
Please do not remove this page

Systematic incremental development of agent
systems using Prometheus
Perepletchikov, Mikhail; Padgham, Lin
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Systematic-incremental-development-of-agent-systems/992185913220
1341/filesAndLinks?index=0

Perepletchikov, M., & Padgham, L. (2005). Systematic incremental development of agent systems using
Prometheus. Proceedings of the Fifth International Conference on Quality Software (QSIC 2005), 413–418.
https://doi.org/10.1109/QSIC.2005.60

Published Version: https://doi.org/10.1109/QSIC.2005.60

Document Version: Accepted Manuscript

Downloaded On 2024/03/19 18:20:28 +1100
© 2005 by The Institute of Electrical and Electronics Engineers
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Systematic-incremental-development-of-agent-systems/9921859132201341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Systematic-incremental-development-of-agent-systems/9921859132201341
http://doi.org/doi:https://doi.org/10.1109/QSIC.2005.60
https://researchrepository.rmit.edu.au


Systematic Incremental Development of Agent Systems, using Prometheus

Mikhail Perepletchikov and Lin Padgham
RMIT University, School of Computer Science and Information Technology

{mikhailp, linpa}@cs.rmit.edu.au

Abstract

This paper presents a mechanism for dividing an agent
oriented application into the three IEEE defined scoping
levels of essential, conditional and optional. This mecha-
nism is applied after the initial system specification, and is
then used to direct incremental development with three sep-
arate releases. The scoping described can be applied at any
stage of a project, in order to guide consistent scoping back
if such is needed. The three levels of scoping that are used
are consistent with the approach used in many companies.
The approach to scoping requires that scenarios are priori-
tised manually on a five point scale. All other aspects are
then prioritised automatically, based on this information.
The approach used allows a developer to indicate what size
partitions - based on number of scenarios - are required
for each scoping level. The mechanisms are applied to the
Prometheus development methodology and are integrated
into the Prometheus Design Tool (PDT).

1. Introduction

It is currently well accepted in Software Engineering
(SE) that an iterative and incremental approach to software
development is far preferable to a waterfall approach. The
Rational Unified Process (RUP) [6, 7] is perhaps the most
widespread and well known iterative and incremental soft-
ware development process. It suggests a spiralling iteration
over four phases including activities of business modeling,
requirements gathering, analysis and design, coding, test-
ing, and deployment. The RUP model also suggests that
there should be iterative, incremental releases of the soft-
ware being developed, with each release incorporating ad-
ditional functionality [7].

Development of multi agent systems is no different than
other software development with respect to the advantages
of an incremental and iterative process. The Prometheus
methodology for developing agent systems [9] suggests that
an iterative approach should be applied, but has no specific
mechanisms to support such. The style of Prometheus in

general is to provide structured support for the development
process. This paper proposes some mechanisms for split-
ting a project into multiple scoping levels, and using these
to provide automated support for incremental development
within the Prometheus framework.

In the following sections we first briefly introduce
the Prometheus methodology, including some modifica-
tions that have been made to the System Specification
phase of Prometheus to better support a systematic and bal-
anced specification, appropriate as the basis for the scoping
activity. Next, we describe the scoping process and al-
gorithms. This leads to a system specification with three
levels of scoping, similar to the three prioritisation lev-
els used by many organisations [3, 14], and compatible with
the IEEE standards [4]. Finally, we describe how the scop-
ing supports incremental development through the phases
of architectural and detailed design, as well as implemen-
tation and testing. The (refined) Prometheus Design Tool
(www.cs.rmit.edu.au/∼mikhailp/research/PDT.2.0.jar) as-
sists by providing automated support in developing accord-
ing to the scoping levels. We then briefly review related
work in prioritisation of requirements with a view to scop-
ing, outside of Agent-Oriented SE1.

2. Overview of the Prometheus methodology

Prometheus consists of three main design phases, plus
implementation and testing which are not really covered in
any detail. The design phases are: (i) System Specification,
(ii) Architectural Design, (iii) Detailed Design.

The scoping that we introduce is based on a full system
specification, as it is not really possible to scope and priori-
tise things that have not yet been specified. We have modi-
fied the original Prometheus specification phase to provide
greater structure, and thus a better basis for scoping.

We describe each phase briefly, noting the artifacts that
are produced at each phase.

(Revised) System Specification. The revised system
specification process consists of the following steps:

1 To the author’s knowledge there has not been any work done in this
area specifically within AOSE.

E79927
Typewritten Text
Citation: Perepletchikov, M and Padgham, L 2005, 'Systematic incremental development of agent systems using Prometheus', in Proceedings of the Fifth International Conference on Quality Software (QSIC 2005), Melbourne, Australia, 19-20 September 2005.

E79927
Typewritten Text

E79927
Typewritten Text



(i) Identification of actors and their interactions with the
system; (ii) Developing scenarios illustrating the system’s
operation; (iii) Identification of the system goals and sub-
goals; (iv) Specifying the interface between the system and
its environment in terms of actions, percepts and any exter-
nal data; (v) Grouping goals and other items into the basic
functionalities of the system.

The first modification of the original Prometheus pro-
cess is the addition of actors for which the system has rel-
evance. These actors are any persons or roles which will
interact with the system, as well as any other stakehold-
ers whose goals should be considered. Actors may be other
software systems, as well as humans. The concept of Ac-
tor is not new in AOSE, for example the Tropos methodol-
ogy also uses actors in its Requirements Phases [2].

Use cases are then developed for each actor that will in-
teract with the system, in much the same way as for object
oriented analysis. The input from actor to agent system is
then identified as a percept, while the outputs from system
to actors are defined as actions. This process results in im-
proved structure for identifying percepts and actions. Also,
each use case becomes an initial scenario.

The second modification is that scenarios are linked to
goals in a similar way to that of the Goal-Scenario coupling
framework (GSCF) [11] which is based around the notion of
a Requirement Chunk (RC) (a pair of <Goal, Scenario>).
Since a goal can be described as a contextual property of
a scenario, and scenarios show concrete steps for achieving
a goal, the correlation between goal-oriented and scenario-
driven approaches can bring a number of benefits as de-
scribed in [11]. The linkage used in the revised Prometheus
is not as strict as the one used in GSCF2. We use a unidirec-
tional coupling where each scenario necessarily has a goal
which is linked to it (where we also use the same name), but
the more specific goals may not require a scenario.

Each initially identified scenario is then developed, with
a number of detailed steps, where each step is a goal, sce-
nario, action or percept. With the coupling identified above,
any nested scenario identified, automatically introduces a
goal. Goals introduced as steps may warrant development
of a scenario, in which case the goal step is automatically
modified to be a scenario step.

Initial goals are identified via the initial use-cases as de-
scribed above, and also by examining the initial system de-
scription. Further goals are then identified by a process of
abstraction and refinement[12]. For each goal, we ask the
question how? and why?, thus identifying new goals, and
forming a goal hierarchy.

One further modification that is introduced is the notion
of two kinds of goal refinement: AND-refinement and OR-
refinement as described by van Lamsweerde [12]. If a goal

2 In GSCF, every goal must be linked to a scenario, and vice-versa.

is AND-refined, we mean that subgoals (or answers to the
question how?) are steps in achieving the overall goal, and
each step must be done. If it is OR-refined, then subgoals
are alternative ways of achieving the goal, and doing any
one of them is sufficient. Agent systems typically have both
these kinds of refinements. OR-refinements allow for choice
in the way of achieving goals, while AND-refinements al-
low for breaking down into smaller pieces.

Finally, after goals and scenarios are sufficiently devel-
oped, goals are grouped into functionalities, where similar
goals are grouped together. Actions and percepts are also al-
located to functionalities. Scenarios are then annotated with
information about which functionality each step belongs to.

A detailed description of modifications that have been
made to the System Specification phase of Prometheus can
be found in [10].

Architectural Design. In architectural design there are
three main steps: (i) Determining agent types; (ii) Deter-
mining interaction protocols between agents; (iii) Describ-
ing the overall system structure.

Agent types are determined by analysing possible group-
ings of functionalities, and determining the most preferred
grouping. Groupings should have high cohesion within each
agent and low coupling between agents. There are various
criteria which should be taken into account when determin-
ing which functionalities should be grouped together.

Interaction protocols are developed based on an ini-
tial transformation from scenarios to interaction diagrams.
These interaction diagrams are then generalised to provide
the protocols which should be a complete specification of
the interaction between agents.

The system overview diagram provides an overview of
system structure, showing which agent types are involved
in which interaction protocols.

Detailed Design. Detailed design focusses on the inter-
nal functioning of each agent type. The main aspects of de-
tailed design are: (i) Identification and description of agent
capabilities, resulting in an agent overview diagram; (ii) De-
scription of internal agent processing, via process diagrams;
(iii) Development of plans and events.

The agent overview diagram is similar in structure to
the system overview diagram, but focusses on agent inter-
nals. The content of the internals of each agent is defined
by the functionalities developed during system specifica-
tion. Internals can be initially conceptualised as capabili-
ties. These are eventually described in terms of plans and
triggers for those plans. Triggers can be percepts from the
environment, messages from another agent, or internally in-
stantiated goals, subgoals or events.

Process diagrams are similar to UML activity diagrams,
with some modifications. They describe the processing of a
single agent, with respect to a single protocol within the sys-
tem. Consequently, they can be related back to use case/s.



3. Scoping levels

The scoping process that we propose uses the use case
scenarios as the primary artifact for scoping. In collabora-
tion with clients, users or managers, the developer is re-
quired to assign a ranking of one to five to each use case
scenario that has been identified. Where a scenario is in-
cluded as a step in the (parent) use-case scenario it is given
the ranking of the parent scenario. Where a scenario has
been included in more than one parent scenarios it is given
the ranking of the highest ranked parent.

We will eventually arrive at three scoping levels, accord-
ing to common practice. However we start with five, in or-
der to provide a broader range of options and to assist in
avoiding the trap of insufficiently prioritised requirements,
where “more than 90% of the requirements are classified as
high priority” [14].

Once all use cases have been assigned a priority, we ap-
ply a scoping algorithm which attempts to partition the use
cases into three suitably sized partitions based on the rank-
ings obtained. By default we assume that the essential parti-
tion should contain 35-45% of use-case scenarios, the con-
ditional partition should contain 20-40%, and the optional
partition should contain 25-35%. These percentages were
chosen arbitrary, and can be modified for particular situa-
tions or preferences. The scoping algorithm will attempt to
stay as close to these partition sizes as is possible, given the
rankings supplied.3

The rankings from one to five give us six differ-
ent possibilities for how to assign ranks to partitions
([1,234,5],[12,34,5],[123,4,5],[1,23,45],[1,2,345],[12,3,45]).
We calculate the percentage of scenarios in each parti-
tion, for the different options and then score the various op-
tions by giving a point for each partition that is within the
desired range as shown in Figure 1.

If more than one option has all partitions within range,
we by default choose the one with the smallest essential
partition. However, it is also possible to present the options
visually to the developer and allow them to choose. If no
options have all partitions within desired ranges, we pre-
fer partitions with two partitions of appropriate size, and
within this set, we prefer those with the essential partition
of the approved size. Other things being equal, we also pre-
fer, by default, to have fewer scenarios in higher ranked par-
titions. Again, it is possible to present all groupings to the
developers and allow them to choose the preferred one. Al-
ternatively, we could use the actors’ rankings4 as one of the

3 We maintain the constraint that ranking 1 should map to the essen-
tial partition, so if too many level one priorities are given, it may not
be possible to stay within the recommended partition size for the es-
sential partition. Similarly, ranking 5 should always map to the op-
tional partition, therefore it may not be possible to stay within the rec-
ommended partition size for the optional condition.

4 The refined PDT supports the prioritisation of actors.

Assume 50 scenarios in total, with 10 scenarios at each rank of 1-5
Desired sizes of the partitions:

Essential: 35-45%; Conditional: 20-40%; Optional: 25-35%

The possible partitions are shown below.
Partitions that are within the desired range are marked with a tick.

Essential scope Conditional scope Optional scope

A

B

C

D

E

F

SCORE

0

1

0

2

2

1

20%

40%

60%

40%20%

20%20%

20% 20%

20%

40%

60%

20%

20%

40%

40%

40%

60%

Choose partitioning E, as Conditional scope is smaller than partitioning D

Figure 1. The process of selecting the ’best’
scoping option

alternatives for deciding a particular scenario scoping op-
tion in case we have options that are equally good.

Although we have not done it, it would be possible to
provide support whereby the developer could move partic-
ular scenarios between partitions in order to achieve bet-
ter distributions. The tool could allow scenarios of the same
rank to be placed in different partitions, while ensuring that
the relative partial ordering obtained from the original rank-
ing is maintained.

Once scenarios are assigned to partitions, other artifacts
are assigned based on their connections to scenarios. Ac-
tions and percepts are assigned to the same partition as the
scenario(s) in which they occur. If they occur in multiple
scenarios, from different partitions, then they are assigned
to the highest priority partition.

Goals are somewhat more complex, as not all goals will
be mentioned in scenarios. Also goals are structured with
respect to each other, and the prioritisation must be consis-
tent with this structure. The initial step is that for each goal
that is linked to a scenario, the goal is assigned the same pri-
ority as the scenario. The remaining goals are then assigned
priorities according to the rules described in the following
sub-section.

Functionalities are assigned to a partition accord-
ing to the highest priority goal that is included in the
functionality. However functionalities will be developed in-
crementally, according to the scoping.



Scoping of Goals. Many goals can be prioritised directly
according to associated use-case scenarios. If the goal is
linked to a scenario, the scope of this goal is equal to the
scope of the linked scenario. Where a goal is a step in a sce-
nario it is given the scope level of the scenario it is a step
in. Where a goal receives different scope levels from differ-
ent scenarios, the highest scope level is used.

The assignment of remaining goals to a scoping parti-
tion involves considering both parent and children of the
goal to be assigned. The Prometheus guidelines require that
all goals should be covered by some scenario, where be-
ing covered involves either a parent goal being included in
or linked to a scenario, or subgoals being included in a sce-
nario in a way that adequately covers the parent goal. With
the introduction of AND vs OR refinement, adequate cov-
erage by subgoals implies either one OR-refined goal being
included in or linked to a scenario, or all AND-refined goals
being included in or linked to some scenario. If these guide-
lines regarding coverage are not followed it will be neces-
sary for the developer to explicitly assign priorities to non-
covered goals. In describing the scoping rules we assume
that all goals are covered by scenarios.

There are three rules which must be maintained for a set
of allocations of goals to scoping partitions to be accept-
able:

• All goals must be in a scoping level at least as high as
that of the scenario they are included in or linked to.

• All AND-refined subgoals must be assigned to a scop-
ing level at least as high as their parent.

• Some OR-refined subgoal must be assigned to a scop-
ing level at least as high as the parent.

The first constraint is fulfilled by the initial allocation de-
scribed above. We then ensure the second constraint is filled
by allocating all unallocated goals with AND-refined sub-
goals, and all AND-refined subgoals, as illustrated in Fig-
ure 2. If AND-refined subgoals have differing scoping lev-
els, this implies that some of the goals are used in a con-
text separately than as steps within the AND-refined par-
ent. As higher scoping over-rides lower scoping, the lower
scope within the set must be the case where all subgoals are
required. This should then be the scope of the parent goal.
The system will check that all subgoals are used within at
least one expanded scenario5, and if this is not the case a
warning will be generated.

We also reallocate any AND-refined subgoals whose ini-
tial allocation from scenario linking was too low to meet
this constraint. This leaves us with potentially unallocated
OR-refined subgoals along with any unallocated top level
goals that are OR-refined.

5 An expanded scenario is one where all scenario steps are expanded
out.

Find cheapest price

?

Order books

Find cheapest price Organise delivery

CE

Order books

Organise delivery

C

C

?

O

C

C

E

C

O

Essential Scope

Conditional Scope

Optional Scope

Derived/Updated Scope

Legend

Unknown Scope

?

AND

AND

Figure 2. Allocations involving AND-
refinement

When an unallocated top level goal is OR-refined we
assign it to the scoping of its highest scoped subgoal, as
this is the partition in which it will be achieved. However,
we note that this is an inherited priority. In the event that
a functionality is receiving its scoping level based on this
goal, further assessment may need to be done. Each unallo-
cated OR-refined subgoal is assigned to a partition depend-
ing on whether the current scoping fulfills the third con-
straint above. Consequently, if a sibling subgoal is already
assigned to a scope at least as high as the parent, then the
goal under consideration is assigned to the lowest scope.
Otherwise it is assigned to the scope of the parent goal. Fig-
ure 3 illustrates these allocations.

Scoping of Functionalities. The priority of a functional-
ity is determined by the highest priority goal included in this
functionality. For example, if the Functionality X contains
three goals with the scope levels essential, conditional, and
optional respectively, the scope level of Functionality X will
be essential. However, the functionality will be only devel-
oped to the extent required within each scoping level. The
one exception to this is the case where the scope of the func-
tionality is being determined by a goal which has an inher-
ited priority. In this case further analysis needs to be done,
to determine whether the inherited scope was justified.

We recall that the inherited scope occurs only when a
top level goal is OR-refined, and is initially unallocated, in
which case it inherits the scoping of the highest child. This
is justified if the child has no other parent (in which case it
must have received its scope directly from a scenario). How-
ever, if the child has some other parent which reflects its
scope, then the scoping of the goal in question should be re-
assessed. It should receive the scope of the highest scoped
child for which it is the sole parent.



Maintain large 
range of books

Order books
Borrow books from 

other libraries

OE

inherited priority

OR

? E

Maintain large 
range of books

Order books
Borrow books from 

other libraries

E

E OR ? O

Maintain large 
range of books

Order books
Borrow books from 

other libraries

E

OOR
? E

Figure 3. Allocations involving OR-
refinement

4. Iterative development of scoping levels

Dividing the system into three clearly separated levels of
scope, results in the identification of three separate releases.
In the first incremental iteration (release) we develop the
full system specification of an agent system. We then apply
the scoping process to identify the essential partition which
will go through the whole Software Development Life Cy-
cle (SDLC) resulting in the first release. The second incre-
mental iteration includes the development and integration
of the conditional features. The third release covers the op-
tional features.

In moving to architectural design, it is necessary to de-
cide the agent types within the system, based on the full
set of functionalities. Once this is done, agents can them-
selves be scoped. The agent type itself needs to be placed
within the scoping partition of its highest scoped function-
ality, as such, there is a potential risk of having too many
agent types in the essential scope. However, the agents are
also scoped internally, so that only those aspects which re-
late to goals and scenarios within the essential scope are de-
veloped during the first release.

At the architectural design phase, it is the development
of protocols which is most affected by the scoping. Interac-
tion diagrams should be developed only for scenarios in the
prioritised level of scope. In generalising the interaction di-
agrams to protocols, it will be necessary to generalise only

with respect to the goals within scope. Following iterations
will then need to revise and expand the protocols. This will
often involve adding alternative options, optional constructs
or references to additional protocols.

It can be helpful in developing the protocols, to anno-
tate with goals on each agent lifeline, related to the activity
the agent is performing which results in the following mes-
sage. If this method is used then all goals should be in the
relevant scope. Messages are then also defined in line with
the reduced, appropriately scoped protocols.

In developing the detailed design, only the aspects of the
agent that have to do with the goals that are in scope are
addressed. Consequently, agent overview diagrams will be
incrementally developed, with new capabilities and plans
being added in successive increments to address the goals
within the particular scope. Process diagrams follow di-
rectly from the reduced protocols, and thus are also devel-
oped according to the relevant scoping partition.

Including scoping within the PDT allows the scoping
to be fully integrated, and to support incremental develop-
ment in a structured manner. In the process of developing
the scoping partitions, the developer can interact with the
tool to come to a desired partitioning, with the tool ensur-
ing that necessary constraints are maintained. Once a parti-
tioning has been determined, the developer can work within
a particular scoping partition, and all aspects of the system
which are in a lower partition can be deactivated.

Scoping can be applied at any stage - and indeed if things
are added to the specification, then scoping should be recal-
culated. The ability to do scoping at any stage results in a
flexible development model since the developer can apply
the scoping procedure at any point of system design. For
example, it is possible to fully design the system, and only
then apply scoping. This will then be propagated through
the system, allowing implementation and testing to proceed
in incremental iterations.

There is often a “rapid descoping phase” late in a project,
when it is necessary to determine features that can be cut
down due to the lack of time and resources [14]. Again, we
can apply the scoping procedure to the final design artifacts
in order to determine the less important features.

5. Related work

Requirements prioritisation is recognised as an impor-
tant, but difficult activity in software development process
since it lays foundation for release planning/system scoping
[8]. Having a systematic requirements prioritisation process
is a challenge because such process involves decision mak-
ing, domain knowledge, and estimation skills [13].

Unfortunately, there is little agreement within industry as
to how, when, and why requirements should be prioritised.
Requirements can be prioritised along many different di-



mensions, such as: stakeholders preference, business value,
risk avoidance, cost, difficulty, and frequency of use [3]. In
addition, various techniques can be used to determine, and
develop a consensus regarding the priorities of the require-
ments. The following prioritisation techniques are the most
widely used as stated by Firesmith [3]: pair-wise compar-
isons, scale of 1-to-10 rankings, and voting schemes.

Another important issue is the granularity at which the
requirements prioritisation occurs. A large-sized projects
can have thousands of functional requirements, hence we
need to choose an appropriate level of abstraction for the
prioritisation procedure. This could be at the use case, fea-
ture, or individual functional requirement levels [13].

We decided that the use case level is most suited for
Prometheus. This decision was influenced by the practices
prescribed by the Unified Software Development Process
(UP) [5]. One of the activities in the Requirements work-
flow of UP is ‘Prioritize Use Cases’. The purpose of this
activity is to determine which of the use cases should be de-
veloped in early iterations, and which can be developed in
later iterations. The Rational Unified Process (RUP) which
is a specific and detailed instance of UP also regards use
case prioritisation activity as one of the most important in
the Requirements discipline [6, 7].

We have adopted a similar strategy to UP/RUP where
we prioritise use cases rather than actual requirements, but
in our case, the process of deciding on what to be devel-
oped within a given iteration is automated based on the al-
gorithms described in the previous sections. As such, the
presented approach requires lesser effort than the existing
manual approaches (such as the one described in [1]).

None of the existing agent development methodologies
support the prioritisation of system specification compo-
nents, such as goals or scenarios.

6. Conclusions

This paper has described a scoping process which sup-
ports incremental development of an agent based system. If
the Prometheus design process is used, the scoping can be
automatically supported, and consistency enforced, within
the Prometheus Design Tool. The process is flexible in that
it allows the developer to specify the desired size ranges of
the three partitions, and it also allows scoping to be applied
at any stage after the initial system specification. There are
plans to verify this work by using it on real systems and
evaluating the usefulness of the proposed mechanism via
empirical studies.

A revised and more structured version of the Prometheus
system specification phase is also briefly presented. This has
been shown experimentally to result in more consistent and
well developed system specifications, thus providing a bet-
ter base for the scoping activity.

Scope management is a crucial part of managing large
software systems. The presented approach provides struc-
tured and automated support for incremental development
according to scoping priorities. To the author’s knowledge
there is currently no other work on cost estimations, scop-
ing, or other mechanisms for supporting incremental de-
velopment in an automated and structured fashion in agent
systems. While the described mechanisms are developed
for Prometheus and integrated within the Prometheus De-
sign Tool, the basic principles could readily be adjusted to
suit any agent development methodology which has suit-
able structured relationships between design artifacts.

References

[1] R. Blahunka. Iterative project scoping: An approach to sen-
sibly selecting business requirements for iterative DSS de-
ployment. DM Review Magazine, 3(6), 1999.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. TROPOS: An agent-oriented software develop-
ment methodology. Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, 2004.

[3] D. Firesmith. Prioritizing requirements. Journal of Object
Technology, 3(8):35–47, 2004.

[4] IEEE-Std830. IEEE Std 830-1998, Recommended practice
for software requirements specifications. IEEE, 1998.

[5] I. Jackobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, Reading,
USA, 1999.

[6] P. Kroll and P. Kruchten. The Rational Unified Process Made
Easy. Addison-Wesley, Reading, USA, 2003.

[7] P. Kruchten. The Rational Unified Process: An Introduction,
Third Edition. Addison-Wesley, Boston, USA, 2004.

[8] L. Lehtola, M. Kauppinen, and S. Kujala. Requirements pri-
oritization challenges in practice. In Proceedings of the 5th
International Conference on Product Focused Software Pro-
cess Improvement, pages 497–508, Kansai City, Japan, 2004.

[9] L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. John Wiley And Sons Ltd, West
Sussex, England, 2004.

[10] M. Perepletchikov and L. Padgham. Use case and Actor
driven Requirements Engineering: An evaluation of modifi-
cations to Prometheus. In Proceedings of the Fourth Interna-
tional Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS’05), Budapest, Hungary, 2005.

[11] C. Rolland, C. Souveyet, and B. Achour. Guiding goal mod-
elling using scenarios. IEEE Transactions on Software En-
gineering, 24(12):1055–1071, 1998.

[12] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In Proceedings of the 5th IEEE Interna-
tional Symposium on Requirements Engineering, pages 249–
263, Toronto, Canada, 2001.

[13] K. E. Wiegers. First things first: Prioritizing requirements.
Software Development, 7(9), 1999.

[14] K. E. Wiegers. Karl Wiegers describes 10 requirements traps
to avoid. Software Testing and Quality Engineering, 2(1),
2000.




