
collected data are heterogeneous.

(c) In addition, the distribution of the attributes and the
types of fault can obviously affect the accuracy of
classification. We may check the data visually to
“feel” the distribution. For instance, we may use a
multidimensional scaling tool to determine whether
they are geometrically distributed. Multidimensional
scaling is a technique to produce geometric repre-
sentations of data points showing their variations and
dissimilarities [16]. Multidimensional scaling tools,
such as XGvis provide graphic representations that
help us gain an insight into the structure of the data
points. Similar data points will be shown close to
one another in the graph, while dissimilar data will
not. XGvis [4] is free software that implements
techniques for multidimensional scaling to graphically
analyze the dissimilarities of the data [11]. When we
find that the data are not sufficiently distinguishable
despite multidimensional scaling, various remedial
measures can be applied depending on the situations.
For example, we may apply another classification
technique, or gather more information from the
training systems, or try to detect other types of fault.

As an illustration of (c), we may like to look into a
comparison between low CPU and high CPU utilizations.
Consider the attributes shown visually in the graphs of
Figure 10. The two graphs, generated by XGvis, show
the distribution of training data under low and high CPU
utilizations, respectively. We observe that the selected
attributes under high CPU utilization produces a more
diversified geometrical distribution than under low CPU
utilization. Hence, it will be easier for the classification
techniques to identify faults under high CPU utilization
(even though there are exceptions, such as the Bayesian
network classifier case for Set2). It also shows the need
to consider more attributes in situations with low CPU
utilization.

Figure 10. The left-hand figure shows the
distribution of training data under low CPU
utilization. The right-hand figure shows the
distribution under high CPU utilization.

6. Conclusion

Testing can help us reveal failures in software systems. It
will be even more useful if we can identify the type of fault
when a failure occurs. It is not easy, however, to reveal
the type of fault in multimedia systems because of non-
deterministic and non-repeatable temporal relationships.
We propose to apply classification techniques to tackle this
problem. This paper reports on the results of the first step
in this direction.

We have shown via empirical studies that classification
techniques can learn non-deterministic characteristics from
training data and identify the types of fault for multimedia
systems. We consider temporal relationships and memory
utilizations as the features for classification. We have
studied empirically whether the effectiveness of identifying
errors may be affected by the types of fault, the system
loading, and the classification techniques. We find that
some errors (such as Sys3) can be revealed easily while
others (such as Sys2) are quite difficult to recognize. Based
only on five attributes in our initial study, we have achieved
an accuracy of 57.6 to 79.2% in revealing the types of fault
in the presence of common cause variations. The empirical
results are quite promising, although there is still room for
improvement. For example, a normalization process may
enhance the accuracy by an average of 7.6%.

As future work, we shall study the effectiveness of
applying classification techniques to multimedia systems
with more media objects and more temporal relationships.
We shall examine the root causes of the interesting
observations in the present study, with a view to selecting
the more useful attributes of multimedia systems as
features for classification, and improve on the classification
process. We shall also investigate the feasibility of
applying classification techniques to distributed multimedia
systems. Finally, since multimedia systems has a lot of non-
deterministic characteristics in common with other kinds
of applications such as motion estimation systems, we

8

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

shall also look into the extension of our technique to such
systems.

Acknowledgments

The authors would like to Dr. W. K. Chan of The
University of Hong Kong for his discussions and
suggestions.

References

[1] Belief Network PowerPredictor. Available at http://
www.cs.ualberta.ca/∼jcheng/bnpp.htm.

[2] NeuroSolutions. Available at http://nd.com.

[3] SMIL specification. Available at http://www.w3.org/
AudioVideo.

[4] XGvis. Available at http://www.research.att.com/areas/stat/
xgobi.

[5] X-Smiles. Available at http://www.xsmiles.org.

[6] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26: 832–843, 1983.

[7] L. Arbach, D. Lee, J. M. Reinhardt, and G. Fallouh.
Mammographic masses classification: comparison between
backpropagation neural network (BNN), k nearest neighbors
(KNN), and human readers. In Proceedings of the
IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE 2003), volume 3, pages 1441–1444.
IEEE Canada, 2003.

[8] S. Baek and K.-M. Sung. Fast k-nearest-neighbour search
algorithm for nonparametric classification. Electronics
Letters, 36 (21): 1821–1822, 2000.

[9] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, 1990.

[10] G. Blakowski and R. Steinmetz. A media synchronization
survey: reference model, specification, and case studies.
IEEE Journal on Selected Areas in Communications,
14 (1): 5–35, 1996.

[11] A. Buja, D. F. Swayne, M. L. Littman, N. Dean,
and H. Hofmann. XGvis: interactive data visualization
with multidimensional scaling. To appear in Journal of
Computational and Graphical Statistics. Also available
at http://www.research.att.com/areas/stat/xgobi/papers/xgvis
.pdf.

[12] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based testing
without the need of oracles. Information and Software
Technology, 45 (1): 1–9, 2003.

[13] S. C. Cheung, S. T. Chanson, and Z. Xu. Toward generic
timing tests for distributed multimedia software systems.
In Proceedings of the 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), pages
210–220. IEEE Computer Society Press, Los Alamitos,
California, 2001.

[14] T. M. Cover and P. E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory,
13: 21–27, 1967.

[15] E. Fix and J. L. Hodges. Discriminatory analysis: nonpara-
metric discrimination: small sample performance. Technical
Report No. 11. Project No. 21-49-004, USAF School of
Aviation Medicine, Randolph Field, Texas, 1952.

[16] P. J. F. Groenen. The majorization approach to multidimen-
sional scaling: some problems and extensions. DSWO
Press, Leiden University, Leiden, The Netherlands, 1993.

[17] J. Lee, R. C. Weger, S. K. Sengupta, and R. M. Welch.
A neural network approach to cloud classification. IEEE
Transactions on Geoscience and Remote Sensing, 28: 846–
855, 1990.

[18] T. D. C. Little and A. Ghafoor. Synchronization and storage
models for multimedia objects. IEEE Journal on Selected
Areas in Communications, 8 (3): 413–427, 1990.

[19] J. N. K. Liu and R. S. T. Lee. Rainfall forecasting from mul-
tiple point sources using neural networks. In Proceedings of
the 1999 IEEE International Conference on Systems, Man,
and Cybernetics (SMC ’99), volume 3, pages 429–434.
IEEE Computer Society Press, Los Alamitos, California,
1999.

[20] G. Lu. Communication and computing for distributed
multimedia systems. Artech House, Boston, 1996.

[21] T. M. Mitchell. Machine learning. McGraw Hill, New York,
1997.

[22] F. Padberg, T. Ragg, and R. Schoknecht. Using machine
learning for estimating the defect content after an inspection.
IEEE Transactions on Software Engineering, 30 (1): 17–28,
2004.

[23] E. L. Russell, L. H. Chiang, and R. D. Braatz. Data-driven
techniques for fault detection and diagnosis in chemical
process. Springer, Berlin, 2000.

[24] J. L. Su, G. Z. Wu, and I. P. Chao. The approach of data
mining methods for medical database. In Proceedings of
the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 4,
pages 3824–3826. IEEE Press, New York, 2001.

[25] H. Ziv and D. J. Richardson. Bayesian-network confirmation
of software testing uncertainties. Technical Report. Univer-
sity of California, Irvine, California, 1997.

[26] H. Ziv and D. J. Richardson. Constructing Bayesian-network
models of software testing and maintenance uncertainties. In
Proceedings of the 13th IEEE International Conference on
Software Maintenance (ICSM ’97), pages 100–109. IEEE
Computer Society Press, Los Alamitos, California, 1997.

9

Proceedings of the Fourth International Conference on Quality Software (QSIC’04)
0-7695-2207-6/04 $ 20.00 IEEE

