
HAL Id: inria-00504665
https://inria.hal.science/inria-00504665

Submitted on 21 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Good Practices as a Quality-Oriented Modeling
Assistant

Vincent Le Gloahec, Régis Fleurquin, Salah Sadou

To cite this version:
Vincent Le Gloahec, Régis Fleurquin, Salah Sadou. Good Practices as a Quality-Oriented Modeling
Assistant. QSIC’10: Proceedings of the 10th International Conference on Quality Software, 2010,
Zhangjiajie, China, China. pp.345-348. �inria-00504665�

https://inria.hal.science/inria-00504665
https://hal.archives-ouvertes.fr


Good Practices as a Quality-Oriented Modeling

Assistant

Vincent Le Gloahec

Alkante SAS, France

Email: v.legloahec@alkante.com

Regis Fleurquin

INRIA/Triskell,

Campus Universitaire de Beaulieu, France

Email: regis.fleurquin@irisa.fr

Salah Sadou

Valoria laboratory,

Université de Bretagne-Sud, France

Email: salah.sadou@univ-ubs.fr

Abstract—In order to ensure the quality of their software
development, companies incorporate best practices from recog-
nized repositories or from their own experiences. These good
practices are often described in software quality manuals that,
in this form, do not guarantee their implementation. In this
paper, we propose a framework for the implementation of best
practices. We treat the case of modeling activities because they are
becoming the main activity of software development processes.
Our framework enables on the one hand to describe the good
practices and on the other hand to check their application by the
designers. We present an implementation of our framework in
the Eclipse platform and some examples of use of our approach
in the modeling of UML Class diagrams.

I. INTRODUCTION

Good Practices (GPs) are proven processes or techniques

that organizations (or persons) have found to be productive

and useful to ensure a good level of production quality. Some

GPs are found in research papers, reports, guides, books or

standards. In the current context, modeling becomes the main

activity of the software development process using more and

more domain-specific modeling languages (DSML). Software

modeling activity, like any other activity, can take advantage

of GPs. At every step of the modeling activity, GPs can

provide help to build good models faster. As stated by Gratton

and Ghoshal [1] and process improvement programs such as

CMMI-DEV [2]: the capacity of an enterprise to prosper is

based on its ability to capture, use, and assess good practices.

Due to a lack of an adequate formalism to document their

knowledge, companies that try to capitalize on their knowledge

for a particular DSML and activity end up making use of

informal documents, often incomplete, poorly referenced, and

sometimes scattered. This leads to an inadequate and an

ineffective use and sometimes loss of Good Modeling Prac-

tices (GMPs). Moreover, documenting GMPs by themselves

is not sufficient. If the documented GMPs are not supported

by modeling tools, their implementation still depends only

on developer skills and good will. Unfortunately, most of

modeling tools provide no means to support GMPs. Some tools

enforce modeling styles using for example the OCL language.

Few modeling tools allow some form of parameterization

through adhoc scripting languages (e.g., the J language for

the Objecteering platform). Some work [3], [4], and [5]

also propose grafting on modeling tools, such as Eclipse or

Rational, with extensions allowing the interception of the

designer’s actions and inspecting the tool’s information system

to detect some kinds of methodological inconsistencies. But,

their expressiveness is still limited, depending on the format

of the tool’s information system. Consequently, the GMPs

expressed using a given modeling language under a given

modeling tool are unusable and lost when switching to another

modeling tool that supports the same modeling language.

In this paper, we propose tackling the problem of docu-

mentation and enactment of GMPs. From identified GMPs

common characteristics, we propose a list of requirements to

be fulfilled by a language dedicated for GMP specification.

We then introduce the abstract syntax and semantic of our

GMPs specification language, called GooMod (Sect. 2). This

language is usable for GMPs associated with any type of

DSML whose abstract syntax is described in a MOF model.

Using the Eclipse platform, we developed an editor for this

language allowing thus GMP description and a GMP checker

that work with any modeler based on the Eclipse platform

(Sect. 3). This tool has been designed as a modeling assistant

to help designers to build quality models.

II. GOOD MODELING PRACTICES DESCRIPTION

LANGUAGE

Based on a wide range of well-known good practices,

we have identified a list of several required properties for

a language that allows the description of good modeling

practices. In this section we first show which properties have

been identified and then we describe the abstratc syntax and

semantic of our GMPs description language, called GooMod.

A. Identified Properties

To identify the required properties for a GMPs description

language, we conducted a study on best practices in modeling

activity. Through literature, we observe three types of good

modeling practices: those that are concerned only with the

form (style) of produced models, those that describe the

process of their design, and those that combine both. As the

third type is only a combination of the first two, we limit

our study to examples covering the former types. For the

first type we found that the best practices for Agile Modeling

given in [6] are good examples. In [7], Ramsin and Paige

give a detailed review of object-oriented software development



methods. From this review we extracted properties concerning

the process aspect of BPs. Here are the identified properties:

1) Identification of the context: to identify the context of a

GP, the language must be able to check the state of the model

to determine whether it is a valid candidate for the GP or not.

2) Goal checking: to check that a GP has been correctly

applied on a model, the language must be able to check that

the status of the latter conforms to the objective targeted by

the GP. At the GP description language level, this property

highlights the same need as the one before.

3) Description of collaborations: a CASE tool alone is able

to achieve some parts of a GP’s checking. However, some GP

cannot be checked automatically and the tool would need the

designer’s opinion to make a decision. In case of alternative

paths, sometimes the tool is in a situation where it cannot

determine the right path automatically. Thus, a GP description

language should allow interactions with the designer.

4) Process definition: a process defines a sequence of steps

with possible iterations, optional steps, and alternative paths. A

GP description language should allow processes to be defined

with such constructs.

5) Restriction of the modeling language: several good

practices based on modeling methodologies suggest a gradual

increase in the number of manipulated concepts (e.g., each step

concerns only a subset of the modeling language’s concepts).

Thus, the GP description language should allow the definition

of this subset for each step.

The documentation of a GP associated with a modeling

language requires a description that is independent of any tool;

indeed, a GP is specific to a language. It describes a particular

use of its concepts. It should not assume modes of interaction

(buttons, menus, etc.) used by an editor to provide access to

these concepts. Therefore, a GP must be described in a way

that can be qualified as a Platform Independent Model (PIM)

in Model-Driven Engineering (MDE) terminology. Ignoring

this rule would lead Quality Assurance Managers (QAM) to

redocument the GPs at each new version or tool change. The

language we introduce in this section, called GooMod, offers

a way to document GPs independently of any editor (language

of PIM level).

B. Abstract syntax of the GooMod Language

The abstract syntax of the GooMod language is given in

Fig. 1. The process part of a GP is described as a weakly-

connected directed graph. In this graph, each vertex represents

a coherent modeling activity that we call a step. Arcs (iden-

tified by Bind in our metamodel) connect pairs of vertices.

Loops (arcs whose head and tail coincide) are allowed, but

not multi-arcs (arcs with the same tail and same head).

A step is associated with four elements: its context, its

associated modeling style, the set of language concepts usable

during its execution, and a set of actions. The context is a

first-order formula evaluated on the abstract syntax graph of

the input model before the beginning of the step. We call

this formula a pre-condition. The modeling rule is a first-

order formula that is evaluated on the abstract syntax graph

Fig. 1: GooMod Meta-model

of the current model to allow designer to leave from the step.

We call this formula a post-condition. The set of the usable

language concepts is a subset of the non-abstract metaclass of

the asbtract syntax (described in a MOF Model) of the targeted

modeling language.

Because some GP require the establishment of a collabora-

tion between the system and the designer, we have included

the ability to integrate some actions at the beginning (Entry)

and/or at the end (Exit) of a step. The possible actions are:

output a message, an input of a value and the assignment of

a value to a local variable. Indeed, at each step, it may be

necessary to have additional data on the model that only the

designer can provide (goal of Input action). Conversely, it is

sometimes useful to provide designers information that they

can not deduce easily from the visible aspect of the model

but the system can calculate (goal of Output action). Hence,

the usefulness of variables associated with steps to hold this

data. Thus, actions allow interaction with the designer using

messages composed of strings and calculated values.

Steps are also defined by two boolean properties: isInitial

and isFinal. At least one step is marked as initial and one as

final in a graph. Finally, an arc can be marked as optional,

meaning that its head step is optional.

C. Semantic of the GooMod Language

Semantically, the graph of a GP is a behavior model

composed of a finite number of states, transitions between

those states, and some Entry/Exit actions. Thus, a GP is

described as a finite and deterministic state machine with states

corresponding to the steps of the process part of a GP.

At each step, the elements that constitute it, are used as

follows:

1) Before entering the step, the preconditions are checked

to ensure that the current model is in a valid state

compared with the given step. Failure implies that the

step is not yet allowed.

2) If the checking succeeds, then before starting model

edits a list of actions (Entry Action), possibly empty,

is launched. These actions initialize the environment



associated with the step. This may correspond to the

initializing of some local variables or simply interactions

with the designer.

3) A given step can use only its associated language

concepts. In fact, each concept is associated with use

type (create, delete, or update).

4) When the designer indicates that the work related to the

step is completed, a list of actions (Exit Action) will be

launched to prepare the step’s environment to this end.

With these actions the system interacts with the designer

to gain data that it can not extract from the model’s state.

5) Before leaving the step, the postconditions are checked

to ensure that the current model is in a valid state

according to the GP rules.

Leaving a step, several transitions are possible. These tran-

sitions are defined by the Binds whose tail is this step. A

transition is possible only if the precondition of the head step

of the concerned Bind is verified by the current state of the

model. If several next steps are possible, then the choice is

left to the designer. A Bind can also be defined as optional. In

this case, its tail step becomes optional through the transition

it defines. Thus, the possible transitions of the tail step are

added to those of the optional step, and so on.

III. AN IMPLEMENTATION EXAMPLE OF THE GOOMOD

LANGUAGE

To implement the GooMod language, we developed a com-

plete platform for the management of GMPs, starting from

their definition at the PIM level up to their enactment at

the PSM level. This section describes both levels and their

associated tools.

A. The GooMod Language PIM-level Implementation

In our platform, we first propose a PIM level implementa-

tion of the GooMod language described in the previous sec-

tions. Thus, GMPs described with GooMod are independent

of any CASE tool.

The GMP Definition Tool is designed for QAM in charge of

the definition of GMPs that should be observed in a company.

Our first graphical editor, designed using the Eclipse Graphical

Modeling Framework1 (GMF), allows the representation of

GMPs in the form of a process. Such a process is represented

by a path in a graph. Each node of the path is a step. At each

step of the process, the GMP Definition tool allows for the

selection of a subset of manipulated concepts from the target

language (the one used by modelers to design their systems,

UML for example), as well as the definition of a set of OCL

pre- and postconditions, as well as entry and exit actions.

B. PSM-level of the Proposed Platform

At the PSM level, the platform is composed of two parts:

1) GMP Activation Tool: it aims to link a modeling process

defined with the GMP Definition tool to a target modeling tool.

It applies a given process during the final modeling stage to

control the enforcement of GMP.

1See Eclipse Modeling Project (http://www.eclipse.org/modeling)

2) Targeted Modeling Tool: this is the end-user modeling

tool where the GMP will be performed. This tool is not in-

tended to be modified or altered directly, but will be controlled

by an external plugin, which in our case is the GMP Activation

Tool.

In our case, the targeted modeler is the GMF UML2.0

editor embedded in the Eclipse Model Development Tools

(MDT) project. However, our approach is not limited to UML

modelers or more generally speaking to the UML language.

Indeed, as the GMP Definition tool uses a target meta-model

(the one of the targeted modeling tool) as its input, the

definition of the OCL constraints and the selection of editable

concepts will be dedicated to the modeling language (any kind

of MOF-compliant DSML).

The GMP Activation tool has been designed to interact

with GMF-generated editors. If the first feature of GMP

Activation is to enact a process and check the elaboration

of models, the second feature consists of controlling some

parts of the targeted CASE tool. At each step of modeling,

only the editable concepts of the current step are active. The

Activation tool dynamically activate/deactivate GMF creation

tools according to the editable concepts allowed for each step.

With this approach, we are able to control any GMF editor

within the Eclipse platform.

C. Example: UML Class Diagram Modeling with GooMod

To demonstrate how our proposed platform could be used,

consider the following situation: in a company, some develop-

ers are not used to UML and when they need to design UML

Class diagrams, it takes a significant amount of time and it

also often leads to incorrect diagrams. To tackle this problem,

the QAM of the company has already identified some good

practices that she wants the developers’ follow.

With the help of the GooMod language and the GMP

Definition tool, the QAM has defined its own methodology

using an OMT-based process and for each step of the process,

he associated some pre- and post-conditions, entry and exit

actions, and editable concepts. A brief description of the

method is given hereafter. The process part of the method

consists of five steps, with their associated context, actions,

and concepts. For the sake of brevity, several details such as

OCL pre- and postconditions have been omitted:

1) Create packages: during this initial step, only packages

should be created. So, only the concept Package from

the UML metamodel will be available.

2) Create classes: at this step, only the concept Class will

be made available. Before to enter this modeling step,

it must be verified that at least one package has been

added to the diagram. To do so, a pre-condition is added:

Package.allInstances()->notEmpty().

3) Adding attributes and operations: for each class, design-

ers should consider adding attributes and maybe some

operations if needed. The selected UML concepts for

this step are Property and Operation.

4) Adding relationships: as this modeling step is not nec-

essarily required, the transition that leads to this step is



marked as optional; thus, designers are allowed to skip

this step and reach the final step. Designers are allowed

to create Association, Generalization, Dependency, and

Realization relationships.

5) Refactoring: in the final step of modeling, all the

concepts manipulated in the preceding steps are made

available, thus enabling the refactoring of all elements

in the diagram. As a last verification, some metrics can

been defined as post-conditions, such as for instance that

there should not be more than 20 classes per package:

Package.allInstances()->forAll( p:Package

| p.ownedElement->select( e:Element |

e.oclIsTypeOf(Class) )->size() <= 20 ).

Even if this example is rather straightforward, its purpose is

to show how QAM can use the GooMod language to define, in

an independent manner of any tool, their practices. The process

part of the presented method has bee build using the graphical

notation of the GMP Definition tool (steps and binds), whereas

non-graphical properties of the language are defined with the

help of editing assistants (pre- and postconditions, entry and

exit actions, and editable concepts). Once a good practices

description is finished, the model is stored in a XMI format

to be used by other tools.

In this example, the UML modeler used by the designers is

the standard UML2 modeler provided in the Eclipse platform.

As this editor is based on GMF, our GMP Activation tool

is able to automatically adapt itself to this modeler. When

developers start designing UML Class diagrams, they first

load the GooMod model defined by the QAM, and launch

the controlled editing process. The full case study presented

in this paper is provided as a screencast at http://www-valoria.

univ-ubs.fr/SE/goomod.

IV. RELATED WORK

Several works suggest introducing processes and tools that

facilitate storage, sharing, and dissemination of GP within

companies (e.g. [8], [9]). They advocate in particular the use of

real repositories allowing various forms of consultation, thus

facilitating research and discovery of GPs. However, the GP

referred to by these systems are documented and available

only through textual and informal. It is therefore impossible

to make them productive in order to control their use within

CASE tools.

To the best of our knowledge, there is no other work

on the definition of rigorous languages for documenting the

modeling GP. However this field can benefit from works

concerned with method engineering [10] and software devel-

opment process [11]. With CASE tools, several works suggest

encouraging, even requiring, the respect of certain GP. The

domain that had produced good results in recent years is

the one that focuses on the automation of GP concerning

detection and correction of inconsistencies. These include, in

particular, the work presented in [5], [4], and [12]. They

propose adding extensions to modeling tools, such as Eclipse

or Rational, that are able to intercept the actions of developers

and inspect the information system of the tools in order to

detect the occurrence of certain types of inconsistency. These

works involve GP with a much smaller granularity than those

we are dealing with.

V. CONCLUSION

The quality of a software system is highly influenced by

the quality of the process used to develop and maintain it. The

belief in this premise is seen worldwide in quality movements,

as evidenced by the ISO/IEC body of standards or by the

CMMI process improvement maturity model. The latter model

describes an evolutionary improvement path, from immature

processes to disciplined, mature processes with improved qual-

ity and effectiveness. All our works tackle the requirements

emphasized in those quality models, in a limited but more

and more important scope in today development processes:

modeling activities.

This paper is a first step in this direction. A language

(GooMod), that can be used by quality engineers, allowing

the rigorous documentation of a high variety of good modeling

practices in a formalism independent of any “CASE Tools” is

described. To control and facilitate the use of these practices

in projects, the framework we proposed is easily adaptable for

any editor based on GMF (because most of the used modeling

editors are Eclipse plug-ins). Thus, designers build models

that comply with these good practices. Moreover, the GooMod

language is powerful enough to define practices dedicated to

collect valid data at some points of the modeling activities.

REFERENCES

[1] L. Gratton and S. Ghoshal, “Beyond best practices,” Sloan Management

Review, no. 3, pp. 49–57, 2005.
[2] SEI, “CMMI for Development, Version 1.2,” Software Engineering

Institute, Tech. Rep., 2006. [Online]. Available: http://www.sei.cmu.edu
[3] A. G. Cass and L. J. Osterweil, “Process support to help novices

design software faster and better,” in ASE ’05: Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineer-

ing. ACM, 2005, pp. 295–299.
[4] A. Egyed, “Uml/analyzer: A tool for the instant consistency checking

of uml models,” Software Engineering. ICSE 2007. 29th International

Conference on, pp. 793–796, 2007.
[5] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model

inconsistency through operation-based model construction,” in ICSE

’08: Proceedings of the 30th international conference on Software

engineering. ACM, 2008, pp. 511–520.
[6] S. W. Ambler, The Elements of UML(TM) 2.0 Style. New York, NY,

USA: Cambridge University Press, 2005.
[7] R. Ramsin and R. F. Paige, “Process-centered review of object oriented

software development methodologies,” ACM Comput. Surv., vol. 40,
no. 1, pp. 1–89, 2008.

[8] G. Fragidis and K. Tarabanis, “From repositories of best practices to
networks of best practices,” Management of Innovation and Technology,

2006 IEEE International Conference on, pp. 370–374, 2006.
[9] L. Zhu, M. Staples, and I. Gorton, “An infrastructure for indexing

and organizing best practices,” in REBSE ’07: Proceedings of the

Second International Workshop on Realising Evidence-Based Software

Engineering. IEEE Computer Society, 2007.
[10] B. Henderson-Sellers, “Method engineering for OO systems develop-

ment,” Commun. ACM, vol. 46, no. 10, pp. 73–78, 2003.
[11] OMG, “Software Process Engineering Meta-Model, version 2.0

(SPEM2.0),” Object Management Group, Tech. Rep., 2008. [Online].
Available: http://www.omg.org/docs/formal/08-04-01.pdf

[12] A. Hessellund, K. Czarnecki, and A. Wasowski, “Guided development
with multiple domain-specific languages,” in MoDELS, 2007, pp. 46–60.


