
Tag-Based Techniques for
Black-Box Test Case Prioritization for Service Testing

*

Lijun Mei

The University of
Hong Kong

Pokfulam, Hong Kong
ljmei@cs.hku.hk

W. K. Chan

†
City University of

Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse
The University of

Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Robert G. Merkel
Swinburne University of

Technology
Melbourne, Australia

rmerkel@ict.swin.edu.au

Abstract—A web service may evolve autonomously, making

peer web services in the same service composition uncertain as
to whether the evolved behaviors may still be compatible to its
originally collaborative agreement. Although peer services
may wish to conduct regression testing to verify the original
collaboration, the source code of the former service can be in-
accessible to them. Traditional code-based regression testing
strategies are inapplicable. The rich interface specifications of
a web service, however, provide peer services with a means to
formulate black-box testing strategies. In this paper, we for-
mulate new test case prioritization strategies using tags em-
bedded in XML messages to reorder regression test cases, and
reveal how the test cases use the interface specifications of
services. We evaluate experimentally their effectiveness on
revealing regression faults in modified WS-BPEL programs.
The results show that the new techniques can have a high
probability of outperforming random ordering.

Keywords—test case prioritization; black-box regression test-
ing; WS-BPEL; service testing; encapsulation testing

I. INTRODUCTION
The testing and analysis of web services has posed new

foundational and practical challenges, such as the non-
observability of when a web service may evolve [3][15],
the extensive presence of non-executable artifacts within
and among web services [16], safeguards against malicious
messages from external parties [13], and ultra-late binding
and cross-organizational issues [1]. Researchers have pro-
posed diverse techniques to address the test case generation
problem [13], the test adequacy problem [16], the test
oracle problem [5][23], and the test case prioritization prob-
lem [18].

Regression testing is the de facto activity to address the
testing problems due to software evolution. However, many
existing regression testing techniques (e.g., [8][10][18][22])
assume that the source code is available [16], and use the
coverage information of executable artifacts (e.g., statement
coverage of test cases) to conduct regression testing. When

such coverage information cannot be assumed to be availa-
ble, it is vital to consider alternative sources of information
to facilitate effective regression testing.

Many web services (or services for short) use the Web
Services Description Language (WSDL) [25] to specify
their functional interfaces and message parameters. They
also use XML documents to represent the messages [24].
To quantify the transfer of type-safe XML messages with
external partners, the WSDL documents of a service further
embed the types of such messages. Thus, WSDL docu-
ments are rich in interface information. We assume that
such documents are observable to external services. Despite
the richness of such documents, to our best knowledge, the
use of WSDL documents to guide regression testing with-
out assuming code availability have not been proposed or
evaluated in the literature.

In general, different services developed by the same or
multiple development teams may be modified autono-
mously by their maintainers, and the evolution of services
may not be fully known by every other service. Let us con-
sider a scenario that a service A would like to pair up with a
service B, and yet the latter service may evolve over time. A
may want to execute some tests on the service provided by
B to ensure that A’s composition has not been adversely
affected (at least from A’s perspective). The program code
of B is generally inaccessible to A. Therefore, even though
A may have a test suite to conduct regression testing on B,
it cannot apply existing code-based regression testing tech-
niques [8][11] in general, and test case prioritization
techniques [22] in particular, to improve the fault detection
rate and achieve other goals.

A test case prioritization technique aims to reorder test
cases to achieve certain goals (such as detecting program
faults earlier [7]). Because of the internal logic and states of
a service are encapsulated by the service boundary, the
advantages of existing test case prioritization techniques
(such as improved fault detection rate [6][22]) cannot be
realized effectively in service-oriented testing.

The WSDL documents of services are accessible among
peer services. It is well known, however, that black-box
testing is generally less effective than white-box testing.
Can the richness of WSDL documents help to narrow this
gap? Is it effective to use the black-box information in
WSDL documents to guide regression testing to overcome

* This research is supported in part by the General Research Fund of the
Research Grant Council of Hong Kong (project nos. 111107, 717308, and
717506), the Strategic Research Grant of City University of Hong Kong
(project no. 7002464), and a discovery grant of the Australian Research
Council (project no. DP0984760).

† Corresponding author.

2009 Ninth International Conference on Quality Software

1550-6002/09 $26.00 © 2009 IEEE

DOI 10.1109/QSIC.2009.12

21

2009 Ninth International Conference on Quality Software

1550-6002/09 $26.00 © 2009 IEEE

DOI 10.1109/QSIC.2009.12

21

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

the difficulties in testing services with hidden implementa-
tion details such as source code?

General test case prioritization and version-specific test
case prioritization are two important kinds of technique in
regression testing [22]. A technique of the former kind will
sort a test suite for a program P with the intent of being
useful over subsequent modified versions of P; whereas a
technique of the latter kind will prioritize a test suite spe-
cific to a particular modified version of the program under
test. In scenarios similar to the above, the source code of a
service is generally inaccessible, limiting the applicability
of version- specific techniques. General test case prioritiza-
tion does not suffer from this problem. This paper studies
general test case prioritization.

We observe that, in a regression test suite, existing test
cases record the associated XML messages that have been
accepted or returned by a (previous) version of the target
service. Because the associated WSDL documents capture
the target service’s functions and types of XML message,
the tags defined in such documents and encoded in individ-
ual test cases can be filtered through all the WSDL docu-
ments. Following up on these observations, we propose two
directions in test case prioritization (based on XML tags of
WSDL documents) to generate ordered regression test
suites. We implement two prioritization techniques as
proofs of the concepts under the two proposed directions.

Techniques for the construction of effective regression
test suites are not within the scope of this paper. We appre-
ciate that invalid test cases can be costly because they still
require the execution of the service under test despite the
lack of fruitful results. We assume that all the test cases in a
given regression test suite are valid. Invalid regression test
cases can be removed, for instance, using the information in
the fault handler messages returned by the service, or using
the WSDL of the services to validate the test cases in
advance. Once a test case has been identified to be invalid,
it can be permanently removed from the regression test
suite. Thus, during the next regression testing of the service
(without knowing in advance whether the service has
evolved), the test case does not need to be considered in test
case prioritization.

We further conduct an empirical study to verify the
effectiveness of our techniques. The results show that they
can be promising in their rates of fault detection.

The main contribution of this paper is twofold: (i) We
propose a new set of black-box techniques to prioritize test
cases for regression testing of services with observable and
rich content interface. It addresses the problem of autonom-
ous evolution of individual services in service compositions,
so that peer services can gain confidence on the service
under test with lower cost in regression testing. Our
technique is particularly useful when the source code of the
service under test is not available or is too costly to obtain.
(ii) We report the first controlled experiment of its kind to
evaluate the effectiveness of such techniques. Our empirical
results indicate that the use of the information captured in

WSDL documents (paired with regression test suites) can
be promising in lowering the cost of the quality assurance
of workflow services.

The rest of the paper is organized as follows: Section II
reviews related work. Section III introduces the prelimi-
naries of our approach through a running service scenario.
Section IV discusses the challenges in regression testing of
services, and presents new test case prioritization tech-
niques for regression testing of services. Section V presents
an experiment design and its results to evaluate our pro-
posal. Section VI concludes the paper and discusses future
work.

II. PRELIMINARIES
This section reviews related work and introduces the

terminology in test case prioritization.

A. Related Work

Regression testing is a testing procedure conducted after
modifications of a program [11]. It has been widely used in
industry [19]. Leung and White [11] have pointed out that
simply re-running all existing tests is not an ideal approach.
Test case prioritization aims to reorder test cases to maxim-
ize a testing goal [22], and is one of the most important
lines in regression testing research.

Many coverage-based prioritization techniques (e.g.,
[7][22]) have been proposed. A large number of these
techniques prioritize test cases by means of code coverage
achieved, such as the number of statements or branches
covered by individual test cases [22]. Furthermore, al-
though there are header files and preprocessing macros in C
programs, existing code-based prioritization techniques that
use C programs as subjects do not explore such information.
Specific examples of techniques used include fault-
exposing potential of individual test cases [22], the series of
regression history [10], and test costs and fault severities
[7]. In the service environment, because of the limited
knowledge of potential evolutions of a target service as
well as the fault classifications of previously identified
faults in fault-based techniques, it is not clear how history-
based or cost-based techniques can be applied effectively.
The effects of compositions and granularity [21] of a test
suite have been studied experimentally for conventional
testing. To our knowledge, however, these two aspects have
not been examined in the context of service-oriented test-
ing.

Martin et al. [13] outline a framework that generates
and executes web service requests, and collects the corres-
ponding responses from web services. They propose to
examine the robustness aspect of services by perturbing
such request-response pairs. They have not studied test case
prioritization. Tsai et al. [23] recommend using an adaptive
group testing technique to address the challenges in testing
service-oriented applications when a large number of web
services are available. They rank test cases according to a

2222

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

voting mechanism on input-output pairs. Neither the source
code of the service nor the structure of WSDL is utilized.

Mei et al. [16] use the mathematical definitions of
XPath [27] as rewriting rules, and propose a data structure
known as an XPath Rewriting Graph (XRG). They [17]
further develop the notion of XRG patterns to capture how
different XRGs are related even though they may refer to
different XML schemas or tags. They have developed test
case prioritization techniques [18] on top of their XRG
structure. However, they have not studied whether WSDL
can be used in a standalone manner for regression testing of
services when the source code is unavailable or too costly
to be acquired.

B. Test Case Prioritization

Test case prioritization [22] is an important kind of
regression testing technique [12]. Through the use of infor-
mation from previous rounds of software evaluation, we
can design techniques to rerun the test cases to achieve a
certain goal (such as to increase the fault detection rate of a

test suite). We adopt the test case permutation problem
from [22] as follows:

Given: A test suite T; the set of permutations PT of T;
and a function f from PT to real numbers. (For instance, f
may calculate the fault detection rate of a permutation of T.)

Problem: To find T’ ∈ PT such that ∀T’’ ∈ PT,
f(T’) f (T’’).

The Average Percentage of Faults Detected (APFD) [7]
measures the weighted average of the percentage of faults
detected over the life of a test suite. APFD has been widely
used in regression testing research. As the authors of [7]
point out, a higher APFD value implies a better fault detec-
tion rate. Let T be a test suite containing n test cases, and F
be a set of m faults revealed by T. Let TFi be the index of
the first test case in a permutation T’ of T that reveals fault i.
The APFD value for test suite T’ is defined as follows:

nnm
TFTFTFAPFD m

2
1...1 21 ++++−=

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Test Suite Fraction

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0
Pe

rc
en

t D
et

ec
te

d
Fa

ul
ts

Test Suite Fraction
(a) APFD for test suite T1 (b) APFD for test suite T2

APFD = 47.5% APFD = 75.0%

Test Case Fault
f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB
tC • • • •

tD • • •

tE • •

Example on test suite and faults exposed

Figure 1. Example illustrating the APFD measure (from [18]).

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

see example
in Figure 1

WSDL of
HotelBooking

Regression Test Suite
for HotelBooking

Invoking
HotelBooking Service

see example
in Figure 2

see example
in Figure 4

Figure 2. Service interaction scenario.

2323

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

We also adopt an example from [18] to show how
APFD measures the fault detection rates of different test
suite permutations, as illustrated in Figure 1. The left-hand
table shows the faults that test cases tA to tE can detect. T1 tB,
tA, tD, tC, tE and T2 tC, tD, tE, tA, tB are two permutations of
tA to tE. The APFD measures for T1 and T2 are given in
Figures 1(a) and (b), respectively.

III. SCENARIO OF RUNNING SERVICE
This section presents the scenario of a running service

and introduces the preliminaries of our approach.
Let us consider a HotelBooking service adapted from

the TripHandling project [2]. Figure 3 depicts its control
flow using an activity diagram in UML. A node represents
an activity and a link represents a transition between two
activities. We also annotate the nodes with information
(such as an XPath) extracted from the program. We label
the nodes as Ai for i = 1 to 8. The service aims to find a
hotel room whose price is not more than a ceiling set by the
user.

Figure 3. Activity diagram for HotelBooking.

The service needs to handle the information in the reply
messages from different hotels. An XML schema hotel for
such messages is shown in Figure 4. A hotel has two types
of room: doubleroom (line 3) and singleroom (line 4). Both
doubleroom and singleroom are defined by the type room
(lines 8–10). This XML schema is kept in a WSDL docu-
ment.

As we have highlighted in Section I, in such cross-
service scenarios, the internal model of a service as shown
in Figure 3 is unobservable by an external service that
wants to conduct regression (or conformance) test on the

former service (to check whether the former service still
conforms to the already established interoperability require-
ments with the latter service). Figure 2 depicts this prob-
lem.

1 <xsd:complexType name="hotel">
2 <xsd:element name="name" type="xsd:string"/>
3 <xsd:element name="doubleroom" type="xsd:room"/>
4 <xsd:element name="singleroom" type="xsd:room" />
5 </xsd:complexType>
6 <xsd:complexType name="room">
7 <xsd:element name="roomno" type="xsd:int" />
8 <xsd:element name="price" type="xsd:int"/>
9 </xsd:complexType>

Figure 4. XML schema hotel in WSDL document.

Suppose the TripHandling service (the rightmost part of
Figure 2) needs to invoke both the HotelBooking and
FlightBooking services to handle the user’s trip arrange-
ment request. TripHandling may wish to run a regression
test suite to assure the quality of HotelBooking inside its
service composition. A test on such a service is usually
done by sending request messages followed by receiving
and handling response messages. Both the request and re-
sponse messages are in XML format. These XML messages
are visible to both TripHandling and HotelBooking, and the
WSDL documents can be accessed publicly. However, the
internal mechanism (see Figure 3) of HotelBooking service
is hidden from TripHandling.

IV. TEST CASE PRIORITIZATION
This section demonstrates how we adapt coverage-based

test case prioritization strategy to formulate new prioritiza-
tion techniques using WSDL information.

A. Motivating example

Let us consider six test cases, in which the message has
a price tag with the following values:

Test case 1 (t1): Price = 200 Test case 2 (t2): Price = 150

Test case 3 (t3): Price = 100 Test case 4 (t4): Price = 50

Test case 5 (t5): Price = 0 Test case 6 (t6): Price = −100

Let us discuss activity A4. Suppose Figure 5 shows the
XML messages for HotelInformation received in an XPath
query (HotelInformation, //price/) by executing test cases t1
to t6 on the HotelBooking service.

Our scene further assumes that HotelBookService at A7
fails in handling the third test case (t3) because no available
room satisfies this price (i.e., the value kept by the message
content RoomPrice). Therefore, the branch A7, A5 in
Figure 3 is covered by t3. The activity coverage and work-
flow transition coverage of these test cases are summarized
in Table 1 and Table 2, respectively. We use a “•” to repre-
sent the item that has been covered by a test case.

XQ: XPath Query
XQ(Variable, Exp): XPath Query with input variable and XPath expression.

Input:
RoomPrice
Output:
BookingResult

RoomPrice =
XQ

(HotelInformation,
//price/)

if Price XQ(HotelInformation, //price/)

Input: BookRequest

A4:
Validate

Price

A5: Fault Handling

A6: Assign RoomPrice

A7: Invoke HotelBookService

A8: Reply HotelBookResponse

Price=
XQ(BookRequest, //price/)

Input: Price
Output: HotelInformation

No Yes

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

2424

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

We have the following observations from Tables 1 and
2: (i) The respective coverage of the activities for t4 to t6 are
identical; the same is true for the coverage of their
transitions. (ii) The numbers of covered activities are the
same for t1 to t3; the same is true for their transitions.
(iii) Suppose t1 is first selected; using the additional
coverage information [22], the remaining covered activities
or transitions for t3 to t6 are the same, while that for t3 is 0.
In such a tied case, existing test case prioritization tech-
niques such as [22] simply order them randomly to break
the ties.

<hotel>
<name>Times</name>
<doubleroom>

<roomno>R101</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno></roomno>
<price>100</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom></singleroom>

</hotel >

Test Case 4

<hotel>
</hotel >

Test Case 6

null

Figure 5. XML messages for HotelInformation used in
XQ(HotelInformation, //price/).

TABLE 1. ACTIVITY COVERAGE OF t 1 TO t 6.
Activity t1 t2 t3 t4 t5 t6

A1 • • • • • •

A2 • • • • • •

A3 • • • • • •

A4 • • • • • •

A5 • • • •

A6 • • •

A7 • • •

A8 • •

Total 7 7 7 5 5 5

TABLE 2. TRANSITION COVERAGE OF t 1 TO t 6.

Transition t1 t2 t3 t4 t5 t6
A1, A2 • • • • • •

A2, A3 • • • • • •

A3, A4 • • • • • •

A4, A5 • • •

A4, A6 • • •

A6, A7 • • • • • •

A7, A8 • •

A7, A5 •

Total 6 6 6 5 5 5

We further show a few XML messages (Figure 5) for
the hotel schema (Figure 4). For ease of presentation, we

summarize the element coverage of the XML schema for t1
to t6 in Table 3.

TABLE 3. WSDL TAG COVERAGE FOR t 1 TO t 6.

Element t1 t2 t3 t4 t5 t6
hotel • • • • •

name • • • •

doubleroom • • • •

singleroom • • • •

room (doubleroom) • • • •

roomno (doubleroom) •

price (doubleroom) •

room (singleroom) • • • •

roomno (singleroom) • • •

price (singleroom) • • •

Total 10 8 8 6 1 0

We refer to an XML element z defined in any XML
schema as a WSDL tag. If a regression test case includes an
XML message that contains an XML element z, we say that
z has been covered by the test case. In Table 3, the coverage
of WSDL tags for t4, t5, and t6 are different; the numbers of
WSDL tags in t2 and t3 are different from that in t1. If t1 is
first selected, since there is a reset procedure for coverage
information, the remaining covered WSDL tags for t3, t4, t5,
and t6 are still different [22]. These observations motivate
us to study the use of WSDL tag coverage in prioritizing
test cases.

As we have described in Section I, peer services in a
service composition may not access the source code of a
target service. To know whether the target service still exhi-
bits the desirable functions as previously demonstrated,
peer services may run regression test suites on the target
service. We explore the coverage of WSDL documents in
our test case prioritization techniques with the intent to
detect failures of the target services faster.

B. Our Prioritization Techniques

In this section, we first briefly review representative test
case prioritization techniques for regression testing, and
then introduce our adaptation.

TABLE 4. PRIORITIZATION TECHNIQUES AND EXAMPLES.

Category Name Index t1 t2 t3 t4 t5 t6

Benchmark
Random [22] M1 6 3 4 5 1 2
Optimal [22] M2 – – – – – –

Traditional
White-Box

Total-Activity [22] M3 1 3 2 4 6 5
Additional-Activity [22] M4 1 4 2 5 3 6
Total-Transition [22] M5 2 3 1 4 5 6
Additional-Transition [22] M6 1 6 3 2 4 5

Our
Black-Box

Ascending-WSDL-Tag M7 5 6 4 3 2 1
Descending-WSDL-Tag M8 1 2 6 3 4 5

To study the effectiveness and tradeoffs of different
techniques, we follow the style of [7][22] and compare
other control techniques with ours. All the techniques and
examples are listed in Table 4. Techniques M1–M6,

2525

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

representing random, optimal, total-statement, additional-
statement, total-branch, and additional-branch, respectively,
are taken from [22].

Many WSDL documents define XML schemas used by
services. Each XML schema contains a set of elements.
Intuitively, the coverage information on these WSDL tags
reveals the usage of the internal messages among activities.

The coverage of all elements in a WSDL document may
be easily satisfied (as illustrated, for instance, by t1 in Table
3). If a technique schedules test cases in the order of total
element coverage of the WSDL document, then t1 will be
selected first.

Based on the above analysis, we propose two
techniques, namely M7 and M8.

M7: Ascending WSDL tag coverage prioritization
(Ascending-WSDL-Tag). This technique first partitions the
test suite into groups where test cases in the same group
cover the same number of WSDL tags, then sorts the
groups in ascending order of the number of tags covered by
a test case, and finally selects test cases iteratively from
groups. (For each iteration, M7 selects one test case ran-
domly from each group.)

M8: Descending WSDL tag coverage prioritization
(Descending-WSDL-Tag). This technique is the same as
Ascending-WSDL-Tag, except that it sorts the groups in the
descending order (instead of ascending order) of the num-
ber of tags covered by a test case.

M7 and M8 target to examine the effect of the number
of WSDL tags in a test case during test case prioritization
for services. Both M7 and M8 include a grouping phase

that divides the test suite into groups. Two test cases in the
same group contain the same number of WSDL tags (while
the actual WSDL tags may be different). We then itera-
tively select test cases from each group. Take t1 to t6 as an
example. Possible WSDL coverage prioritization orders for
M7 and M8 are t6, t5, t4, t3, t1, t2 and t1, t2, t4, t5, t6, t3 ,
respectively.

Figure 6 further summarizes the difference between
black-box testing techniques (M7 and M8) and conven-
tional (white-box) techniques (M3−M6). The figure shows
that our black-box testing techniques only require interac-
tive messages and the corresponding WSDL documents (as
demonstrated in Section III). In contrast, white-box testing
techniques require the source programs of the services
under test.

Our techniques can be applied to services that may
evolve over time. We assume that any given service pro-
vides a public test suite for consumers to verify its function-
ality and coordination. In case this is not provided, however,
we may randomly create a test suite according to its public
WSDL documentations (such as those stored in UDDI regi-
stries).

Moreover, to apply the techniques, we can reconstruct
the document model (e.g., [25]) based on the set of XML
data. Our techniques can, therefore, be applied even when
no WSDL is available for some application scenarios.

A valid test input with a new test result requires a test
oracle to determine its correctness. We further assume that
there is a test oracle. For instance, the developers or users
of peer services may judge whether the returned test results
are useful or meaningful.

WSDL of
HotelBooking

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

Required knowledge
for white-box testing

Required knowledge
for black-box testing

Figure 6. The different required knowledge for black- and white-box testing.

2626

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

Compared to our technique, a traditional function cover-
age prioritization strategy does not consider parametrical
values or their dynamic types; nor does it determine the
coverage achieved by individual test cases based on “tags”.
For instance, when polymorphic objects are used as para-
meters of a function, traditional techniques simply ignore
this information; whereas such information has been consi-
dered in our techniques when covering different tags of the
XML schema captured in WSDL documents. Furthermore,
while the collection of such information in traditional
programs is costly, we observe that this information is
available in services as a byproduct of their message inter-
change.

V. EXPERIMENT
This section reports on an experimental verification of

our proposal.

A. Experimental Design

1) Subject Programs, Versions, and Test Suites
We used a set of WS-BPEL applications to evaluate our

techniques. The same set of artifacts have been used in the
experiments in [16][18]. These applications have been used
as benchmarks or examples in many WS-BPEL studies. We
create a series of modified versions for each benchmark
program. Every modified version is changed on top of the
original version. A modified version is considered as an
evolving version of an autonomous service. Like many
other studies that evaluate testing techniques, we seed
known faults to measure the effectiveness of the prioritiza-
tion techniques. Each modified version contains a single
fault.

TABLE 5. SUBJECT PROGRAMS AND STATISTICS.

Ref. Applications

V
er

si
on

E
le

m
en

t

L
O

C

W
SD

L

Sp
ec

.

W
SD

L

T
ag

N
o.

 o
f

V
er

si
on

s
U

se
d

A atm [2] 8 94 180 3 12 5
B buybook [20] 7 153 532 3 14 5
C dslservice [26] 8 50 123 3 20 5
D Gymlocker [2] 7 23 52 1 8 5
E loanapproval [2] 8 41 102 2 12 7
F marketplace [2] 6 31 68 2 10 4
G purchase [2] 7 41 125 2 10 4
H triphandling [2] 9 94 170 4 20 8
 Total 60 527 1352 20 106 43

Table 5 shows the subject programs and their
descriptive statistics. We followed [6] and discarded any
modified version if more than 20 percent of test cases could
detect failures due to its fault. (The fault seeding procedure
is similar to [9].) The descriptive statistics of the applicable
modified versions are shown in the rightmost column of the
table.

We constructed test cases randomly for each subject
application. One thousand (1000) test cases were generated
to form a test pool for each application. From each gener-
ated test pool, we randomly selected test cases to form a
test suite. Selection continued iteratively until all the work-
flow activities, all the workflow transitions and all types of
XML message had been covered by at least one test case.
The procedure is similar to the test suite construction in
[7][18]. We then applied the test suite to all the applicable
faulty versions of the corresponding application. We suc-
cessfully generated 100 test suites for every application.
Table 6 shows the maximum, average, and minimum sizes
of the test suites.

TABLE 6. STATISTICS OF TEST SUITE SIZES.

 Ref.
Size A B C D E F G H Avg.

Maximum 146 93 128 151 197 189 113 108 140.5
Average 95 43 56 80 155 103 82 80 86.3
Minimum 29 12 16 19 50 30 19 27 25.2

For every subject program and for every test suite thus
constructed, we used each of the test case prioritization
techniques (M1−M8) presented in Section IV to prioritize
the test cases. For every faulty version of the a subject
program and every corresponding prioritized test suite, we
executed the test cases one by one according to their order
in the test suit, and collected the test results.

2) Effectiveness Measure

To compare the effectiveness (in terms of fault
detection rates) among M1−M8, we use the Average Per-
centage of Faults Detected (APFD) as the metric [7], which
measures the weighted average of the percentage of faults
detected over the life of a test suite. The APFD metric has
been introduced in Section II (A).

B. Data Analysis

In this section, we analyze the data to evaluate the
effectiveness of different techniques. We apply techniques
M1–M8 on each application and calculate the value of
APFD. We repeat this procedure 100 times using the
generated test suites. The results are collected and summa-
rized in the box-plots in Figure 7.

Each box-plot shows the 25th, 50th, and 75th percen-
tiles of a technique. The result for each application is given
in Figures 7(a)−(h). The overall 25th, 50th, and 75th per-
centiles as well as the overall mean of all subject programs
are shown in Figures 7(1)−(4).

We first use the 25th percentile to compare M1−M8,
followed by examining the 75th percentile. As shown in
Figure 7(1), random prioritization (M1) achieves a mean
APFD of 0.788. The maximum and minimum mean APFD
achieved for the white-box techniques (M3−M6) are 0.817
and 0.839, respectively. On the other hand, the mean APFD

2727

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

for M8 is 0.844, which is higher than the corresponding
values for M3−M6.

The mean APFD for M7 is 0.821, which is higher than
that for M3 or M5 but lower than that for M4 or M6. This
observation indicates that our black-box testing techniques
(particularly M8) can achieve similar (or even better)
APFD results when compared with the white-box testing
techniques (M3−M6). When considering the 75th value in
Figures 7(1)−(4), we observe that the performance of M7
and M8 is worse than that of M3 to M6. This observation is
not too surprising because of the lack of knowledge of the
detailed program code for M7 and M8.

Figure 7(4) shows that M8 is better than all other
techniques (except the optimal) at both the 25th and 50th
percentiles of APFD results. Moreover, M3−M6 are also

better than M1 at the 75th percentile. Similar conclusions
can be drawn from Figures 7(1)−(3).

We find that our technique M8 can even be better than
M3−M6 in some benchmark applications (such as Figure
7(c) and (e)). Among all these subject applications, M7 and
M8 are significantly better than M1 in five cases out of
eight (Figure 7(b), (c), (e), (f), and (g)), close to M1 in two
(Figure 7(d) and (h)), and only a little worse than M1 in one
case (Figure 7(a)). This result indicates that M7 and M8
have a high probability of outperforming random ordering.

On average (as reported in Figure 7(4)), our black-box
testing techniques M7 and M8 are close to white-box
testing techniques (M3–M6) for the mean APFD and at the
25th, 50th, and 75th percentiles of APFD results.

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

(1) 25th APFD (2) 50th APFD (3) 75th APFD (4) Mean APFD
Overall Statistics

Individual Statistics

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8

Figure 7. Comparisons of M1–M8 using APFD measures (x-axis is metrics; y-axis is APFD value).

2828

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

In the experiment, M7 and M8 are more effective at
early fault detection than random ordering. This indicates
that black-box test case prioritization is a promising method
for services testing.

One may wonder whether the differences between our
WSDL-related techniques and conventional techniques are
significant. To answer this question, we compare the differ-
ences among M1, M3−M6, and M7−M8 (which we call
between-group comparisons), and the differences between
M7 and M8 (within-group comparison). Since rejecting the
null hypothesis can only tell whether the performance of
M3−M8 is significantly different, we follow [12] to
conduct a multiple-comparison procedure to further explore
where the differences lie. Like [12], the Least Significant
Difference (LSD) method [4][12] is employed in the
multiple-comparison to compare techniques. We set the
significance level to 0.05.

TABLE 7. MULTIPLE COMPARISONS USING LSD.

Category Technique
(x, y)

Sig. < 0.05 Sig. > 0.05

x–y > 0 x–y < 0 x–y > 0 x–y < 0

Between-Group

M1, M7 2 5 0 1
M1, M8 0 4 2 2
M3, M7 3 2 1 2
M3, M8 2 3 2 1
M4, M7 3 2 1 2
M4, M8 3 2 1 2
M5, M7 2 5 0 1
M5, M8 1 5 1 1
M6, M7 3 1 1 3
M6, M8 2 4 2 0

Within-Group M7, M8 0 4 2 2

Table 7 presents pairwise comparison results of all
subject applications between groups (between M1 and
M7–M8 and between M3−M6 and M7–M8), and within the
group (M7−M8). We categorize the results of the compari-
sons into two classes (< 0.05 and > 0.05) in terms of the
significance of the mean difference. Each value in Table 7
is the total number of applications in the groups.

In the between-group category, the pairs (M1, M7) and
(M1, M8) are significantly different. This observation
shows that our black-box testing techniques are better than
random ordering in terms of the overall mean APFD. How-
ever, we do not observe a significant difference among the
following pairs: (M3, M7), (M3, M8), (M4, M7), and (M4,
M8) (considering that the difference in values between any
two subgroups under “Sig. < 0.05” is no more than one).
This indicates that the overall performance of M3 and M4
are close to that of M7 and M8. We further find that M7
and M8 are both better than M5 (2 vs. 5, and 1 vs. 5), and
the results between M6 and M7−M8 are similar.

In the within-group category, we find that M8 is
significantly better than M7 (0 vs. 4). This result shows that
recursively selecting test cases from the highest coverage to

the lowest coverage of WSDL tags is more likely to achieve
a higher fault detection rate. This result also verifies the
observation that we have discussed in Figures 7(1)−(4)
above.

C. Threats to Validity

Threats to construct validity arise if measurement
instruments do not adequately capture the concepts they are
supposed to measure. In the experiment, we use the fault
detection rate to measure the effectiveness of M1–M8. We
choose the APFD metric, which has been widely adopted in
many test case prioritization work (such as [6][7]), to meas-
ure the fault detection rate of prioritization techniques.

Threats to internal validity are the influences that can
affect the dependency of experimental variables involved.
When executing a test case on a service composition, the
contexts of the involved services may affect the outcome of
the test case, making the evaluation result inconclusive. We
have proposed a framework [14] to address this problem. In
this paper, our experiment tool resets the runtime contexts
of services to the required values for each test case.

External validity is concerned with whether the results
are applicable to the general situation. Eight WS-BPEL
programs have been included in the experiment. Each pro-
gram can be considered as a service. These services were
not large in size and may not be truly representative of the
many different types of web service, which may also be
written in diverse programming languages. Moreover, the
same WSDL documents may not be applicable to programs
of different scales. We will conduct other studies to verify
the techniques further.

VI. CONCLUSION
In a service composition, a member service may

constantly evolve. Other services that relate to this member
service may need to conduct regression testing to verify
whether the functions of the latter service conform to their
established interoperability requirements. Even though the
former services want to conduct regression testing, the lat-
ter service has been encapsulated with only an observable
interface, making it difficult for the former services to
apply existing test case prioritization techniques.

This paper studies whether the use of WSDL informa-
tion may facilitate effective regression testing of services.
We have proposed to compute the WSDL tag coverage
from the input and output messages associated with regres-
sion test suites. We have proposed two black-box test case
prioritization techniques, and have used WS-BPEL pro-
grams in a controlled experiment to evaluate them. The
empirical results show that our techniques can be effective.
However, since WSDL is only an interface specification, it
may be blind to certain regression fault types. For future
work, we plan to enhance the proposed techniques by inte-
grating with other black-box techniques.

2929

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini.

Towards automated WSDL-based testing of web services. In
Service-Oriented Computing (ICSOC 2008), volume 5364
of Lecture Notes in Computer Science, pages 524–529.
Springer, Berlin, Germany, 2008.

[2] BPEL Repository. IBM, 2006. Available at http://www.
alphaworks.ibm.com/tech/bpelrepository.

[3] G. Canfora and M. Di Penta. SOA: testing and self-checking.
In Proceedings of the International Workshop on Web
Services: Modeling and Testing (WS-MaTe 2006), pages
3–12. Palermo, Italy, 2006.

[4] S. G. Carmer and M. R. Swanson. Detection of differences
between means: a Monte Carlo study of five pairwise mul-
tiple comparison procedures. Agronomy Journal, 63: 940–
945, 1971.

[5] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A
metamorphic testing approach for online testing of service-
oriented software applications. International Journal of
Web Services Research, 4 (2): 60–80, 2007.

[6] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of
test case prioritization in a JUnit testing environment. In Pro-
ceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE 2004), pages 113–124.
IEEE Computer Society Press, Los Alamitos, CA, 2004.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28 (2): 159–182,
2002.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodology, 2 (3): 270–285,
1993.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering (ICSE
1994), pages 191–200. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

[10] J.-M. Kim and A. Porter. A history-based test prioritization
technique for regression testing in resource constrained
environments. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), pages
119–129. ACM Press, New York, NY, 2002.

[11] H. K. N. Leung and L. J. White. Insights into regression
testing. In Proceedings of the IEEE International Confe-
rence on Software Maintenance (ICSM 1989), pages 60–
69. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[12] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, 33 (4): 225–237, 2007.

[13] E. Martin, S. Basu, and T. Xie. Automated testing and res-
ponse analysis of web services. In Proceedings of the IEEE
International Conference on Web Services (ICWS 2007),
pages 647–654. IEEE Computer Society Press, Los Alamitos,
CA, 2007.

[14] L. Mei. A context-aware orchestrating and choreographic test
framework for service-oriented applications. In Doctoral

Symposium, Companion Volume of the 31st International
Conference on Software Engineering (ICSE-Companion
2009), pages 371–374. IEEE Computer Society Press, Los
Alamitos, CA, 2009.

[15] L. Mei, W. K. Chan, and T. H. Tse. An adaptive service
selection approach to service composition. In Proceedings of
the IEEE International Conference on Web Services
(ICWS 2008), pages 70–77. IEEE Computer Society Press,
Los Alamitos, CA, 2008.

[16] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of
service-oriented workflow applications. In Proceedings of
the 30th International Conference on Software Engineer-
ing (ICSE 2008), pages 371–380. ACM Press, New York,
NY, 2008.

[17] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of
service choreography. In Proceedings of the 7th Joint
Meeting of the European Software Engineering Confe-
rence and the ACM SIGSOFT International Symposium
on Foundation of Software Engineering (ESEC 2009 /
FSE- 17). ACM Press, New York, NY, 2009.

[18] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse. Test case
prioritization for regression testing of service-oriented busi-
ness applications. In Proceedings of the 18th International
Conference on World Wide Web (WWW 2009), pages 901–
910. ACM Press, New York, NY, 2009.

[19] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Communi-
cations of the ACM, 41 (5): 81–86, 1998.

[20] Oracle BPEL Process Manager. Oracle Technology Network.
Available at http://www.oracle.com/technology/
products/ias/bpel/. (Last access on June 29, 2009.)

[21] G. Rothermel, S. G. Elbaum, A. Malishevsky, P. Kallakuri,
and B. Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings of the
24th International Conference on Software Engineering
(ICSE 2002), pages 130–140. ACM Press, New York, NY,
2002.

[22] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE Transac-
tions on Software Engineering, 27 (10): 929–948, 2001.

[23] W.-T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X.
Wei. Adaptive testing, oracle generation, and test case rank-
ing for web services. In Proceedings of the 29th Annual
International Computer Software and Applications Confe-
rence (COMPSAC 2005), volume 1, pages 101–106. IEEE
Computer Society Press, Los Alamitos, CA, 2005.

[24] Web Services Business Process Execution Language Version
2.0: OASIS Standard. OSAIS, 2007. Available at http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[25] Web Services Description Language (WSDL) 2.0. W3C,
2007. Available at http://www.w3.org/TR/wsdl20.

[26] Web Services Invocation Framework: DSL Provider Sample
Application. Apache Software Foundation, 2006. Available
at http://ws.apache.org/wsif/wsif_samples/.

[27] World Wide Web Consortium. XML Path Language (XPath)
Recommendation. W3C, 2007. Available at http://www.w3.
org/TR/xpath20/.

3030

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 05,2010 at 09:48:12 UTC from IEEE Xplore. Restrictions apply.

