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Abstract—A web service may evolve autonomously, making 

peer web services in the same service composition uncertain as 
to whether the evolved behaviors may still be compatible to its 
originally collaborative agreement. Although peer services 
may wish to conduct regression testing to verify the original 
collaboration, the source code of the former service can be in-
accessible to them. Traditional code-based regression testing 
strategies are inapplicable. The rich interface specifications of 
a web service, however, provide peer services with a means to 
formulate black-box testing strategies. In this paper, we for-
mulate new test case prioritization strategies using tags em-
bedded in XML messages to reorder regression test cases, and 
reveal how the test cases use the interface specifications of 
services. We evaluate experimentally their effectiveness on 
revealing regression faults in modified WS-BPEL programs. 
The results show that the new techniques can have a high 
probability of outperforming random ordering. 

Keywords—test case prioritization; black-box regression test-
ing; WS-BPEL; service testing; encapsulation testing 

I.  INTRODUCTION 
The testing and analysis of web services has posed new 

foundational and practical challenges, such as the non- 
observability of when a web service may evolve [3][15], 
the extensive presence of non-executable artifacts within 
and among web services [16], safeguards against malicious 
messages from external parties [13], and ultra-late binding 
and cross-organizational issues [1]. Researchers have pro-
posed diverse techniques to address the test case generation 
problem [13], the test adequacy problem [16], the test 
oracle problem [5][23], and the test case prioritization prob-
lem [18]. 

Regression testing is the de facto activity to address the 
testing problems due to software evolution. However, many 
existing regression testing techniques (e.g., [8][10][18][22]) 
assume that the source code is available [16], and use the 
coverage information of executable artifacts (e.g., statement 
coverage of test cases) to conduct regression testing. When 

such coverage information cannot be assumed to be availa-
ble, it is vital to consider alternative sources of information 
to facilitate effective regression testing. 

Many web services (or services for short) use the Web 
Services Description Language (WSDL) [25] to specify 
their functional interfaces and message parameters. They 
also use XML documents to represent the messages [24]. 
To quantify the transfer of type-safe XML messages with 
external partners, the WSDL documents of a service further 
embed the types of such messages. Thus, WSDL docu-
ments are rich in interface information. We assume that 
such documents are observable to external services. Despite 
the richness of such documents, to our best knowledge, the 
use of WSDL documents to guide regression testing with-
out assuming code availability have not been proposed or 
evaluated in the literature. 

In general, different services developed by the same or 
multiple development teams may be modified autono-
mously by their maintainers, and the evolution of services 
may not be fully known by every other service. Let us con-
sider a scenario that a service A would like to pair up with a 
service B, and yet the latter service may evolve over time. A 
may want to execute some tests on the service provided by 
B to ensure that A’s composition has not been adversely 
affected (at least from A’s perspective). The program code 
of B is generally inaccessible to A. Therefore, even though 
A may have a test suite to conduct regression testing on B, 
it cannot apply existing code-based regression testing tech-
niques [8][11] in general, and test case prioritization 
techniques [22] in particular, to improve the fault detection 
rate and achieve other goals. 

A test case prioritization technique aims to reorder test 
cases to achieve certain goals (such as detecting program 
faults earlier [7]). Because of the internal logic and states of 
a service are encapsulated by the service boundary, the 
advantages of existing test case prioritization techniques 
(such as improved fault detection rate [6][22]) cannot be 
realized effectively in service-oriented testing. 

The WSDL documents of services are accessible among 
peer services. It is well known, however, that black-box 
testing is generally less effective than white-box testing. 
Can the richness of WSDL documents help to narrow this 
gap? Is it effective to use the black-box information in 
WSDL documents to guide regression testing to overcome 
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the difficulties in testing services with hidden implementa-
tion details such as source code? 

General test case prioritization and version-specific test 
case prioritization are two important kinds of technique in 
regression testing [22]. A technique of the former kind will 
sort a test suite for a program P with the intent of being 
useful over subsequent modified versions of P; whereas a 
technique of the latter kind will prioritize a test suite spe-
cific to a particular modified version of the program under 
test. In scenarios similar to the above, the source code of a 
service is generally inaccessible, limiting the applicability 
of version- specific techniques. General test case prioritiza-
tion does not suffer from this problem. This paper studies 
general test case prioritization. 

We observe that, in a regression test suite, existing test 
cases record the associated XML messages that have been 
accepted or returned by a (previous) version of the target 
service. Because the associated WSDL documents capture 
the target service’s functions and types of XML message, 
the tags defined in such documents and encoded in individ-
ual test cases can be filtered through all the WSDL docu-
ments. Following up on these observations, we propose two 
directions in test case prioritization (based on XML tags of 
WSDL documents) to generate ordered regression test 
suites. We implement two prioritization techniques as 
proofs of the concepts under the two proposed directions. 

Techniques for the construction of effective regression 
test suites are not within the scope of this paper. We appre-
ciate that invalid test cases can be costly because they still 
require the execution of the service under test despite the 
lack of fruitful results. We assume that all the test cases in a 
given regression test suite are valid. Invalid regression test 
cases can be removed, for instance, using the information in 
the fault handler messages returned by the service, or using 
the WSDL of the services to validate the test cases in 
advance. Once a test case has been identified to be invalid, 
it can be permanently removed from the regression test 
suite. Thus, during the next regression testing of the service 
(without knowing in advance whether the service has 
evolved), the test case does not need to be considered in test 
case prioritization. 

We further conduct an empirical study to verify the 
effectiveness of our techniques. The results show that they 
can be promising in their rates of fault detection. 

The main contribution of this paper is twofold: (i) We 
propose a new set of black-box techniques to prioritize test 
cases for regression testing of services with observable and 
rich content interface. It addresses the problem of autonom-
ous evolution of individual services in service compositions, 
so that peer services can gain confidence on the service 
under test with lower cost in regression testing. Our 
technique is particularly useful when the source code of the 
service under test is not available or is too costly to obtain. 
(ii) We report the first controlled experiment of its kind to 
evaluate the effectiveness of such techniques. Our empirical 
results indicate that the use of the information captured in 

WSDL documents (paired with regression test suites) can 
be promising in lowering the cost of the quality assurance 
of workflow services. 

The rest of the paper is organized as follows: Section II 
reviews related work. Section III introduces the prelimi-
naries of our approach through a running service scenario. 
Section IV discusses the challenges in regression testing of 
services, and presents new test case prioritization tech-
niques for regression testing of services. Section V presents 
an experiment design and its results to evaluate our pro-
posal. Section VI concludes the paper and discusses future 
work. 

II.  PRELIMINARIES 
This section reviews related work and introduces the 

terminology in test case prioritization. 

A. Related Work 

Regression testing is a testing procedure conducted after 
modifications of a program [11]. It has been widely used in 
industry [19]. Leung and White [11] have pointed out that 
simply re-running all existing tests is not an ideal approach. 
Test case prioritization aims to reorder test cases to maxim-
ize a testing goal [22], and is one of the most important 
lines in regression testing research. 

Many coverage-based prioritization techniques (e.g., 
[7][22]) have been proposed. A large number of these 
techniques prioritize test cases by means of code coverage 
achieved, such as the number of statements or branches 
covered by individual test cases [22]. Furthermore, al-
though there are header files and preprocessing macros in C 
programs, existing code-based prioritization techniques that 
use C programs as subjects do not explore such information. 
Specific examples of techniques used include fault- 
exposing potential of individual test cases [22], the series of 
regression history [10], and test costs and fault severities 
[7]. In the service environment, because of the limited 
knowledge of potential evolutions of a target service as 
well as the fault classifications of previously identified 
faults in fault-based techniques, it is not clear how history- 
based or cost-based techniques can be applied effectively. 
The effects of compositions and granularity [21] of a test 
suite have been studied experimentally for conventional 
testing. To our knowledge, however, these two aspects have 
not been examined in the context of service-oriented test-
ing. 

Martin et al. [13] outline a framework that generates 
and executes web service requests, and collects the corres-
ponding responses from web services. They propose to 
examine the robustness aspect of services by perturbing 
such request-response pairs. They have not studied test case 
prioritization. Tsai et al. [23] recommend using an adaptive 
group testing technique to address the challenges in testing 
service-oriented applications when a large number of web 
services are available. They rank test cases according to a 
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voting mechanism on input-output pairs. Neither the source 
code of the service nor the structure of WSDL is utilized. 

Mei et al. [16] use the mathematical definitions of 
XPath [27] as rewriting rules, and propose a data structure 
known as an XPath Rewriting Graph (XRG). They [17] 
further develop the notion of XRG patterns to capture how 
different XRGs are related even though they may refer to 
different XML schemas or tags. They have developed test 
case prioritization techniques [18] on top of their XRG 
structure. However, they have not studied whether WSDL 
can be used in a standalone manner for regression testing of 
services when the source code is unavailable or too costly 
to be acquired. 

B. Test Case Prioritization 

Test case prioritization [22] is an important kind of 
regression testing technique [12]. Through the use of infor-
mation from previous rounds of software evaluation, we 
can design techniques to rerun the test cases to achieve a 
certain goal (such as to increase the fault detection rate of a 

test suite). We adopt the test case permutation problem 
from [22] as follows: 

Given: A test suite T; the set of permutations PT of T; 
and a function f from PT to real numbers. (For instance, f 
may calculate the fault detection rate of a permutation of T.) 

Problem: To find T’ ∈ PT such that ∀T’’ ∈ PT, 
f(T’)  f (T’’). 

The Average Percentage of Faults Detected (APFD) [7] 
measures the weighted average of the percentage of faults 
detected over the life of a test suite. APFD has been widely 
used in regression testing research. As the authors of [7] 
point out, a higher APFD value implies a better fault detec-
tion rate. Let T be a test suite containing n test cases, and F 
be a set of m faults revealed by T. Let TFi be the index of 
the first test case in a permutation T’ of T that reveals fault i. 
The APFD value for test suite T’ is defined as follows: 

nnm
TFTFTFAPFD m
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Test Case Fault
f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB
tC • • • •

tD • • •

tE • •

Example on test suite and faults exposed

 

Figure 1. Example illustrating the APFD measure (from [18]). 

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault 
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply 
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

see example 
in Figure 1

WSDL of 
HotelBooking

Regression Test Suite 
for HotelBooking

Invoking 
HotelBooking Service

see example 
in Figure 2

see example 
in Figure 4

 

Figure 2. Service interaction scenario. 
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We also adopt an example from [18] to show how 
APFD measures the fault detection rates of different test 
suite permutations, as illustrated in Figure 1. The left-hand 
table shows the faults that test cases tA to tE can detect. T1 tB, 
tA, tD, tC, tE  and T2 tC, tD, tE, tA, tB  are two permutations of 
tA to tE. The APFD measures for T1 and T2 are given in 
Figures 1(a) and (b), respectively. 

III.  SCENARIO OF RUNNING SERVICE 
This section presents the scenario of a running service 

and introduces the preliminaries of our approach. 
Let us consider a HotelBooking service adapted from 

the TripHandling project [2]. Figure 3 depicts its control 
flow using an activity diagram in UML. A node represents 
an activity and a link represents a transition between two 
activities. We also annotate the nodes with information 
(such as an XPath) extracted from the program. We label 
the nodes as Ai for i = 1 to 8. The service aims to find a 
hotel room whose price is not more than a ceiling set by the 
user. 

 

 

Figure 3. Activity diagram for HotelBooking. 

The service needs to handle the information in the reply 
messages from different hotels. An XML schema hotel for 
such messages is shown in Figure 4. A hotel has two types 
of room: doubleroom (line 3) and singleroom (line 4). Both 
doubleroom and singleroom are defined by the type room 
(lines 8–10). This XML schema is kept in a WSDL docu-
ment. 

As we have highlighted in Section I, in such cross- 
service scenarios, the internal model of a service as shown 
in Figure 3 is unobservable by an external service that 
wants to conduct regression (or conformance) test on the 

former service (to check whether the former service still 
conforms to the already established interoperability require-
ments with the latter service). Figure 2 depicts this prob-
lem. 

1 <xsd:complexType name="hotel"> 
2    <xsd:element name="name" type="xsd:string"/> 
3    <xsd:element name="doubleroom" type="xsd:room"/> 
4    <xsd:element name="singleroom" type="xsd:room" /> 
5 </xsd:complexType> 
6 <xsd:complexType name="room"> 
7    <xsd:element name="roomno" type="xsd:int" /> 
8    <xsd:element name="price" type="xsd:int"/> 
9 </xsd:complexType> 

Figure 4. XML schema hotel in WSDL document. 

Suppose the TripHandling service (the rightmost part of 
Figure 2) needs to invoke both the HotelBooking and 
FlightBooking services to handle the user’s trip arrange-
ment request. TripHandling may wish to run a regression 
test suite to assure the quality of HotelBooking inside its 
service composition. A test on such a service is usually 
done by sending request messages followed by receiving 
and handling response messages. Both the request and re-
sponse messages are in XML format. These XML messages 
are visible to both TripHandling and HotelBooking, and the 
WSDL documents can be accessed publicly. However, the 
internal mechanism (see Figure 3) of HotelBooking service 
is hidden from TripHandling. 

IV.  TEST CASE PRIORITIZATION 
This section demonstrates how we adapt coverage-based 

test case prioritization strategy to formulate new prioritiza-
tion techniques using WSDL information. 

A. Motivating example 

Let us consider six test cases, in which the message has 
a price tag with the following values: 

Test case 1 (t1):  Price = 200   Test case 2 (t2):  Price = 150 

Test case 3 (t3):  Price = 100   Test case 4 (t4):  Price = 50 

Test case 5 (t5):  Price = 0     Test case 6 (t6):  Price = −100 

Let us discuss activity A4. Suppose Figure 5 shows the 
XML messages for HotelInformation received in an XPath 
query (HotelInformation, //price/) by executing test cases t1 
to t6 on the HotelBooking service. 

Our scene further assumes that HotelBookService at A7 
fails in handling the third test case (t3) because no available 
room satisfies this price (i.e., the value kept by the message 
content RoomPrice). Therefore, the branch A7, A5  in 
Figure 3 is covered by t3. The activity coverage and work-
flow transition coverage of these test cases are summarized 
in Table 1 and Table 2, respectively. We use a “•” to repre-
sent the item that has been covered by a test case. 

XQ: XPath Query
XQ(Variable, Exp): XPath Query with input variable and XPath expression.

Input: 
RoomPrice
Output: 
BookingResult

RoomPrice = 
XQ

(HotelInformation, 
//price/)

if Price XQ(HotelInformation, //price/)

Input: BookRequest

A4:
Validate

Price

A5: Fault Handling

A6: Assign RoomPrice

A7: Invoke HotelBookService

A8: Reply HotelBookResponse

Price= 
XQ(BookRequest, //price/)

Input:    Price
Output: HotelInformation

No Yes

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService
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We have the following observations from Tables 1 and 
2: (i) The respective coverage of the activities for t4 to t6 are 
identical; the same is true for the coverage of their 
transitions. (ii) The numbers of covered activities are the 
same for t1 to t3; the same is true for their transitions. 
(iii) Suppose t1 is first selected; using the additional 
coverage information [22], the remaining covered activities 
or transitions for t3 to t6 are the same, while that for t3 is 0. 
In such a tied case, existing test case prioritization tech-
niques such as [22] simply order them randomly to break 
the ties. 

<hotel>
<name>Times</name>
<doubleroom>

<roomno>R101</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno></roomno>
<price>100</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom></singleroom>

</hotel >

Test Case 4

<hotel>
</hotel >

Test Case 6

null

 

Figure 5. XML messages for HotelInformation used in 
XQ(HotelInformation, //price/). 

TABLE 1. ACTIVITY COVERAGE OF t 1 TO t 6. 
Activity t1 t2 t3 t4 t5 t6

A1 • • • • • • 

A2 • • • • • • 

A3 • • • • • • 

A4 • • • • • • 

A5   • • • • 

A6 • • •    

A7 • • •    

A8 • •     

Total 7 7 7 5 5 5

TABLE 2. TRANSITION COVERAGE OF t 1 TO t 6. 

Transition t1 t2 t3 t4 t5 t6
A1, A2  • • • • • • 

A2, A3  • • • • • • 

A3, A4  • • • • • • 

A4, A5     • • • 

A4, A6  • • •    

A6, A7  • • • • • • 

A7, A8  • •     

A7, A5    •    

Total 6 6 6 5 5 5 

We further show a few XML messages (Figure 5) for 
the hotel schema (Figure 4). For ease of presentation, we 

summarize the element coverage of the XML schema for t1 
to t6 in Table 3. 

TABLE 3. WSDL TAG COVERAGE FOR t 1 TO t 6. 

Element t1 t2 t3 t4 t5 t6
hotel • • • • •  

name • • • •   

doubleroom • • • •   

singleroom • • • •   

room (doubleroom) • • • •   

roomno (doubleroom) •      

price (doubleroom) •      

room (singleroom) • • • •   

roomno (singleroom) • • •    

price (singleroom) • • •    

Total 10 8 8 6 1 0 
 

We refer to an XML element z defined in any XML 
schema as a WSDL tag. If a regression test case includes an 
XML message that contains an XML element z, we say that 
z has been covered by the test case. In Table 3, the coverage 
of WSDL tags for t4, t5, and t6 are different; the numbers of 
WSDL tags in t2 and t3 are different from that in t1. If t1 is 
first selected, since there is a reset procedure for coverage 
information, the remaining covered WSDL tags for t3, t4, t5, 
and t6 are still different [22]. These observations motivate 
us to study the use of WSDL tag coverage in prioritizing 
test cases. 

As we have described in Section I, peer services in a 
service composition may not access the source code of a 
target service. To know whether the target service still exhi-
bits the desirable functions as previously demonstrated, 
peer services may run regression test suites on the target 
service. We explore the coverage of WSDL documents in 
our test case prioritization techniques with the intent to 
detect failures of the target services faster. 

B. Our Prioritization Techniques 

In this section, we first briefly review representative test 
case prioritization techniques for regression testing, and 
then introduce our adaptation. 

TABLE 4. PRIORITIZATION TECHNIQUES AND EXAMPLES. 

Category Name Index t1 t2 t3 t4 t5 t6

Benchmark
Random [22]  M1 6 3 4 5 1 2
Optimal [22]  M2 – – – – – –

Traditional 
White-Box

Total-Activity [22] M3 1 3 2 4 6 5
Additional-Activity [22]  M4 1 4 2 5 3 6
Total-Transition [22]  M5 2 3 1 4 5 6
Additional-Transition [22]  M6 1 6 3 2 4 5

Our 
Black-Box

Ascending-WSDL-Tag M7 5 6 4 3 2 1
Descending-WSDL-Tag M8 1 2 6 3 4 5

To study the effectiveness and tradeoffs of different 
techniques, we follow the style of [7][22] and compare 
other control techniques with ours. All the techniques and 
examples are listed in Table 4. Techniques M1–M6, 
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representing random, optimal, total-statement, additional- 
statement, total-branch, and additional-branch, respectively, 
are taken from [22]. 

Many WSDL documents define XML schemas used by 
services. Each XML schema contains a set of elements. 
Intuitively, the coverage information on these WSDL tags 
reveals the usage of the internal messages among activities. 

The coverage of all elements in a WSDL document may 
be easily satisfied (as illustrated, for instance, by t1 in Table 
3). If a technique schedules test cases in the order of total 
element coverage of the WSDL document, then t1 will be 
selected first. 

Based on the above analysis, we propose two 
techniques, namely M7 and M8.  

M7: Ascending WSDL tag coverage prioritization 
(Ascending-WSDL-Tag). This technique first partitions the 
test suite into groups where test cases in the same group 
cover the same number of WSDL tags, then sorts the 
groups in ascending order of the number of tags covered by 
a test case, and finally selects test cases iteratively from 
groups. (For each iteration, M7 selects one test case ran-
domly from each group.) 

M8: Descending WSDL tag coverage prioritization 
(Descending-WSDL-Tag). This technique is the same as 
Ascending-WSDL-Tag, except that it sorts the groups in the 
descending order (instead of ascending order) of the num-
ber of tags covered by a test case. 

M7 and M8 target to examine the effect of the number 
of WSDL tags in a test case during test case prioritization 
for services. Both M7 and M8 include a grouping phase 

that divides the test suite into groups. Two test cases in the 
same group contain the same number of WSDL tags (while 
the actual WSDL tags may be different). We then itera-
tively select test cases from each group. Take t1 to t6 as an 
example. Possible WSDL coverage prioritization orders for 
M7 and M8 are t6, t5, t4, t3, t1, t2  and t1, t2, t4, t5, t6, t3 , 
respectively. 

Figure 6 further summarizes the difference between 
black-box testing techniques (M7 and M8) and conven-
tional (white-box) techniques (M3−M6). The figure shows 
that our black-box testing techniques only require interac-
tive messages and the corresponding WSDL documents (as 
demonstrated in Section III). In contrast, white-box testing 
techniques require the source programs of the services 
under test. 

Our techniques can be applied to services that may 
evolve over time. We assume that any given service pro-
vides a public test suite for consumers to verify its function-
ality and coordination. In case this is not provided, however, 
we may randomly create a test suite according to its public 
WSDL documentations (such as those stored in UDDI regi-
stries). 

Moreover, to apply the techniques, we can reconstruct 
the document model (e.g., [25]) based on the set of XML 
data. Our techniques can, therefore, be applied even when 
no WSDL is available for some application scenarios. 

A valid test input with a new test result requires a test 
oracle to determine its correctness. We further assume that 
there is a test oracle. For instance, the developers or users 
of peer services may judge whether the returned test results 
are useful or meaningful. 

WSDL of 
HotelBooking

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault 
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply 
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

Required knowledge 
for white-box testing

Required knowledge 
for black-box testing

Figure 6. The different required knowledge for black- and white-box testing. 
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Compared to our technique, a traditional function cover-
age prioritization strategy does not consider parametrical 
values or their dynamic types; nor does it determine the 
coverage achieved by individual test cases based on “tags”. 
For instance, when polymorphic objects are used as para-
meters of a function, traditional techniques simply ignore 
this information; whereas such information has been consi-
dered in our techniques when covering different tags of the 
XML schema captured in WSDL documents. Furthermore, 
while the collection of such information in traditional 
programs is costly, we observe that this information is 
available in services as a byproduct of their message inter-
change. 

V.  EXPERIMENT 
This section reports on an experimental verification of 

our proposal. 

A. Experimental Design 

1) Subject Programs, Versions, and Test Suites 
We used a set of WS-BPEL applications to evaluate our 

techniques. The same set of artifacts have been used in the 
experiments in [16][18]. These applications have been used 
as benchmarks or examples in many WS-BPEL studies. We 
create a series of modified versions for each benchmark 
program. Every modified version is changed on top of the 
original version. A modified version is considered as an 
evolving version of an autonomous service. Like many 
other studies that evaluate testing techniques, we seed 
known faults to measure the effectiveness of the prioritiza-
tion techniques. Each modified version contains a single 
fault. 

TABLE 5. SUBJECT PROGRAMS AND STATISTICS. 

Ref. Applications 
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A atm [2] 8 94 180 3 12 5 
B buybook [20] 7 153 532 3 14 5 
C dslservice [26]  8 50 123 3 20 5 
D Gymlocker [2] 7 23 52 1 8 5 
E loanapproval [2] 8 41 102 2 12 7 
F marketplace [2] 6 31 68 2 10 4 
G purchase [2] 7 41 125 2 10 4 
H triphandling [2] 9 94 170 4 20 8 
 Total 60 527 1352 20 106 43 

 

Table 5 shows the subject programs and their 
descriptive statistics. We followed [6] and discarded any 
modified version if more than 20 percent of test cases could 
detect failures due to its fault. (The fault seeding procedure 
is similar to [9].) The descriptive statistics of the applicable 
modified versions are shown in the rightmost column of the 
table. 

We constructed test cases randomly for each subject 
application. One thousand (1000) test cases were generated 
to form a test pool for each application. From each gener-
ated test pool, we randomly selected test cases to form a 
test suite. Selection continued iteratively until all the work-
flow activities, all the workflow transitions and all types of 
XML message had been covered by at least one test case. 
The procedure is similar to the test suite construction in 
[7][18]. We then applied the test suite to all the applicable 
faulty versions of the corresponding application. We suc-
cessfully generated 100 test suites for every application. 
Table 6 shows the maximum, average, and minimum sizes 
of the test suites. 

TABLE 6. STATISTICS OF TEST SUITE SIZES. 

  Ref. 
Size A B C D E F G H Avg. 

Maximum 146 93 128 151 197 189 113 108 140.5
Average 95 43 56 80 155 103 82 80 86.3 
Minimum 29 12 16 19 50 30 19 27 25.2 

For every subject program and for every test suite thus 
constructed, we used each of the test case prioritization 
techniques (M1−M8) presented in Section IV to prioritize 
the test cases. For every faulty version of the a subject 
program and every corresponding prioritized test suite, we 
executed the test cases one by one according to their order 
in the test suit, and collected the test results. 

2) Effectiveness Measure 

To compare the effectiveness (in terms of fault 
detection rates) among M1−M8, we use the Average Per-
centage of Faults Detected (APFD) as the metric [7], which 
measures the weighted average of the percentage of faults 
detected over the life of a test suite. The APFD metric has 
been introduced in Section II (A). 

B. Data Analysis 

In this section, we analyze the data to evaluate the 
effectiveness of different techniques. We apply techniques 
M1–M8 on each application and calculate the value of 
APFD. We repeat this procedure 100 times using the 
generated test suites. The results are collected and summa-
rized in the box-plots in Figure 7. 

Each box-plot shows the 25th, 50th, and 75th percen-
tiles of a technique. The result for each application is given 
in Figures 7(a)−(h). The overall 25th, 50th, and 75th per-
centiles as well as the overall mean of all subject programs 
are shown in Figures 7(1)−(4). 

We first use the 25th percentile to compare M1−M8, 
followed by examining the 75th percentile. As shown in 
Figure 7(1), random prioritization (M1) achieves a mean 
APFD of 0.788. The maximum and minimum mean APFD 
achieved for the white-box techniques (M3−M6) are 0.817 
and 0.839, respectively. On the other hand, the mean APFD 
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for M8 is 0.844, which is higher than the corresponding 
values for M3−M6. 

The mean APFD for M7 is 0.821, which is higher than 
that for M3 or M5 but lower than that for M4 or M6. This 
observation indicates that our black-box testing techniques 
(particularly M8) can achieve similar (or even better) 
APFD results when compared with the white-box testing 
techniques (M3−M6). When considering the 75th value in 
Figures 7(1)−(4), we observe that the performance of M7 
and M8 is worse than that of M3 to M6. This observation is 
not too surprising because of the lack of knowledge of the 
detailed program code for M7 and M8. 

Figure 7(4) shows that M8 is better than all other 
techniques (except the optimal) at both the 25th and 50th 
percentiles of APFD results. Moreover, M3−M6 are also 

better than M1 at the 75th percentile. Similar conclusions 
can be drawn from Figures 7(1)−(3). 

We find that our technique M8 can even be better than 
M3−M6 in some benchmark applications (such as Figure 
7(c) and (e)). Among all these subject applications, M7 and 
M8 are significantly better than M1 in five cases out of 
eight (Figure 7(b), (c), (e), (f), and (g)), close to M1 in two 
(Figure 7(d) and (h)), and only a little worse than M1 in one 
case (Figure 7(a)). This result indicates that M7 and M8 
have a high probability of outperforming random ordering. 

On average (as reported in Figure 7(4)), our black-box 
testing techniques M7 and M8 are close to white-box 
testing techniques (M3–M6) for the mean APFD and at the 
25th, 50th, and 75th percentiles of APFD results. 

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

(1) 25th APFD (2) 50th APFD (3) 75th APFD (4) Mean APFD
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Figure 7. Comparisons of M1–M8 using APFD measures (x-axis is metrics; y-axis is APFD value). 
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In the experiment, M7 and M8 are more effective at 
early fault detection than random ordering. This indicates 
that black-box test case prioritization is a promising method 
for services testing. 

One may wonder whether the differences between our 
WSDL-related techniques and conventional techniques are 
significant. To answer this question, we compare the differ-
ences among M1, M3−M6, and M7−M8 (which we call 
between-group comparisons), and the differences between 
M7 and M8 (within-group comparison). Since rejecting the 
null hypothesis can only tell whether the performance of 
M3−M8 is significantly different, we follow [12] to 
conduct a multiple-comparison procedure to further explore 
where the differences lie. Like [12], the Least Significant 
Difference (LSD) method [4][12] is employed in the 
multiple-comparison to compare techniques. We set the 
significance level to 0.05. 

TABLE 7. MULTIPLE COMPARISONS USING LSD. 

Category Technique 
(x, y) 

Sig. < 0.05 Sig. > 0.05 

x–y  >  0 x–y < 0 x–y > 0 x–y < 0

Between-Group 

M1, M7 2 5 0 1 
M1, M8 0 4 2 2 
M3, M7 3 2 1 2 
M3, M8 2 3 2 1 
M4, M7 3 2 1 2 
M4, M8 3 2 1 2 
M5, M7 2 5 0 1 
M5, M8 1 5 1 1 
M6, M7 3 1 1 3 
M6, M8 2 4 2 0 

Within-Group M7, M8 0 4 2 2 

Table 7 presents pairwise comparison results of all 
subject applications between groups (between M1 and 
M7–M8 and between M3−M6 and M7–M8), and within the 
group (M7−M8). We categorize the results of the compari-
sons into two classes (< 0.05 and > 0.05) in terms of the 
significance of the mean difference. Each value in Table 7 
is the total number of applications in the groups. 

In the between-group category, the pairs (M1, M7) and 
(M1, M8) are significantly different. This observation 
shows that our black-box testing techniques are better than 
random ordering in terms of the overall mean APFD. How-
ever, we do not observe a significant difference among the 
following pairs: (M3, M7), (M3, M8), (M4, M7), and (M4, 
M8) (considering that the difference in values between any 
two subgroups under “Sig. < 0.05” is no more than one). 
This indicates that the overall performance of M3 and M4 
are close to that of M7 and M8. We further find that M7 
and M8 are both better than M5 (2 vs. 5, and 1 vs. 5), and 
the results between M6 and M7−M8 are similar. 

In the within-group category, we find that M8 is 
significantly better than M7 (0 vs. 4). This result shows that 
recursively selecting test cases from the highest coverage to 

the lowest coverage of WSDL tags is more likely to achieve 
a higher fault detection rate. This result also verifies the 
observation that we have discussed in Figures 7(1)−(4) 
above. 

C. Threats to Validity 

Threats to construct validity arise if measurement 
instruments do not adequately capture the concepts they are 
supposed to measure. In the experiment, we use the fault 
detection rate to measure the effectiveness of M1–M8. We 
choose the APFD metric, which has been widely adopted in 
many test case prioritization work (such as [6][7]), to meas-
ure the fault detection rate of prioritization techniques. 

Threats to internal validity are the influences that can 
affect the dependency of experimental variables involved. 
When executing a test case on a service composition, the 
contexts of the involved services may affect the outcome of 
the test case, making the evaluation result inconclusive. We 
have proposed a framework [14] to address this problem. In 
this paper, our experiment tool resets the runtime contexts 
of services to the required values for each test case. 

External validity is concerned with whether the results 
are applicable to the general situation. Eight WS-BPEL 
programs have been included in the experiment. Each pro-
gram can be considered as a service. These services were 
not large in size and may not be truly representative of the 
many different types of web service, which may also be 
written in diverse programming languages. Moreover, the 
same WSDL documents may not be applicable to programs 
of different scales. We will conduct other studies to verify 
the techniques further. 

VI.  CONCLUSION 
In a service composition, a member service may 

constantly evolve. Other services that relate to this member 
service may need to conduct regression testing to verify 
whether the functions of the latter service conform to their 
established interoperability requirements. Even though the 
former services want to conduct regression testing, the lat-
ter service has been encapsulated with only an observable 
interface, making it difficult for the former services to 
apply existing test case prioritization techniques. 

This paper studies whether the use of WSDL informa-
tion may facilitate effective regression testing of services. 
We have proposed to compute the WSDL tag coverage 
from the input and output messages associated with regres-
sion test suites. We have proposed two black-box test case 
prioritization techniques, and have used WS-BPEL pro-
grams in a controlled experiment to evaluate them. The 
empirical results show that our techniques can be effective. 
However, since WSDL is only an interface specification, it 
may be blind to certain regression fault types. For future 
work, we plan to enhance the proposed techniques by inte-
grating with other black-box techniques. 
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