
Representing Extended Finite State Machines for SDL by
A Novel Control Model of Discrete Event Systems

Peng Wang and Kai-Yuan Cai
Department of Automatic Control

Beijing University of Aeronautics and Astronautics
Beijing 100083, China

wp2204@asee.buaa.edu.cn kycai@buaa.edu.cn

Abstract

This paper discusses EFSM for SDL and

transforms EFSM into a novel control model of
discrete event systems. We firstly propose a control
model of discrete event systems, where the event set is
made up of several conflicting pairs and control is
implemented to select one event of the pair. Then we
transform EFSM for SDL to the control model to
clarify the control mechanism functioning in SDL flow
graphs. This work views the EFSM for SDL in the
perspective of supervisory control theory, and this
contributes to the field of software cybernetics, which
explores the theoretically justified interplay of software
and the control.

1. Introduction

Extended Finite State Machines (EFSMs) are
widely used in computer science and software
engineering [1, 2, 3], especially in the field of program
analysis and testing. This model typically simulates
flow graphs of software programs, and can be
conditionally specified to be the computing model in
Specification and Description Language (SDL) [3, 4].
As well known in computer science and engineering,
SDL is a language to specify the communication of
several processes, where each process is modeled by an
EFSM, and the whole communicating system is
modeled and computed by CEFSMs, namely
Communicating Extended Finite State Machines [5, 6].
This provides one of the backgrounds of our research
work.

Another background of this paper refers to the
supervisory control theory of discrete event systems,
firstly proposed by P. J. Ramadge and W. M. Wonham
in 1980s [7, 8]. This theory represents a discrete event

system (DES) by an automaton, and control is
implemented by another automaton called supervisor.
This control structure has been widely accepted and
followed up by many other advanced models in this
field, such as the partially observable DES, the
decentralized control approach and so forth. Nowadays
it has formed a theoretical framework, named by RW
Framework [9]. Considering the inherent connection of
automata and computer science, the supervisory
control theory has been introduced into the computer
science these years in order to design and analyze the
computer program more formally and safely. Some
approaches have be explored, and some topics have
been discussed with respect to the programming in
robotics [10], the software design for the power
transformer station [11] as well as developing software
by the polynomial dynamic system approach [12].

Fig. 1. Represent EFSM for SDL by control model of DES.

In this paper we propose a new control model of
discrete event systems on the basis of RW Framework
in order to analyze EFSM for the computing model in
SDL. This new model is different from that in RW
Framework because the new model does not partition
the event set by the controllable and uncontrollable
subsets. Rather, the event set in the new model is
composed of several conflicting pairs. Then the
supervisor, which is defined in a similar manner as that
in RW Framework, implements control by selecting
one event of the conflicting pair. By the new control
model, we represent the EFSM for SDL from the

perspective of supervisory control theory. The main
idea of our research work is illustrated in Fig. 1.

To bridge the gap between EFSM and supervisory
control theory, a topic has been introduced as
“embedded supervisory control of discrete event
systems” in [13]. That is, given a controlled object in
terms of a finite automaton and a supervisor in the
sense of the RW framework, an equivalent EFMS of a
special form can be obtained. In other words, a discrete
event system coupled with a supervisor can be
transformed to an EFMS in [13], and this also
contributes to bridging the same gap. However, we
study the topic in the opposite course, that is, we
analyze the given EFSM by decomposing it to a novel
control model of discrete event systems, and this
control model is different from the classic one in RW
Framework. Besides this, the EFSM discussed in this
paper is more generalized in some aspects than that
discussed in [13], and is more applicable to practical
problems because it is specified as the computing
model of SDL.

One point to be emphasized is, the work of this
paper is fundamentally inspired by the thoughts of
software cybernetics [14, 15], a new field which
studies the theoretically justified interplay between
software and the control. And the main result of this
paper also contributes to this fields concerning that
EFSM, a computing model in computer science, is
analyzed from the perspective of supervisory control
theory in this paper.

The rest of this paper is organized as follows.
Section 2 derives the new control model of discrete
event systems. Section 3 introduces EFSM and
specifies the general EFSM model to be a special one
for SDL. In Section 4 we transform the EFSM for SDL
to the new control models via two algorithms. Section
5 concludes this paper and prospects the following
research topics.

2. Control Model of Discrete Event

Systems

This section proposes a new control model of
discrete event systems. The new model continues to
use the same supervisor/controller structure as that in
RW Framework. However, the two models have
different partitions on the event sets. That is, the classic
model in RW Framework partitions the event set as the
controllable and uncontrollable subsets while the new
model composes the event set by several conflicting
pairs. Based on these pairs supervisory control is
implemented by supervisor.

2.1 Discrete Event Systems

A discrete event system is modeled by a Mealy
finite deterministic automaton

),,,,,(0qQG λδΖΣ=
where Q is the state set, Σ is the input event set, Ζ is
the output event set, QQ →Σ×:δ is the transition
function, Ζ→Σ×Q:λ is the output function, Qq ∈0
is the initial state. In general, δ and λ are partial
functions on the domain, and),(σλ q is defined if and
only if),(σδ q is defined. Here the transition function

can be extended to QQ →Σ× *:δ as below.
(1) qq =),(εδ
(2))),,((),(σδδσδ sqsq =

And similarly the output function can be extended to
**: Ζ→Σ×Qλ as below.

(1) εελ =),(q
(2))),,((),(),(σδλλσλ sqsqsq = .

It is well known that languages can be used to
identify the behaviors of discrete event systems. And
as for the Mealy Automaton, it has both input
sequences and output sequences. Thus its behavior
should naturally be represented by the two sequences
combined together. Hence, Given a Mealy Automaton,
we define the input language by

}definedis),(|{)(0
* sqsGLinput δΣ∈= ,

and accordingly define the output language by
}),(..|{)(0

* tsqtsstGLoutput =Σ∈∃Ζ∈= ∗ λ .
However, it is noted that there exists the situation

that more than one input sequence are respondent to a
same output sequence. Therefore, it is also necessary to
reflect the inherent connection of the input and output
sequences in the defined language. So we further give
the following definition.

}),(and defined is),(|)({)(00
* tsqsq

t
sGL =

Ζ
Σ∈= λδ

And for)()/(GLts ∈ , it is easily checked that s and
t belong to input and output languages respectively,
and s is definitely connected to t by tsq =),(0λ .
And therefore this language can completely identify
the behavior of the Mealy Automaton. And we also
note that the regular expression can be applied here to
represent the language especially when the Mealy
Automaton is finite.

In this paper the input event set is especially
composed of several conflicting pairs. This can be
represented by II ∪=Σ . Consider },,{ cbaI = for

example, then we have },,{ cbaI = , and this yields the
event set },,,,,{ cbacba=Σ , where a and a , b and b ,
c and c are the given conflicting event pairs. Here we
note that this event set can also be represented by

},{ falsetrueI ×=Σ , or be interpreted by a relation
defined on the event set.

2.2 Supervisor

Let II ∪=Σ , define the control pattern γ by
Σ⊆γ and))((γσγσσ ∉⇒∈Σ∈∀

Then all control patterns compose the set
)})((|2{ γσγσσγ ∉⇒∈Σ∈∀∈=Γ Σ .

Event σ is said to be enabled by γ if γσ ∈ ; or
disabled by γ if γσ ∉ . And it is easily checked that
control pattern γ satisfies))((γσγσσ ∉⇒∈Σ∈∀ .
Besides, it is also noted that this definition permits the
situation that γσγσ ∉∧∉ .

The supervisor is a pair),(ψS=Φ , where
),,,(0xXS ξΣ= is a deterministic automaton and

Γ→X:ψ is a state feedback map. Couple Φ to G
and this yields the supervised discrete event system by

),,ˆ,ˆ,,,()/(00 ><ΖΣ×=Φ qxQXAG λδ
where the transition function QXQX ×→Σ××:δ̂ is
defined by







 ∈><
=

otherwiseundefined
definedare),(),,(

and)(if),(),,(
),,(ˆ σδσξ

ψσσδσξ
σδ qx

xqx
qx

and the output function Ζ→Σ××QX:λ̂ is defined by







=
otherwiseundefined

definedi),,(ˆif),(),,(ˆ sqxqqx δδσλσλ

Let)/(GL Φ denote the language generated by
G/Φ . And one point to be emphasized is that, if

),(σξ x is defined implies)(xψσ ∈ , then we have

),,(ˆ σδ qx is defined ⇔
),(σξ x is defined ∧),(σδ q is defined

Therefore the supervised system is equivalent to the
synchronized product [9] of S and G , namely

GSG ×=Φ / .
Thereby given a complete supervisor [9] in the

form of),(ψS=Φ , we can always reduce it via the
automaton S . Specifically speaking, we firstly reduce
S by eliminating),(σξ x for)(xψσ ∉ , then we
further eliminate the inaccessible states and then obtain

ifySmod . Thereby the supervisory control can be

equivalently achieved by ifySG mod× . Here we note

that automaton ifySmod corresponds to the supervisor
mentioned in [13].

3. Extended Finite State Machines for

Computing Model of SDL

In this section we firstly introduce the general
model of EFSM. Then the general model of EFSM is
specilized to be the computing model in SDL. An
example is given along with the formal explanation.

3.1 General Model of EFSM.

According to [1] we gives the definition of EFSM
as follows. An extended finite state machine is
structured by a five-tuple

),,,,(TVOIYEFSM =
where Y , I , O represent the state set, the input event
set and the output event set, respectively. V is the
variable set, composed of several variables, namely

},{ 21 nvvvV = . And each variable iv has its

domain, denoted by)(ivdom . Let V denote the vector
composed by all the variables in V , namely

>=< nvvvV 21, . Then accordingly we have

)()()()(21 nvdomvdomvdomVdom ××= . T is the
transition set. For a transition Tt ∈ , t is denoted by

),,,,,(__ ttttdesttsrct APoiyyt =

where Yy srct ∈_ and Yy destt ∈_ represent the source
state and destination state of the transition,
respectively. Iit ∈ and Oot ∈ represent the input

event and the output event, respectively.)(VPt is the
predicate of the transition, which is defined on the
variable set V .)(VAt is the update function, which
updates the values of the variables.

By the definition as above, static structure of
EFSM is illustrated. And to make the system dynamic,
there are two other points to be mentioned:

(1) The initial condition for EFSM. The initial

condition includes the initial state Yy ∈0 and the
initial values of the variables, namely

>=< 020100 , nvvvV .
(2) The dynamic rule for EFSM. This rule regulates

the dynamic behavior of the system. For the
transition),,,,,(__ ttttdesttsrct APoiyyt = , the rule

is explained as follows: when event ti is
imported to state srcty _ , if the current value of

V makes)(VPt true, then the transition is
enabled, the current state turns to destty _ , export

the event to and the value of V is updated by

)(VAt ; otherwise the transition is disabled, the

current state and the value of V remain
unchanged.

Here we note that an EFSM can be non-

deterministic if the current value of V enables more
than one transition with the one definite input
imported. However, this paper only discusses the
deterministic EFSM where only one transition is
enabled with the one input event at anytime of the
system evolvement.

Besides, it is also reasonable to use languages to
identify the behavior of the EFSM. And by the similar
manners as introduced in Mealy Automata, we can also
prefigure the input and output languages as well as the
combined language to depict the evolvement behavior
of the EFSM model. Here we do not give the formal
definition of languages for EFSMs, but corresponding
concepts about the languages can be well sensed in the
following section.

Fig. 2 EFSM for example.

Based on the aforementioned explanation, an

example of EFSM is presented in Fig. 2, where the
state set is },{ IIIY = , the input event set is }{aI =
and the output event set is },{ nmO = . The variable set
is given by }{vV = , and }92,1,0{)(=vdom . The
predicates on variable v are given as Fig. 2 shows,
namely 7>v , 7≤v , 3>v and 3≤v . The update
functions on variable v consist of 1: += vv and

1: −= vv . The initial state of EFSM is I , and the
initial value of v is 00 =v . Then the EFSM can
evolve by the dynamic rule as mentioned above, and
this EFSM is definitely deterministic.

3.2 EFSM model for SDL.

In this paper, we focus on a special model of
EFSM, which functions as the computing model in
Specification and Description Language. And we note
that SDL specifies the predicate function as Fig. 3
shows.

false true)(VPt

Fig. 3 Predicates in SDL flow graphs.

For an input event, the predicate decides where

the system goes by its Boolean values. That is, if the
current values of variables make the predicate true,
then the system runs to one state; otherwise the system
runs to another state.

)(VPt)(VPt¬

Fig. 4. Predicates in EFSM for SDL.

Therefore the predicate in SDL can be interpreted
as a special case of the predicate in general EFSM, as
shown in Fig. 4. That is, for the computing model of
SDL, the EFSM is characterized by several transition
pairs, and each pair consists of two conflicting
transitions, of which one is marked by predicate)(VPt
and the other one is marked by the contrary predicate

)(VPt¬ . Then the transition pair is denoted by
),,,,,(__ ttttdesttsrct APoiyyt = and

),,,,,(__ ttttdesttsrct APoiyyt ¬= .

Therefore the EFSM for the computing model of
SDL is formularized by

),,,,,,(00 VyTVOIYEFSM SDL =
where Y , I , O , V have the same meanings as the
counterparts in general EFSM. To incorporate the
initial conditions and the dynamic rules in SDLEFSM ,

let 0y and >=< 020100 , nvvvV denote the initial
state and initial values of variables, and the transition
set of the EFSM for SDL is defined by

)(},{)(: VAOYfalsetrueVPIYT ××→××× , where

},{)(falsetrueVP × denotes the conflicting predicates
in transition pairs.

Fig. 5. SDL flow graph.

Then we transform the EFSM given in Fig. 2 to
the SDL flow graph in Fig. 5. And the programming
code can be further derived from of the SDL flow
graph as follows.

enum State {I, II}; static State s;
enum Input {a}; enum Output {m,n};
static Input i; static Output o; static int v;
void Initialization()
{ s=I; v=0; }
void Transition (Input i)
{ switch(s)
{ case I:

switch(i)
 { case a: if(v>7)

{s=II; o=n; v＝v+1;}
else

{s=I; o=m; v=v+1;}
break;

} break;
 case II:
 switch(i)
 { case a: if(v<=3)

{s=I; o=m; v＝v-1;}
else

{s=II; o=n; v=v-1;}
break;

} break;
}

}

Here we note that the EFSM for the computing
model of SDL must be deterministic because the SDL
flow graphs as well as the programming code cannot
run ambiguously, but be definitely explained to be
deterministic.

4. Representing EFSM for SDL by the

Control Model of DES

Based on the work of previous sections this
section discusses the connection between EFSM and
control models of DES. We transform EFSM for SDL
to the control model of discrete event systems.
Especially, the update function and the predicate
together act as a supervisor to control where program
flow goes. Here the update function acts as the
automaton of the supervisor, and the predicate in
EFSM plays the role of state feedback map. The basic
idea of this section is shown in Fig. 6.

)(},{)(: VAOQfalsetrueVPIQT ××→×××

Γ→X:ψ XX →Σ×:ξ

>=<Φ ψ,S
Fig. 6. Extract the supervisor from EFSM for SDL.

This section represents the EFSM for SDL by the

control model proposed in Section 1. By this approach
we highlight the control functioning in the general
program flows, and study the inherent control
mechanism in program flow graphs. This work
contributes to the field of software cybernetics, which
explores the theoretically justified interplay of the
software and the control.

In the rest of this section we firstly specify the
problem formally, and the solution to the problem is
given via two algorithms.

Problem: Give an),,,,,,(00 VyTVOIYEFSM SDL = ,
transform this computing model to the control model
of DES proposed in Section 1, namely a DES coupled
with a supervisor.

4.1 Controlled DES

Firstly we extract a controlled DES from EFSM
of the computing model in SDL. Consider that the
output event set and the output function are defined in

EFSM, the controlled DES is extracted as a Mealy
Automaton.

Algorithm 1: Give),,,,,,(00 VyTVOIYEFSM SDL = .
Extract controlled DES G .
Step 1. Structure G by),,,,,(0yOYG λδΣ= , where

},{: falsetrueI ×=Σ ;
Step 2. Let Ii ∈ and },{ falsetruebin∈ . Construct
transition function YY →Σ×:δ by










>=<=><
otherwise undefined

)(,,

),(,, if

),,(VAoy

bin)VPiT(yy

biniy tdest

tsrcdest

srcδ

Construct the output function OY →Σ×:λ by










>=<=><
otherwise undefined

)(,,

),(,, if

),,(VAoy

bin)VPiT(yo

biniy tdest

tsrc

srcλ

Two points should be emphasized here. Firstly we

construct the input event set by },{ falsetrueI ×=Σ ,
and this yields the conflicting event pairs as introduced
in Section 1. Secondly, if the transition function

YY →Σ×:δ and the output function OY →Σ×:λ
combine together and additionally consider

},{ falsetrueI ×=Σ , then it yields
OYfalsetrueIY ×→×× },{

And this corresponds to the transition of SDLEFSM by

eliminating)(VP and)(VA from

)(},{)(: VAOYfalsetrueVPIYT ××→××× .

Recalling the example given in Section 3, we
extract the Mealy Automaton to be the controlled DES
as shown in Fig. 7. And the conflicting event pair is
obtained by >< truea, and >< falsea, .

Fig. 7. Controlled DES extracted from EFSM.

4.2 Supervisor

Secondly we extract the supervisor from EFSM.
To obtain the supervisor, two steps should be taken: (1)

construct automaton S by the update function)(VA ;
(2) construct state feedback map ψ by the predicate

)(VP .

Algorithm 2: Give),,,,,,(00 VyTVOIYEFSM SDL = .
Extract supervisor),(ψS=Φ .
Step 1. Structure automaton),,,(0xXS ξΣ= , where

YVdomX ×=)(: ; },{: falsetrueI ×=Σ ;

>=< 000 ,: yVx .
Step 2. Let },{ falsetruebin∈ . Construct transition

XX →Σ×:ξ as follows:

consider),,,(><>< biniyV srcξ , if

>=<)(,,)),(,,(VAoybinVPiyT tdesttsrc is

defined and)()(VdomVAt ∈ , then

>=<><>< desttsrc yVAbiniyV),(),,,(ξ ;

otherwise),,,(><>< biniyV srcξ is undefined.
Step 3. Let },{bin falsetrue∈ . Let)(projV x and

)(projy x denote the segments V and y
subject to state x . Namely, given

>>=<=< yvvvyVx n ,,, 21 , we have

>=<= nvvvVx 21V ,)(proj and
yx =)(projy .

Construct state feedback map Γ→X:ψ as
follows:)(xi,bin ψ>∈< if and only if

)),(,),(proj(binVPixT ty is defined and

binVP xVt
V

==)(proj|)(.

Considering the classical logic system,

)(projV V x= can only make)(VPt to be true or false.
And note that only deterministic EFSMs are discussed,
it is easily checked that the state feedback map follows
the definition given in Section 1. That is,

)(xi,true ψ>∈< implies)(xi,false ψ>∉< .
Recalling the example presented in Section 3, we

construct the state set by },{)(IIIvdomX ×= . The
initial state for automaton S is obtained by Ix 00 = .
And the event set for automaton S is

},,,{ ><><=Σ falseatruea .
Apply Step 2 in Algorithm 2, and we construct the

transition function of automaton S . And automaton
S is illustrated in Fig. 8.

Fig. 8. Automaton of the supervisor.

Apply Step 3 in Algorithm 2, and we construct the

state feedback map by the predicates in the EFSM.
And the supervisor is finally obtained as shown below.

Fig. 9. Supervisor extracted from EFSM.

According to Section 1 the supervisory control

implemented by),(ψS=Φ can be equivalently
implemented by an automaton ifySmod . Then the
supervised system can be achieved by the synchronized
product of the controlled DES and the automaton,
namely ifySG mod× . Here we illustrate ifySmod in Fig.
10.

Fig. 10. Supervisor modified.

After introducing the algorithms we give

explanation as follows. It is noted that the evolvement
of state-transition systems can be represented by the
event sequences, and both of the EFSM and the control
model of DES have the input sequences and output
sequences, where each input sequence corresponds to
an output sequence definitely. So the question is
whether the algorithms keep the sequences fixed
between the two models. The answer is affirmative.
Although the input event set of the control model

derived is },{ falsetrueI × , we can actually extract the
first sub-element from it, and this makes the two
models comparable with respect to input events. And
thereby it is checked that the two models have the
same set of the input sequences as well as the
corresponding the output sequences, that is, the two
models follow the same disciplines during evolvement.

Consider the forgoing example, and we illustrate
the input and output sequences of the control model by
the diagram as below.

Fig. 11. The input and output sequences of
the control model.

Here regular expressions can be derived to

represent the sequences as shown in Fig. 11. And we
extract the first sub-elements of the control model’s
events. Then >< truea, and >< falsea, are
simplified as a . And if we mark state I and 2=v ,
Then the input language is formulated by *142)a(a ,

and the output language is given by *762)mnm(m .
Consequently we can formulate the combined
sequences by the language as below.

*762))()(()(
m
a

n
a

m
a

m
a

Consider the EFSM presented in Section 3, we

illustrate its input and output sequences by the diagram
in Fig. 12.

Fig. 12. The input and output sequences of EFSM.

Then it is easily checked that the EFSM above has
the same input and output sequences as the derived
control model. Specifically speaking, from the diagram

in Fig. 12 we can exactly deduce the same input and
output languages as the derived control model.
Furthermore, if we also mark state I and 2=v , then
the same regular expression can be formulated to
denote the combined sequence as the same as that of
the control model.

5. Concluding Remarks

This paper refers to two research topics, the
control model of DES and the EFSM for SDL, and
bridges the gap between the two topics via the given
algorithms. We firstly propose a novel control model
of DES, which is characterized by selecting one event
of the conflicting event pair. Then we focus on EFSM,
and specify the general EFSM to be the computing
model for SDL. Then the connection between these
two models is studied and the algorithms are given to
transform the EFSM for SDL to the control model of
DES.

 The work of this paper highlights the control
mechanism functioning in flow graphs of SDL, and
contributes to the field of software cybernetics, which
explores the theoretically justified interplay between
software and the control. Based on the work of this
paper, some follow-up topics can be approached. And
one topic refers to Communicating Extended Finite
State Machines, which functions as the communicating
model in SDL. We can analyze CEFSM based on the
work of this paper and further propose a novel
approach to verify the communicating system modeled
by SDL from the perspective of supervisory control
theory.

References

[1] C. Bourhfir, E. Aboulhamid, F. Khendek, R. Dssouli,
“Test Cases Selection from SDL Specifications”, Computer
Networks, 2001, Vol. 35, pp.693-708.

[2] A. Petrenko, S. Boroday, R. Groz, “Confirming
Configurations in EFSM Testing”, IEEE Transaction on
Software Engineering, 2004, Vol. 30, No. 1, pp. 29-42.

[3] R.E. Miller, Y. Xue, “Bridging the Gap between Formal
Specification and Analysis of Communication Protocols”,
Proceedings of the 1996 IEEE Fifteenth Annual International
Phoenix Conference on Computers and Communications,
March 1996, pp. 225-231.

[4] “Introduction to SDL 88”. http://www.sdl-forum.org/
sdl88tutorial/index.html, 2002.

[5] C. Bourhfir, E. Aboulhamid, R. Dssouli, N. Ricob, “A
Test Case Generation Approach for Conformance Testing of

SDL Systems”, Computer Communications, 2001, Vol. 24,
pp. 319-333.

[6] J. J. Li, W. E. Wong, “Automation Test Generation from
Communicating Extended Finite State Machine (CEFSM)-
Based Model”, Proceedings of the fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, 2002, pp. 181-185.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory Control
of a Class of Discrete Event Processes”, SIAM Journal of
Control and Optimization, 1987, Vol. 25, No. 1, pp. 206-230.

[8] W. M. Wonham and P. J. Ramadge, “On the Supremal
Controllable Sublanguage of a Given Language”, SIAM
Journal of Control and Optimization, 1987, Vol. 25, No. 3,
pp. 637-659.

[9] W.M. Wonham, “Supervisory Control of Discrete-Event
Systems”, Dept. of Electrical & Computer Engineering,
University of Toronto, ECE 1636F/1637S 2004-05, Revised
2004.07.01.

[10] E. Rutten and H. Marchand, “Task-Level Programming
for Control Systems Using Discrete Control Synthesis”,
February 2002, Research Report INRIA, No. 4389.

[11] H. Marchand and M. Samaan, “Incremental Design of a
Power Transformer Station Controller Using a Controller
Synthesis Methodology”, IEEE Transactions on Software
Engineering, August 2000, Vol.26, No.8, pp. 729-741.

[12] X. Y. Wang, Y. C. Li and K. Y. Cai, “On the
Polynomial Dynamic System Approach to Software
Development”, Science in China (series F), 2004, Vol. 46,
No. 4, pp. 437-457.

[13] Y. Yang, R. Gohari, “Embedded Supervisory Control of
Discrete-Event Systems”, IEEE International Conference on
Automation Science and Engineering, 2005, pp. 410-415.

[14] K. Y. Cai, J. W. Cangussu, R. A. DeCarlo, A. P.
Mathur, “An Overview of Software Cybernetics”,
Proceedings of the 11th Annual International Workshop on
Software Technology and Engineering Practice, IEEE
Computer Society Press, 2004, pp. 77-86.

[15] K. Y. Cai, “Optimal Software Testing and Adaptive
Software Testing in the Context of Software Cybernetics”,
Information and Software Technology, 2002, Vol. 44, pp.
841-855.

