
Asynchronous Semantics and Anti-patterns for Interacting Web Services

Yongyan Zheng, Paul Krause
Department of Computing, University of Surrey

Guildford, GU2 7XH, UK
{y.zheng,p.krause}@surrey.ac.uk

Abstract

Web service is an emerging paradigm for distributed
computing. First, in order to verify web services rigorously,
it is important to provide a formal semantics for the flow-
based web service language (WS). A suitable formal model
should cover most features of the WS. The existing formal
models either abstract from data, cover a simple subset of
WS, or omit the interactions between certain components.
This paper presents a web service automaton, an extension
of Mealy machine, to fulfill the formal model requirements
of the web service domain. Second, semantic compatibil-
ity checking between web services is another important is-
sue. The existing checking approaches are post-checking,
where the compatibility is checked after composition. As a
complement to post-checking, we proposes anti-patterns for
web service interactions as a pre-checking, so that certain
incompatible web services can be modified or re-selected in
the earliest stages.

1. Introduction

The web service paradigm provides a flexible, re-usable,
and loosely coupled model for distributed computing. Be-
cause of these advantages, web service architectures have
been actively researched in recent years, and various web
service standards have been proposed such as WS-CDL
[11] for service choreography, BPEL [2] for service or-
chestration, and WSDL [4]. WSDL is in the first layer to
describe the service interface. BPEL is in the second layer
to model the local behaviours of web service interactions.
WS-CDL is the third layer to model the global behaviour
of BPEL web service interactions. Due to the similarity
of BPEL and WS-CDL, we believe a general formal model
can provide semantics for both BPEL and WS-CDL. In this
paper, we focus on defining the semantics of web service
automata WSA (definition 2), and discuss a light-weight
approach for checking semantic compatibility. We use the
terms machines and automata interchangeably.

In the literature, there exist two machine communication
models: 1) synchronous communication model (SC) i.e.
rendezvous: a message needs to be sent and consumed syn-
chronously; 2) asynchronous communication model (AC):
machines are associated with buffers, such that a message
can be sent and consumed asynchronously. The limitation
of the SC model is that the partner machines can never be
sure that a machine is in a state ready to accept its input. We
believe the AC model is more suitable for web services, be-
cause web services are designed to be loosely-coupled and
distributed, where each web service shall evolve indepen-
dently. WSA is a variant of Communicating Finite State
Machines (CFSM) [3], which abstracts from data and sup-
ports the AC model with FIFO queues. Our WSA includes
multiple-event transitions, data and internal events. Inspired
by Alur [1], we also consider various buffering schemes.
We explicitly elicit the conditions for a WSA to ensure that
the composition operation be commutative and associative.
The discussion of the suitability of WSA for web services
will be covered in section 2.

We will also discuss semantic compatibility checking.
Existing approaches involve post-checking, where the com-
patibility is checked after composition. We propose to in-
clude pre-checks of the individual machines against a set
of proposed anti-patterns over event occurrences, so that
certain incompatible web services can be modified or re-
selected in the earliest stages. We do not aim to guarantee
a composite model to be deadlock or livelock free, but to
provide a guideline for selecting the right automata. As a
complement to post-checking, the pre-checking has dual ad-
vantages. First, less computation effort is required because
the verification tools need not to explore the whole compos-
ite model to identify incompatible behaviours, but explore
the individual models. Second, the event occurrence rela-
tion property of an individual machine can be used as a ma-
chine profile and re-used for further anti-pattern checking
with different machines.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 defines the WSA seman-
tics, composition semantics, and discusses different buffer-

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

ing schemas. Section 4 presents compatibility and anti-
patterns for web service interactions. Section 5 concludes
the paper.

2. Related Works and Motivation

There are a number of proposals for formal semantics,
such as process algebras, petri nets, and automata for BPEL
web service models. [13, 10] give good reviews of the ex-
isting web services techniques. BPEL consists of basic ac-
tivities (e.g. receive, invoke, assign, reply) and structured
activities (e.g. flow, sequence, while, switch, pick, scope,
event handlers, and fault handlers). Structure activities im-
pose constraints on a set of activities contained within them.
The idea of mapping BPEL to formal models includes: 1)
map each BPEL basic activity to a basic component; 2) map
each BPEL structured activity to a composite component,
which consists of a set of basic components; 3) map the
whole BPEL process to a composite component, which con-
sists of a set of composite components. Here we use com-
ponent as a general term for either a process, a petri net, or
an automaton.

A suitable formal model for BPEL should not only cover
most features of BPEL language, but also be able to model
the interactions between BPEL internal components as well
as the interactions between BPEL processes. The existing
models in the literature either abstract from data, internal
events, or cover a simple subset of BPEL. Also, most ap-
proaches do not consider the interactions between BPEL
internal components explicitly, but leave the internal com-
ponents interact implicitly by shared variables. In the the-
oretical point of view, we believe it is clearer and simpler
to provide a uniform means of interactions, instead of con-
sidering both shared variable and message passing mecha-
nisms.

Forster [7] uses MSCs (Message Sequence Chart) as the
web service specification, WS-CDL and BPEL as the im-
plementations. First, MSC, WS-CDL, and BPEL are all
transformed into FSPs (Finite State Processes). Second, by
trace equivalence checking, the LTSA model checker ac-
cepts the input FSPs and model-checks the BPEL against
the WS-CDL or MSC, or the WS-CDL against MSC. Since
FSP abstracts from data and supports synchronous com-
munication, we believe it is not suitable to model inter-
actions of distributed web services. Koshkina [12] pro-
posed a BPE-calculus as the semantics for BPEL, and ap-
plies the Concurrency Workbench (CWB) verification tool.
The BPE-calculus abstracts from data. CWB has the ad-
vantage that it supports not only model checking for µ-
calculus properties, but also pre-order checking and equiva-
lence checking. Fu and Bultan [8] proposed a guarded au-
tomaton (GA) as the semantics for both BPEL and the Con-
versation Model. Their conversation model has the same

role as WS-CDL. The model checker SPIN is used to ver-
ify the GA against LTL properties. Their GA is a non-
deterministic CEFSM with constraints on the elements of
transitions, without considering internal events. The inter-
actions between BPEL processes is by message-passing, but
they omit the interactions between internal components of a
BPEL process.

Our WSA model aims to provide suitable semantics for
BPEL-like web service language. We consider data and in-
ternal events in our model, and also we use message-passing
as the only way for both BPEL internal component commu-
nications and BPEL process communications. The reason
for us to include internal events is that internal events be-
come interesting in the context of composition, where the
external events of the individual machines will become in-
ternal events to a composite machine. Furthermore, WSA
allows a transition to associate with multiple input events,
which linked by logical operator conjunction, disjunction,
or negation This feature reduces the unnecessary state space
of a state machine, and enables WSA to capture most fea-
tures of BPEL language in a natural way. For instance, a
conjunction of events can model the case when BPEL flow
activity waits for all its sub-activities to finish. A disjunc-
tion of events can model BPEL fault handling, while a con-
junction of event A and the negation of an event B can
model the case that B has higher priority than A, which
is useful for modeling BPEL’s interruption feature. The de-
tailed mapping from BPEL to WSA is covered in [17].

For web service semantic compatibility checking, the
current approaches [16, 6, 14] only check the compatibility
after composition. The whole state space of the composite
model needs to be explored for thorough checking, but such
post-checking is expensive to find an interaction problem.
Instead, we proposed anti-patterns over traces of individual
machines, so that certain interaction problems can be iden-
tified by looking at the individual machines.

3. Web Service Automaton

3.1. Static Semantics

The static semantics of a web service automaton extends
finite state machine with signature, data structure, and
message storage schema. The dynamic semantics of a web
service automaton includes machine configurations and
execution traces. The formal definitions are given below.

Definition 1. We assume that we have available an
enumerable infinite set V of variables and sets AX ,BX of
assignment expressions and Boolean expressions respec-
tively, together with a set D of values. We also assume that
we have a set of functions Env where ε ∈ Env : V → D

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

assigns variables of V with values from D. Given an
expression exp, we need three functions:

• def : AX → V , where def(exp) ∈ V returns the
assigned variable, i.e. the variable on the left hand side
of the assignment.

• cuses : AX → ℘(V), where ℘(V) is the power set
of V and cuses(exp) ⊆ V returns the variables on the
right hand side of the assignment.

• puses : BX → ℘(V), where puses(exp) ⊆ V re-
turns the variables in the Boolean expression.

If exp ∈ AX , we need a function applyA : AX × Env →
Env that satisfies:

• If v 6= def(exp) then applyA(exp, ε(v)) = ε(v). This
means only the assigned variable may change.

• If for all v ∈ cuses(exp) we have ε1(v) = ε2(v), then
applyA(exp, ε1(v)) = applyA(exp, ε2(v)).

• If for all ε ∈ Env we have applyA(exp1, ε) =
applyA(exp2, ε), then exp1 = exp2.

If exp ∈ BX , we need a function applyG : BX × Env →
{true, false} that satisfies: if for all v ∈ puses(exp)
we have ε1(v) = ε2(v), then applyG(exp, ε1(v)) =
applyG(exp, ε2(v)).

Each web service automaton M will be associated with
certain variables and expressions. These constitute its data
structure. A formal definition of a machine’s data structure
is given in definition 2.

Definition 2. A Web Service Automaton (WSA)
M is a finite state machine, consisting of WSAM =
(IM , SM , s0M , SfM , TM , δM). As a convention, we omit
the subscript of M such that M = (I, S, s0, Sf , T, δ), and
the components of M inherit subscripts, superscripts, or
dashes.

1) I is the signature of M , denoted as a three tuple
I = (E,L,O), where E,L,O are pair-wise disjoint
and represent a set of input events, internal events, and
output events, respectively. Let Msg = (L ∪ E ∪ O)
to be the set of events, we refer to the elements of
L = Lin ∪ Lout as internal input events and inter-
nal output events, and to those of Msg = (E ∪ O) as
external events.

2) S is a set of states, s0 ∈ S is the initial state, Sf ⊆ S
is a set of final states.

3) T ⊆ IN × BX × (℘(AX) ∪ OUT) is a set of tran-
sitions, where IN = (E ∪ Lin ∪ {Ω}) and OUT =

(O∪Lout∪{Ω}). For each t = (m, g, a) ∈ T (graph-
ically denoted as m[g]/a), m ⊆ IN is a set of trig-
gering events, g ∈ BX is the guard predicate, and
a ⊆ (℘(AX) ∪ OUT) is the action set composed of
assignments and output events. Ω indicates the omis-
sion of an event. We would represent a transition by
Ω[g]/Ω which simply determines a state change and
nothing else. The elements of transition t are denoted
as t.m = m, t.g = g, t.a = a.

• The events of the transition input event set t.m ⊆
IN are linked by logical operator conjunction,
disjunction, or negation, denoted as AND : e1 ∧
e2, ..,∧en, OR : e1 ∨ e2, ..,∨en, and NOT :
¬(ei), respectively.

• The data structure of machine M is the form
of (VM , AXM , BXM), which can be retrieved
from T . Since T ⊆ IN × BX × (℘(AX) ∪
OUT), we can retrieve AXM = {exp ∈
AX|∃t ∈ T ∧ exp ∈ t.a}, BXM = {exp ∈
BX|∃t ∈ T ∧ exp ∈ t.g}, and VM which
is the disjoin union of

⋃
exp∈AX({def(exp)} ∪

cuses(exp)) and
⋃

exp∈BX{puses(exp)}.

• We define that a WSA is T -complete iff t ∈ T

then s
t→ s′, which means every transition will

be triggered from some state.

4) δ ⊆ S × T × S is the transition relation.

We use symbols !, ?, @ as a convention in diagrams
to indicate whether an event is input, output, or internal
event, denoted as !e ∈ E, ?e ∈ O,@e ∈ L, respectively.
Conversely, going from the formal description to a dia-
gram, !, ?, @ are introduced depending on membership of
E,O,L. For instance if M sends a message m to M ′, then
in the composite automaton (definition 10), !m and ?m will
become @!m and @?m to indicate that output event !m and
input event ?m become internal output and internal input
events, respectively.

Definition 3. A WSA is deterministic iff
∀s, s′, s′′ ∈ S.∀t ∈ T , s

t→ s′ ∧ s
t→ s′′ ⇒ s′ = s′′ holds.

Definition 4. We define a message x to be a pair of
send and receive events (!x, ?x). If machine M1 sends
message x to machine M2, then !x ∈ O1∧?x ∈ E2.

3.2. Dynamic Semantics

We have defined the static structure of a WSA. We now
explain its dynamic semantics. We assume, first of all, that
a WSA is equipped with a means of storing incoming mes-
sages. Instead of limiting the buffers to a particular type
such as FIFO or multi-set, we consider different buffering

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

schemes (section 3.4). We assume that each WSA is asso-
ciated with a finite buffer. The buffer β(E ∪ Lin) stores
the external and internal input events. In one step of the
WSA, either: 1) a message e is received from the environ-
ment e ∈ E, and added to the buffer β(E ∪ Lin); or 2) an
enabled transition fires, possible causing a state change and
change to the values of some variables v ∈ VM . In order to
precisely define a step, we need to formalise the notion of a
configuration η which records the current state, the current
values of the variables associated with M and the current
content of the buffer.

A transition t is enabled in a configuration η, when 1)
its triggering event set t.m is either empty or belonging to
β(E ∪ Lin), 2) t.m can be consumed according to the ma-
chine’s buffering scheme, and 3) the transition guard t.g is
evaluated to be true. When a transition t is enabled, a set of
actions t.a is executed, and the state machine moves from
the start state to the end state of t. Such transition is called
enabled transition.

A machine is associated with a set of events, and an event
may have multiple event occurrences. When considering
a machine’s dynamic behaviour, we need to distinguish
event occurrences from events. Similarly, a message sent
between machines may have multiple message instances,
and message instances also need to be distinguished from
messages. We define a function λ : Ins → C to map class
instances Ins to classes C. 1) When applying λ to event
occurrences and events, λ(o) = e returns the event e for an
event occurrence o. For an enabled transition t, if ?x ∈ t.m
then we say t corresponds to the event occurrence oi with
λ(oi) =?x. 2) When applying λ to message instances and
messages, for a message instance om = (!om, ?om), there
exists message m = (!m, ?m) such that λ(!om) =!m and
lambda(?om) =?m.

Definition 5. A configuration of a machine M is of
the form η = (s,B, ε), where s ∈ S, B ⊆ β(E ∪ Lin)
is the current buffer content, and function ε : V → D
assigns the variable of V with a value from D. The set
of configurations of M is denoted as confs(M) where
η ∈ confs(M). Note that we assume the buffer is empty
when M is either in the initial state or in a final state
(hypothesis 1), so η0 = (s0, ∅, ε0) and ηn = (sn, ∅, εn) are
the initial and a final configuration, respectively.

Hypothesis 1. The buffer is empty when machine M
is in a final state. If M is in a final state, we say a lifecycle
of the machine ends. If the buffer is not empty then the
remaining messages will be discarded because they cannot
be consumed within this lifecycle.

Definition 6. A step is a triple (η, x, η′) ∈
confs(M) × (T ∪ E ∪ Lin) × confs(M). A step

η
x→ η′ changes machine M from configuration η to

configuration η′ in the following forms:

1) If x ∈ E ∪ Lin, representing the case when a mes-
sage x is arriving and is added to the buffer B, then
(s,B, ε) 7→x (s′, B′, ε′) iff s = s′, ε = ε′, B′ =
B + {x}.

2) If x = t ∈ T , representing the case when either the
message is already in the buffer t.m ∈ B or there is no
triggering event associated with t, then (s,B, ε) 7→t

(s′, B′, ε′) iff t is an enabled transition, i.e. (s, t, s′) ∈
δ,B′ = (B \ {t.m} + (t.a ∩ Lin), applyG(t.g, ε) =
true.

Definition 7. We define a set of configuration sequences
of M as configs(M,η0). A configuration sequence of
M ,α = 〈η0, x0, .., ηn)〉 ∈ configs(M,η0), is a se-
quence of configurations linked by input events,internal in-
put events, or enabled transitions from the initial config-
uration to a final configuration, where ηi = (si, Bi, εi),
x ∈ E ∪ Lin ∪ T .

1) We define a set of transition sequences as trans(M),
where a transition sequence of M is a sequence of
enabled transitions trans(α) = 〈x0, .., xn−1〉 such
that trans(M) = {trans(α)}, where xi ∈ T, α =
〈η0, x0, .., ηn〉 ∈ configs(M,η0), and trans(η0) =
{Ω}.

2) We define the set of traces as trances(M). A
trace of machine M is a non-empty sequence of
external event occurrences 〈o1, .., on〉, such that
trace(M) = {〈o1, .., on〉}, where for all enabled tran-
sitions trans(M) , λ(oi) ∈ t.m ⊆ E or λ(oi) ∈
t.a ∩O 6= ∅ holds.

Definition 8. Let SReach(M) = {s ∈ S|∃α ∈
traces(M).s0

α→ s} be the set of states reachable from
the initial state of M , and let TReach(M) = {t ∈
T |∃s ∈ SReach(M),∃s′ ∈ S.s

t→ s′} be the set of
reachable transitions. So a machine M is fully reachable
iff SReach(M) = S ∧ TReach(M) = T .

3.3. Composition

In order for our notion of composition to be commuta-
tive and associative, we introduce the unordered Cartesian
product (definition 9). The commutative property is easy
to obtain based on the unordered Cartesian product, but
the associative property requires further constraints on
the individual WSAs. We define a general composite
automaton with an interleaving semantics (definition 10).
Such composite automaton is not guarantee to be a WSA
(definition 11). We then elicit a set of constraints on the

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

individual WSAs as the necessary, sufficient, or necessary
and sufficient conditions for a composite automaton to
be a WSA or to be a deterministic WSA. For strongly
composable WSAs (definition 12), we prove that the
buffer content of the composite automaton is a unique
pair, the configurations as well as configuration sequences
of individual WSAs can be projected from the composite
automaton, and we also prove that the composition operator
is associative. A detailed report with all the proofs is in
[17].

Definition 9. If (Xi)i∈I is an indexed family of sets, we de-
fine

∏
i∈I Xi to be the set of all functions ω : I →

⋃
i∈I Xi

satisfying ω(i) ∈ Xi for each i ∈ I . We refer to
∏

i∈I Xi

as the unordered Cartesian product of a set of Xi. Note
that

∏
is a commutative and associative binary operator.

Definition 10. If M1,M2 are WSA, then we define
their Composite Automaton M̂ = M1 ‖ M2 to be the
structure M̂ = (Î , Ŝ, ŝ0, Ŝf , T̂ , δ̂), where

1) Î = (Ê, L̂, Ô), we define com12 to be the common
messages of M1,M2 by com12 = (E1 ∩O2) ∪ (E2 ∩
O1). Now we can define Î by Ê = (E1∪E2)\com12,
L̂ = E1 ∪E2 ∪ com12, and Ô = (O1 ∪O2) \ com12.

2) Ŝ = S1

∏
S2.

3) ŝ0 = {s1
0}

∏
{s2

0}.

4) Ŝf = {S1
f}

∏
{S2

f}. A state of M1 ‖ M2, .., ‖ Mn

is final if, for all machines, the local state si of Mi is
final.

5) T̂ = T1 ∪ T2. Note we assume that ∀v ∈ Vi is a local
variable of machine Mi, where Vi = {v ∈ V |∃exp ∈
AXi ∪ BXi}. This means that there are no shared
variable between t ∈ Ti and t ∈ Tj where i 6= j.

6) δ̂ ⊆ Ŝ × T̂ × Ŝ. If t ∈ T1 then (s1
i , s

2
i)

t→ (s1
j , s

2
j) ⇔

s2
i = s2

j ∧s1
i

t→ s1
j , similarly if t ∈ T2 then (s1

i , s
2
i)

t→
(s1

j , s
2
j) ⇔ s1

i = s1
j ∧ s2

i
t→ s2

j . If follows from the
asynchronous interleaving semantics that a transition
of the composite automaton is either from M or M ′

but not from both machines.

Definition 11. M1,M2 are composable iff
Msg1∩Msg2 = com12∪(E1∩E2)∪(L1∩L2)∪(O1∩O2).

Definition 12. M1,M2 are strongly composable iff
a) Msg1 ∩Msg2 = com12, and b) T1 ∩ T2 = ∅.

3.4. Buffering Schemes

Since there is more than one reasonable buffering mech-
anism, the buffering scheme of WSA should be flexible and

configurable. Inspired by Alur [1], we identify the com-
monly used buffering schemes:

1) FIFO buffering scheme: A machine has one FIFO
buffer. The CFSM [3] and the guarded automata [8]
apply this scheme. No message overtaking is allowed.
A message can be consumed only when it is at the head
of the FIFO buffer.

2) Multi-set (definition 13) buffering schemes: a) Multi-
set buffer with FIFO sub-buffers: A machine has
one multi-set buffer that consists of FIFO sub-buffers,
where each FIFO sub-buffer corresponds to a message
type. A message can be consumed when it is at the
head of each FIFO sub-buffer. b) Multi-set buffer with-
out sub-buffers: A machine has one multi-set buffer.
A message can be consumed as long as it is in the
buffer. For those messages of the same type, the ma-
chine will randomly consume a message in the buffer.
c) Multi-set buffer with multi-set sub-buffers: A ma-
chine has one multi-set buffer that consists of multi-
set sub-buffers, where each multi-set sub-buffer cor-
responds to a message type. The machine consumes
messages in the same way as of b).

Definition 13. A finite multi-set is formally defined as
a pair (X, n), where X is some set and n : X → N is
a function from X to the set N of natural numbers. A
multi-set differs from a set in that each element has a
multiplicity. For instance, {a, b, b, c, b, a} is a multiset,
and the multiplicities are n(a) = 2, n(b) = 3, n(c) = 1,
respectively. The usual set operations such as union,
intersection, and sum can be generalized for multisets.

Note that without loss of generality, we assume the
communication channels are lossless, so that every mes-
sage is always received after it is sent. Message overtaking
may occur during communication, Figure 1 shows two
types of message overtaking in MSCs.

M1 M2

!ox
!oy

?ox

?oy

type 1

M1 M2

!ox1
!ox2

?ox1

?ox2

type 1

Figure 1. Message overtaking

For type 1, suppose messages x = (!x, ?x) and y =
(!y, ?y), there exist message instances ox = (!ox, ?ox)
and oy = (!oy, ?oy) where λ(ox) = x and λ(oy) = y,
respectively. Message overtaking happens when the or-
der of receive event occurrences ?ox, ?oy is different from
the order of send event occurrences !ox, !oy. For type 2,

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

suppose message x = (!x, ?x), there exist message in-
stances ox1 = (!ox1, ?ox1) and ox2 = (!ox2, ?ox2) where
λ(ox1) = λ(ox2) = x. Message overtaking happens when
the order of receive event occurrences ?ox1, ?ox2 is differ-
ent from the order of send event occurrences !ox1, !ox2.

We assume that WSA with both FIFO and multi-set
buffering schemes only allow type 1) but not type 2) of mes-
sage overtaking.

4. Compatibility and Anti-patterns

In this section, we define syntax and semantic compati-
bility. Since syntax compatibility is easy to check from ma-
chine interfaces, we focus on checking the semantic com-
patibility by checking the individual machines against anti-
patterns.

4.1. Compatibility

After selecting a set of candidate WSAs, we need to
check whether the WSAs can interact properly as ex-
pected. Syntactic compatibility involves checking machine
interfaces for the matching external events. Semantic
compatibility means checking the machine behaviours for
the absence of pathologies.

Definition 14. Two WSAs M1,M2 are syntactically
compatible if M1 sends a message x to M2, then there
exists x = (!x, ?x) such that !x ∈ O1 and ?x ∈ E2.

Definition 15. Two WSAs M1,M2 are semantically
compatible if a) they are strongly composable, and b)
trans(M1 ‖ M2) 6= ∅.

Now we discuss when the condition trans(M1 ‖
M2) 6= ∅ holds. This condition holds iff for any
η̂ = ((s1

0, s
2
0), B, (ε10, ε

2
0)) there is no transition t ∈ T̂

such that η̂ 7→t η̂′, where (ε10, ε
2
0) denotes the initial values

of variables. First, suppose the initial configuration is
η̂0 = ((s1

0, s
2
0), B, (ε10, ε

2
0)), if B ∈ β(Ê) then there exists

α such that η̂0 7→α η̂B = ((s1
0, s

2
0), B + α, (ε10, ε

2
0)), where

α consists solely of external input events, i.e. α ∈ Ê.
Second, from definition 10, it shows (s1

i , s
2
i)

t→ (s1
j , s

2
j) iff

a) if t ∈ T1 then s2
i = s2

j ∧ s1
i

t→ s1
j , or b) if t ∈ T2 then

s1
i = s1

j ∧ s2
i

t→ s2
j . η̂B 7→t∈T1⇔ η1

B 7→t∈T1 or η2
B 7→t∈T2 .

Here ηi
B = (si

0, proji(B), εi
0), and proj is the projection

operator. Without loss of generality suppose η̂ 7→t∈T2 η̂′,
we have s1

0
t∈T1→ s1

1, t.m ∈ B, and applyG(t.g, ε1) = true.
Conversely, we have ¬(η̂B 7→t∈T1) iff for all B either
¬(s1

0
t∈T1→), t.m /∈ Ê, or applyG(t.g, ε1) 6= true.

As a result, condition trans(M1 ‖ M2) 6= ∅ holds iff for
∀B ∈ β(Ê), there does not exist t ∈ T̂ such that η̂B 7→t,

which indicates that no transition is possible after receiving
as many as external inputs.

4.2. Anti-patterns

According to definition 15, the condition trans(M1 ‖
M2) 6= ∅ can be checked only after constructing the com-
posite WSA. This indicates that a thorough semantic com-
patibility checking has to be done by exploring the whole
state space of the composite automaton. However we can
speed up the model checking, if some obviously incompat-
ible behaviours can be identified by only checking individ-
ual WSAs. We propose anti-patterns for such obviously in-
compatible behaviours. As a complementary approach to
post-checking, we provide warnings so that the problematic
WSA can be either re-selected or modified in the earliest
stages. Furthermore, since a WSA’s local ordering (defini-
tion 18) only needs to be computed once, the local order-
ing can be re-used for pre-checking the compatibility with
other machines. After pre-checking, post-checking can be
applied to thoroughly check the composite automaton for
safety and liveness properties.

Referring to the event occurrences and message in-
stances discussed in section 3.2, the anti-patterns discuss
the temporal relations over event occurrences in traces of
individual machines. We follow the standard definitions of
strict partial order and mutually exclusive relation in set
theory (e.g. [15]).

Definition 16. In a machine M , suppose e, e′ ∈ MsgM ,
the strict partial order over event occurrences o1 < o2

where λ(o1) = e, λ(o2) = e′ indicates that o1 happens
before o2 in a configuration sequence of M .

Corollary 1. Suppose there is a message m from
machine M1 to M2, if we have a message instance
om = (!om, ?om) where λ(!om) =!m and λ(?om) =?m,
then the strict partial order over an event occurrence pair
!om <?om enforces that a message instance must be
received after it is sent.

Definition 17. In machine M , suppose e, e′ ∈ MsgM ,
the mutually exclusive relation on event occurrences
o1]o2 where λ(o1) = e, λ(o2) = e′ indicates that o1 is
branch-conflict with o2 in a configuration sequence of M .
Intuitively, two branch-conflict event occurrences cannot
happen in the same trace.

Definition 18. The local ordering on machine Mi is
a structure li = (Ci, <i,]i), where Ci is the event oc-
currence set of Ei ∪ Oi, <i and]i are the strict partial
order and the mutual exclusion relations on Ci, respectively.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Definition 19. For machines {M1, ..,Mn}, we
define message orderings to be the structure
<X=

⋃
λ(!om),λ(?om)∈X(!om <?om), where

om = (!om, ?om), X ⊆
⋃

1≤i,j≤n comij is the set
of messages sent between machines {M1, ..,Mn}, and <
is the strict partial order on event occurrence pairs.

Definition 20. The causal ordering for a set of machines
{M1, ..,Mn} is the structure ≺C= (

⋃
1≤i≤n li)∪ <X ,

which describes the transitive closure of the set of local
orderings and message orderings.

Definition 21. A machine M is said to be blocking
iff there exists a state s /∈ Sf and a trace α ∈ traces(M)
such that s0

α→ s and ¬(s t→) for ∀t ∈ T . Refer-
ring to definition 8, let Sd be the set of all blocking
states,Sd = {s ∈ SReach(M) \ Sf : ∀t ∈ T.¬(s t→)}, so
M is blocking iff Sd 6= ∅.

In state machine diagrams, an initial state is pointed
by an arrow started with a filled black circle, and a
final state is shaded. For the anti-patterns, we suppose
for two messages x = (!x, ?x) and y = (!y, ?y) sent
between machines M1 and M2, there exist message
instances ox = (!ox, ?ox) and oy = (!oy, ?oy) of x and
y, respectively, such that λ(!ox) =!x and λ(!oy) =!y.
Message Sequence Charts(MSCs) are used to show the
anti-pattern scenarios. In the examples, we introduce index
k to identify a message instance of a message, denoted as
oe[k] = (!oe[k], ?oe[k]). The index k can be omitted when
there is only one message instance.

Anti-Pattern 1. Suppose !x ∈ O1, ?x ∈ E2 and
!y ∈ O2, ?y ∈ E1, M1 ‖ M2 has unspecified reception if
?oy <1!ox and ?ox <2!oy (1).

M1 M2

!ox

?oy

?ox

!oy

!ox

?ox

?oy

!oy

!oy

?oy

?ox

!ox

Figure 2. Unspecified reception

Figure 2 shows the corresponding MSC on the left and
the causal ordering on the right. Machine M1 sends mes-
sage instance ox to machine M2, and M2 sends message
instance oy to M1. M1 cannot send ox until it receives oy,
while M2 cannot send oy until it receives ox (1). Based on
message ordering and (1), the causal ordering ≺c consists
of !ox <?ox <!oy <?oy and !oy <?oy <!ox <?ox. This
conflict indicates that M1,M2 wait for message instances

from each other but never get them. Hence, M1 ‖ M2 has
an unspecified reception, where the blocking state sets of
both machines are not empty.

C1 C4C2
[g2]

?e2[g1]

/!e1

MC

B1 B3 B4

B2
?e1[g1]

MB

?e1[g2]

/!e2
/!e2

?e1

?e1
?e3

Figure 3. An example of anti-pattern1

Figure 3 illustrates an example. traces(MB)
is composed of 〈?oe1[1], ?oe1[2], !oe2〉 and
〈?oe1[1], !oe2, ?oe1[2]〉. traces(MC) is composed of
〈!oe1[1], ?oe2, !oe1[2]〉, 〈!oe1[1], ?oe2, ?oe3〉, 〈!oe1[1]〉,
and 〈?oe3〉. The partial order ?oe1[2] <B !oe2 and
?oe2 <C !oe1[2] can be obtained from one of the traces of
MB and the trace of MC , so according to anti-patten1,
MB ‖ MC will deadlock when ?oe1[2] happens before
!oe2 in MB and ?oe2 happens before ?oe1[2] in MC . The
blocking states are SB

d = {B2} and SC
d = {C2}.

Anti-Pattern 2. Suppose !x ∈ O1, ?x ∈ E2 and
!y ∈ O1, ?y ∈ E2, M1 ‖ M2 has non-local branching
choice if !ox]1!oy (2).

M1 M2

?oy

!ox ?ox

!oy

!ox

?ox

!oy

?oy

case 1 case 2

!ox

?ox

!oy

?oy

#

#

Figure 4. Non-local branching 1

Figure 4 shows the MSC and casual ordering. M1 sends
message instances ox, oy to M2. In M1, a send event oc-
currence of ox is in branch-conflict with a send occurrence
of oy (2). Two cases may exist in M2:

1) If ?ox <2?oy, M2 waits for both message instances
ox and oy from M1, but M1 cannot send these mes-
sage instances in the same run due to (2). We
have ≺c:!ox]!oy∧!ox <?ox∧!oy <?oy∧?ox <?oy.
By !ox]1!oy and message ordering, we have ox ⇒
¬(!oy) ⇒ ¬(?oy) and oy ⇒ ¬(!ox) ⇒ ¬(?ox), so
?ox <2?oy does not hold.

2) If ?ox]2?oy, we have casual ordering ≺c:
!ox]!oy∧!ox <?ox∧!oy <?oy∧?ox]?oy. If !ox
(resp. !oy) happens in M1 and ?oy (resp. ?ox) hap-
pens in M2, then M2 will wait for message instance
oy (resp. ox) forever due to (2). The blocking state set
of M2 is not empty.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

A1

A3

A2

A5

A4

MA

B3

B2

MB

B4

B7

?m2

?m3

B5

B1

B6

?m4?m1

[g1]/!m1[g2]/!m2[g1]/!m3
[g2]/!m4

[g3]/count:=1

?m3

/!m5

Figure 5. An example of anti-patterns2,3

Figure 5 shows an example, we have !om2]A!om3. In
case 1), we have ?om2 <B?om3, so MA ‖ MB has non-
local branching choice with SB

d = {B4} or SB
d = {B5}. In

case 2), we have ?om2]B?om3, so MA ‖ MB has non-local
choice with SB

d = {B2} or SB
d = {B4}.

Anti-Pattern 3. Suppose !x ∈ O1, ?x ∈ E2 and !y ∈
O2, ?y ∈ E1, M1 ‖ M2 has non-local branching choice
if !ox]1?oy and ?ox]2!oy (3).

M1 M2

!oy

!ox ?ox

?oy ?ox

?oy

!oy#

#!ox

Figure 6. Non-local branching 2

Figure 6 shows the MSC and casual ordering. M1 sends
message instance ox to M2, and M2 sends message instance
oy to M1. The causal ordering is ≺c:!ox <?ox, !oy <?oy,
!ox]?oy, and ?ox]!oy. If ?oy happens in M1 and ?ox hap-
pens in M2, machine M1 (resp. M2) will wait for message
instance oy (resp. ox) forever due to (3). The blocking state
sets of both machines are not empty.

In Figure 5, !om3]A?om4 and ?om3]B !om4 hold. When
?om4 happens in MA and ?om3 happens in MB , MA ‖ MB

has non-local choice and each machine has blocking states
SA

d = {A4} and SB
d = {B2}. Similarly, !om2]A?om1 and

?om2]A!om1 will cause non-local choice. In this example,
om2]Aom3 will also cause non-local choice with the type
of anti-pattern2.

The above anti-patterns can be encoded into temporal
logics, so that model checking tools (e.g. [9, 5]) can be
used to automate the pre-checking.

5. Conclusion

We present Web Service Automata as a formal semantics
for web services, and identify anti-patterns for web service
interactions. The web service automaton is more general
than the existing automata-based semantics because we in-
clude multiple-event transitions, data, and internal events.
We use message-passing as the uniform mechanism for ma-

chine communications. The anti-pattern pre-checking has
the advantage that it needs less computation effort to iden-
tify incompatible behaviours, and the corresponding prop-
erties can be reused. A tool is developed to implement the
mapping from BPEL to WSAs, and from WSAs to SMV
language [5]. Work is in hand to apply model checking
tools to realize our anti-pattern pre-checking.

References

[1] R. Alur, G. J. Holzmann, and D. Peled. An analyser for
mesage sequence charts. In Proc. of TACAs, pages 35–48.
Springer-Verlag, 1996.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web ser-
vices version 1.1. May 2003.

[3] D. Brand and P. Zafiropulo. On communicating finite-state
machines. Journal of the ACM, 30(2):323–342, 1983.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (wsdl) 1.1.
March 2001.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: A new symbolic model verifier. In Pro. of CAV,
pages 495–499. Springer-Verlag, 1999.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compati-
bility verification for web service choreography. In Proc. of
ICWS, page 738. IEEE Computer Society, 2004.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-
based analysis of obligations in web service choreography.
In Proc. of AICT-ICIW, page 149. IEEE Computer Society,
2006.

[8] X. Fu, T. Bultan, and J. Su. Synchronizability of conversa-
tions among web services. IEEE Transactions on Software
Engineering, 31(12):1042–1055, 2005.

[9] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[10] R. Hull and J. Su. Tools for design of composite web ser-
vices. In Proc. of SIGMOD, pages 958–961. ACM Press,
2004.

[11] N. Kavantzas, D. Burdett, and G. Ritzinger. Web services
choreography description language version 1.0. April 2004.

[12] M. Koshkina and F. van Breugel. Modelling and verify-
ing web service orchestration by means of the concurrency
workbench. SIGSOFT Softw. Eng. Notes, 29(5):1–10, 2004.

[13] N. Milanovic and M. Malek. Current solutions for web ser-
vice composition. IEEE Internet Computing, 08(6):51–59,
2004.

[14] N. Milanovic and M. Malek. Architectural support for auto-
matic service composition. In Proc. of SCC, pages 133–140.
IEEE Computer Society, 2005.

[15] Wikipedia. http://en.wikipedia.org/wiki.
[16] A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold.

Matchmaking for business processes based on choreogra-
phies. In Proc. of EEE, pages 359–368. IEEE Computer
Society, 2004.

[17] Y. Zheng and P. Krause. Asynchronous semantics for inter-
acting web services. Technical report, University of Surrey,
2006.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

