NPE - A Conceptual Model and Language for the
Representation of Norms

Andrew Douglas
School of Electronics and
Computer Science
University of Southampton
UK
Email: akd07r@ecs.soton.ac.uk

Abstract—Originating in Deontic logic, norms and normative
facts enable philosophers, designers and developers to reason
over actions an actor may or may not perform with respect to
social rules. Normative concepts have the power to enable us to
reason with flexibility over actions and beliefs. In the context
of Service Oriented Architectures (SOAs), where communities of
potentially autonomous, heterogeneous, independently designed
components may be interacting; the introduction of norms to
influence behaviour could be indispensable. Norms should not
be seen as constraints to behaviours, rather they are metrics
against which behaviours can be measured. Applying this analogy
to components in SOAs enables participants to reason over
behaviours with the flexibility to react to changing community
norms whilst putting their own interests first.

This paper presents a formalism for the representation of
norms in agent and service based architectures. Specifically, we
propose a method for modelling norms in expected behaviours
of actors. The result of our work provides a language, NPE,
enabling participants to reason over norms, actions and beliefs.

I. INTRODUCTION

The increasing deployment of services as a viable dis-
tributed computing paradigm has promoted openness, flexi-
bility and the standardisation of heterogeneous architectures.
As SOA has matured, so the potential for the emergence of
complex social networks of services has been witnessed. SOA
provides viable high-level abstractions, models and approaches
to enable the exposing of functionality in such a way as to
promote the creation of complex workflows utilising multiple
groups of services.

As with any society, the complex distributed eco-systems
which we are witnessing the emergence of, require regulating
through coordination and administration. In a wider context,
societies as a whole utilise a notion of norms for much
of this regulation. Norms offer restrictions on behaviour, or
alternatively metrics against which behaviours can be com-
pared. Often disputes can be avoided or resolved with greater
efficiency not by rules or laws, but by informal social norms
[1].

Web services have been recognised as one of the most
promising approaches for the realisation of large scale SOAs
and service oriented computing (SOC). One of the most strik-
ing advantages of the Web Service paradigm is that the task
of aggregating complex workflows from libraries of simpler

Dr Robert Walters
School of Electronics and
Computer Science
University of Southampton

Email: rjw1@ecs.soton.ac.uk

Dr Gary Wills
School of Electronics and
Computer Science
University of Southampton
UK
Email: gbw@ecs.soton.ac.uk

UK

services, or even atomic services is relatively simple. Semantic
Web Services take SOA and Web Service architectures one
step further. By enabling actors to exchange semantically
rich data complex tasks can be undertaken autonomously.
One of the most interesting uses for semantic data with
regards to SOC is the marking up of service descriptions,
behaviours and workflows. This enables machine mediated
partner selection, automated workflow production and many
other activities, which would be useful to an actor wishing
to behave autonomously. With increasingly complex SOAs
and autonomy aided by Semantic Web Service techniques,
there are many uses for norms. Most notably in behaviour
control, and to aid service discovery. This research focuses on
modelling norms with regards to the behaviours they restrict
and provides a language to enable the representation of norms
for either of the above tasks.

A. Norms

Deontic theory tells us that norms enable reasoning over
what actions an actor may or may not perform with respect to
social rules [2]. However, rules and norms differ in severity
and emergence. Rules are typically concise, often governing
principals or regulations laid out by an overseeing director.
Norms are more fluid, typically standards or patterns, enforced
by society. Norms are far more likely to change during the
lifetime of a society, and may be specific to individual groups
within a society. Norms shared by members of a group
have authority over potential actions by way of approval or
disapproval by other members. Two classes of social norms
exist; formal and informal [3]. Informal norms exist because
of trends or patterns of behaviour within a group and are often
not sanctioned. Formal norms exist in conjunction with rules,
providing penalties for dissent or non conformity. As societies
become larger and increasingly decentralised, rules become
harder to enforce, so norms become a tool to achieve social
order [4].

Norms can change from society to society and between
groups of associated actors. On a global stage there are many
different societies and groups and it is usual for each to have
it’s own specific norms. Being able to react to differing norms
while interacting with partners around the world is critical in

todays business markets [5]. Norms offer a novel tool for both
service adaption and as a control for social order on a global
scale.

II. AGENTS AND SERVICE ORIENTED ARCHITECTURES

A key part of many modern distributed systems is the
participation of autonomous, self-interested agents. The flexi-
bility of current systems enables actors to behave according to
there own decision making metrics. Intelligent software agents
have become the leading paradigm for autonomous distributed
software design. They are by definition; autonomous, social,
reactive and proactive [6]. All of which characteristics make
them well suited for participation in any SOC approach [7].

Both SOC and and agent paradigms are concerned with
enabling simpler access to data whilst potentially retaining a
greater degree of control. As both models offer the flexibility
to handle the unpredictability of connections on an open
system such as the Web, they have the power to “become
an essential part of most Web-based applications, serving as
the glue that makes a system as large as the Web manageable
and viable” [8]. Agents have evolved the ability to operate
with-in SOAs, consuming Web Services to gain additional
functionality they might not otherwise have had. Combining
SOC with agent technologies aims to overcome the flaws each
paradigm has, and produce a cohesive structure to enable more
complex problems to be solved smarter and faster.

Agents can typically handle the complex workflows and
task sets required by current businesses. Agent-oriented design
paradigms have the flexibility and dynamism which can enable
them to partake in interactions over the Web, which by it’s
nature is both open and uncertain. The ability to plan around
failures and react to changes mean that agents will soon
play a large role in SOC. It is likely that this role will be
made even more important as increasing numbers of Semantic
Web Services are included in SOAs. Semantically marking up
services enables agents to discover new services and compose
new workflows autonomously. Service composition is an im-
portant issue in SOC, agents capable of efficient selection and
composition of Web Services can solve problems faster than
others, overcoming barriers such as untrustworthy partners,
unreliable connections and volatile pricing. Service selection
for Semantic Web Services can be split in to three main areas;
service discovery, service selection and invocation (binding).
For an agent to autonomously consume a Web Service, it must
be able to do all three. This will require the service to provide
semantically marked up data about it’s self to aid selection.
The provision of semantically rich descriptions is one that has
been covered in past research [9], [10], [11], [12]. We believe
that there is a gap in previous research, enabling norms to be
leveraged to aid service selection. By using norms to reason
over behaviours articulated in a service description a selection
can be made which takes into account social rules and values.

Both SOC and agent architectures are capable of forming
complex distributed systems. Participants interacting within
these systems may group together to form societies, either
by design or unintentionally as the result of the pull of a

specifically strong incentive. As with any society, control in a
closed system, or on a small scale is easy to achieve. However,
in an open system such as the Web, or with large groups
of collaborating agents and services, achieving control can
be very difficult. Here socially enforced rules in the form
of norms can be useful to aid in controlling interactions.
Formal or informal norms can be created and shared between
participants in a distributed fashion. Failure to adhere to a
norm would be punished by social exclusion or other par-
ticipants not being as willing to interact. Utilising norms in
this fashion enables social rules to change over time or to
alter between groups, requiring a design of agent which could
reason over normative events. Norms themselves could even
be semantically annotated and published in repositories for the
aid of agents who might wish to start interacting with a new
social group.

Following a short discussion about the use of BDI agents,
the rest of this paper will introduce NPE as a mechanism for
the inclusion of norms into SOC and agent based paradigms.
As an abstract model followed by a proposed language.

A. BDI Agents

There are many different types of agent however, the one
which fits this researches view of what an agent needs to
handle interactions with SOAs and process norms is the BDI
architecture. The notions of beliefs (B), desires (D), and
intentions (I) are well know in Al research [13]. Agents which
leverage primarily intention based approaches are commonly
referred to as BDI agents. In a BDI approach the choices
an agent makes are influenced by what it believes about
the surrounding world (B), states it desires to achieve (D)
and the plans it has formulated to bring about its desires
(D [14]. The BDI runtime cycle works in general terms in
the following manor; generate options from desires, select
an option, update intentions, execute intentions, update belief
base [15]. By using this workflow BDI agents step though
their worlds situation by situation, always aware of the visible
effects or their and any other agents behaviours.

It is the clear knowledge of beliefs and desires which make
BDI agents a good choice for the application of advanced so-
cial technologies such as norms. A number of research papers
have in the past suggested augmenting BDI architectures with
a range of new abilities to aid social interactions [16], [14],
[171, [18], [19]. From the perspective of this research having
a clear and verifiable set of all the agent’s beliefs gives BDI
the advantage over other methodologies when applying norms.
Having the ability to reason over actions which have happened,
are proposed by an external source, or intended by the agent
allows norms to be included at all points.

NPE has been designed with BDI in mind. Specifically
NPE relies on an ability to reason over current beliefs to
form conditions for activation or deactivation of a norm.
Coupled with this every norm controls an activity which may
or may not be allowed depending on the normative fact in
question. It is intended that in final implementations, an NPE
validating step could be added to the BDI control loop before

desires are created. However this paper will not outline this
implementation.

III. NORMS FOR BEHAVIOURS

Norm based agents allow notions of normality and normal
behaviours to influence and motivate their plans and actions.
Agents utilising norm based approaches allow their plans to be
shaped not only by concrete beliefs and rules, but also by more
fluid notions of what might be ideal (or normal) for a situation.
The norms which influence such agents are representations of
social concepts existing between agents in any agent society.
The same could be said to be true of any norm implemented
in any society by any actor.

This research presents a model for normative facts, and
suggests how such facts might be utilised. Normative facts are
modelled as tuples containing all of the elements required for
them to have effect. This includes triggering and deactivating
conditions, and role and subject limiters. The following section
outlines the components of our model for norms, and gives a
short example.

This work is influenced heavily by agent research. In
particular parallels can be drawn with work by prominent
researchers in the field of norm-based agents [16], [17], [20],
[21].

A. Scope of These Proposals

Within the scope of this research norms can be treated as
social concepts (not hard and fast beliefs), being both role
and society specific (norms change between societies and are
specific to certain actors fulfilling a set role in the current
society). Some of the details involved in this model have
been omitted from this paper. Our aim is to give the reader
an understanding of what a normative fact is, and how one
might be represented. Details about handling sets of norms, or
utilising norms for any one specific purpose have been omitted
as they fall outside the scope of the creation of normative facts.

B. An Abstract Model for the Representation of Norms

To uniquely identify concepts and ideas within the following
model the identifier label is defined. A label is in it’s own
right a concept, however it is separate from the core concepts
involved in this model (norms, roles, actions, exceptions and
actors). Within the scope of this abstract model, the superset
LABLES and it’s subsets(Lor™ms —[Actors —[Roles apq
LFwceptionsy gre gl finite. This stems from the one-to-one
mapping between each label, and an element in the model
(be it an actor, norm, exception, or role).

1) Roles: Actors fulfil roles within a system. Each actor
is identified by a label from the finite set LA°°"$. Norm
specifications address a role not individual actors. However,
actors must be defined as they are required to identify violators
in any implementing system.

Within any system there is a finite set of ROLES. In this
model each role is identified uniquely using a label from the
finite set L°'*s. Norms are role specific - every norm must
have at least one role under which it can be triggered. At the

most basic level a norm can be seen as a characteristic of
their parent role, limiting the actions an actor in that role
can undertake.

Each role is identified by a label from the set L°/¢s. Each
actor holds a non-empty set of roles such that ROLES C
LTles Norms are role sensitive and every norm applies to
a non-empty set of roles.

2) Actions: Actions are activities to be undertaken by an
actor fulfilling the role addressed by the current norm.
Actions are role specific. For the purpose of this model,
actions are treated as labels only. Each action is identified
by a label from the finite set LActioms,

An action A defines a prescribed activity to be undertaken
by an actor. Every action A has exactly one actor AA4ctor,
The set ACTIONS = {Ay, .., A,} is a finite set of actions
available in the current world. Within the current world a set
of identified actions exists such that ACTIONS C LActions,

3) Norms: Basic normative ideas and the concept of a norm
are essential to any norm-based system. This is just as true
for the following norm-based service selection framework, as
it is for norm-based agents. The following model relies on
three core norms; Permit, Forbid and Obliged. Any action not
covered by one of the above norms can be assumed to be
unrestricted in regards to this model. Norms cannot be simply
combined, they may, however, be nested in certain orders.

With the above definitions in place it is now possible to
define a conceptual representation of a norm. This model
caters for three core types of norms; permissions, obligations,
and forbidden. All other restrictions originate from these core
types. Of the three types, permission enables an actor to carry
out an activity. Forbidden is the contrary to permission in
that it denies the actor the ability to undertake an activity.
Obligate, is different in that it stipulates that not only is the
actor permitted to undertake an action, they are forbidden not
to undertake the action.

The set LN°"™s = {perm, obli, forb} is the set of labels
used to identify the three core norms; Permission (perm),
Obligation (obli), and Forbidden (forb). Having acquired a
label for each of the three core norms used within this
system, it is now possible to define the following four valid
formulations for activities within a norm declaration:

o perm(a) = “Permitted to undertake action a”

o perm(—a) = “Permitted to not undertake action a”

e —perm(a) = “Not permitted to undertake action a”

o —perm(—a) = “Not permitted not to undertake action a”

These norms are oversimplified, but show how a very simple
representation of a norm could be created. There is much
information missing from this representation, however, it does
show that both norms and the activities they govern can be
manipulated. With this representation in mind we can move
on to define a few simple rules for the interaction of norms:

o perm(a) = —forb(a)

o perm(a) A perm(b) = perm(a A b)

e obli(a) = forb(—a)

o —perm(—a) = obli(a)

o —perm(a) Z perm(—a)

o perm(a — b) #Z perm(b — a)

e obli(a — b Ac) = (obli(a) = obli(bAc))

Using the labels defined above, a model norm can be
created. A norm in our model can the be defined as a tuple:

N = <’I’L, lActwnsz7 s, ¢, d, €>

Where:

o n € LN°™™s (the label attributed to the current type of
norm; perm, obli, or forb)

o [Actions i a specified set action labels where each [€
LActions

o R € L!esis the role from which the action originates.

o 5 € LSiccts is the subject upon which the action may
act

o ¢ € L[Conditions s 3 condition under which the action
may be initiated and the norm activated. The boolean
condition “true” can be used to denote a norm which
will always be triggered given a matching role, subject,
and activity.

o d € [Peactivationsis 4 (deactivation condition, under
which an active norm will be deactivated. This condition
have no significance when the norm is inactive. The
boolean condition “false” may be used to signify a norm
which once activated will always hold for a matching
role, subject, and activity.

o e € LFPwceptions g an exception to be triggered if the
norm is violated

The preceding tuple contains all of the information required
to define a norm for an action or set of actions. To make
each norm easier to read and differentiate, the syntax found
in Figure 1 has been adopted. This puts the normative type
declaration first forming a more familiar expression.

4) Example: With the aforementioned definitions in place,
norms can be explicitly defined using formal semantics. For
example, the normative statement in Figure 1 expresses that:
Actors fulfilling the role R are obliged to undertake the action
a on subject s when the precondition ¢ is matched. Breaking
this norm will trigger exception e. The norm will stay active
so long as the deactivation condition d is not true. Such a
formalisation, allows this abstract system to interpret the given
norm as a given belief, and apply it to a plan using a provided
matching algorithm.

obli(a, R, s,c,d,e)

Fig. 1. Example Norm 1

A fuller example can be demonstrated by the norm in
Figure 2. This norm forbids actors in currently in the role
“shopper” from undertaking the action “leave_shop”, once
the condition “goods_in_basket” has been triggered. This
norm can be deactivated once the condition “has_paid” has
been satisfied. If the actor does “leave_shop” while this norm
is in the set ACTIVE, then the exception ‘“shop_lifter” is
triggered. This example is presents a more comprehensive

view of the representation of a norm in our system. The subject
“goods” is included for future use, although it is currently not
applied.

forb(leave_shop, shopper, goods, goods_in_basket,
has_paid, shop_lifter)

Fig. 2. Example Norm 2

C. Triggering

When processing a plan or observation the underlying
normative architecture deconstructs the component activities
into a sequential list of actions, states, roles, subjects and initial
beliefs. This sequence is then checked against the normative
model. Each norm has an activation condition ¢ such that c €
LConditions " Conditions can be evaluated by an implementing
system to evaluate either true or false; ¢ = {true, false}.
When an activation condition is met, the norm is the eligible
for activation. Norms are triggered when the plan features an
actor fulfilling a role “R”, undertaking an action “a” on a
subject “s”, where R, a, s match the required role, action and
subject of a norm in the system, and the preconditions of that
norm are true. If the role, action subject, and preconditions all
match, then the norm is triggered. Upon triggering the current
norm is moved to the ACTIVE set. ACTIV E is the set of all
active (triggered) norms, such that ACTIVE = {Ny, .., N;}.
It must be true that ACTIVE C NORMS so that any norm
in ACTIV E must also exist in the superset NORM S, the
global set of all norms in the system. If the current norm is
violated, it’s exception clause is triggered.

Once active, the deactivation condition can then be eval-
uated. If the deactivation condition is evaluated to “true”,
then the norm is removed from the set active and becomes
deactivated (and the activation condition again starts to be
tested). The deactivation condition may never be set to boolean
“true” (as that would invalidate the norm), it may however be
set to boolean “false” to signal a norm which once active
will always hold for a given combination of role, subject and
action.

D. Violations

Violating an active norm causes an exception to be triggered.
Only norms currently in the set ACTTV E may violated and,
thus trigger exceptions. Exceptions trigger new norms or force
actors to undertake preset actions. Any norm can have a
maximum of one exception (although exceptions can be nested
as can norms). Exceptions are identified using labels from the
finite set LF¥ceptions = A norm specification will hold a single
exception e € LFreertions Triggering an exception may or
may not force the abandonment of any norm specification.

E. Consistency

For any norm based service selection model to be success-
ful, the norms defined, stored and handled by the system must
be consistent. Consistency applies to both the norms and the
actions which the norms regulate. To ensure that all norms in

use are consistent, it is imperative that the initial norm base
is checked at startup and rechecked every time a new norm
is added. Norms need to be consistent individually in regards
to the actions they regulate, and consistent in regards to any
interdependencies which may exist between multiple norms.

Consistency checking for norms, in a norm base of any
model, should be assisted by an initial process of normalisation
for any normative statements included (to prevent the same
norm being defined several ways and to ensure that there
are several consistent methods for defining the majority of
required norms). This process should simplify all the norms
in the base to a number of default types. This process both
makes consistency checking easier to fulfil and simplifies the
norm base.

It is important to note, that there are two types of constancy;
local consistency and global constancy. Norms are required to
be locally consistent (every norm in a local set must be con-
sistent with every other). No norm can be added which might
cause the local set of norms to become inconsistent. Globally,
norms within the local set will inevitably be inconsistent with.

IV. A LANGUAGE FOR NORM PROCESS EXPECTATIONS

For any system to be viable and useful developers will
require both a concrete implementation of the abstract model
and a language in which to define and store any norms to be
implemented. It is true that a system could be created with no
base (external) language for norm definitions and only basic
internal representations. Such a system however, would have a
very limited appeal in wider applications. Creating a language
in which norms can be represented and interpreted by both
computers and humans, enables the rapid creation of a norm
base for any existing or new system.

This section outlines a language for the description of norms
in regards to processes (actions). The language for norm-based
process expectations (NPE), aims to provide a mechanism to
easily create sets of norms which relate to practices during
an interaction. This language has been built on a number of
existing protocols.

A. Example Situation

An example situation will be used to illustrate the type of
actions and processes norms defined in an NPE document
might be expected to govern. For the purposes of this research,
it was decided that a realistic example of a service providing an
interface to a business resource should be used. The following
example is based on two competing fictional B2C service
providers, referred to as Frango and Dupeme. Both of these
companies provide access to an important resource through
a publicly visible Web Service. Both of these companies also
provides information about their service by way of an OWL-S
document with a process description. In order for an consumer
to access the resource, they must choose which company
to use, and follow the workflow described in the process
model. At first glance Frango and Dupeme are virtually
indistinguishable from one another. They both provide access
to a resource, they both required very similar sets of inputs.

The only real differences are in the workflows, exposed by
the OWL-S process models, which are required to be followed
for the service to be used. The question we are attempting to
answer with this very simple example is; given two workflows,
can a consumer employ norms to differentiate between the two
services and thus choose one?

B. Prolog-based NPE

The initial NPE language is Prolog-based, and intended to
be used to prove the concepts behind the NPE model. Prolog
was chosen as its syntax already consists of sets of clauses
(rules and goals) which map well onto norms, and concepts
outlined previously.

Following strictly the definitions for a norm prescribed
above, Prolog-based NPE is essentially a distilled version
of a pure Prolog representation of a normative action. A
complete normative statement can be represented as a single
Prolog-based NPE rule. Correctly formatting each fact can
improve readability, without the need to change the structure
of any norm. An example of correct formatting, and the basic
structure of Prolog-based NPE can be found in Figure 3. As
well as improving readability, Prolog-based NPE also adds the
notion of exceptions to facts. Correct processing of exceptions
will require a specially modified Prolog interpreter. However,
the syntax of Prolog has been adhered to as best as it can be,
so as to enable a new processor to be synthesised out of an
old Prolog one, as well as to enable syntax checking without
the need for a new processor.

Prolog-based NPE is the starting point in the investigation,
of how to represent norms in a machine and human readable
form. It is, however, not perfect; the resultant Prolog facts are
large and non-normalised. If designed without care multiple
facts could represent the same normative statement. However,
many of these problems could be overcome with the careful
design of facts.

An initial norm example has been created grounded in the
real-world. Figure 4 shows this simple norm which governs
a basic everyday shopping interaction. The norm states that
a shopper is obliged to pay (#pay) for goods when they
hold the belief that they have finished their shopping (#shop-
ping_complete). This norm is deactivated when an exchange
of credit has been complete (#transfer_complete). If this norm
is violated a failure_to_pay_exception is thrown (in the real-
world possibly resulting in the action #police_called). This
norm roughly equates to having to pay for goods when
shopping is finished.

Following on from this we can convert the norm defined as
a tuple in Figure 2 into Prolog-based NPE (Figure 5). To do
this a “forb” prolog fact is created and the action leave_shop is
converted to the identifier #leave_shop. Handling of activation
and and deactivation conditions is carried out by the addi-
tion of a keyword condition, in this case “goods_in_basket”
translates to “in(#goods_in_basket)” and “has_paid” becomes
“once(#paid)”. The meaning of these two conditions can be
taken as true if; the actor has the belief (in their belief base)
that there are currently goods in their basket in the and once the

<npe_document> ::= <IDENTIFIER> "{” <norm_fact> "}”.

<norm_fact> ::= ("perm”
| 7obli”
”forb”

)

» .
<action>
<roles> 7
<subject> 7"
<preconditions> ")’
< deactivation_conditions > .’
<exception>

u) 2

<action> ::= "#’<IDENTIFIER >

99999

<roles> ::= "[” <role> (7, <role>)x ”]”

<role> ::= <IDENTIFIER >

<subject> ::= <IDENTIFIER>

<preconditions> ::= <condition>

< deactivation_conditions > ::= <condition>

<condition> ::= <prolog_predicate >

<prolog_predicate> ::= <atom> | <atom>"(" <term_list> ”)”
<term_list> = <term> | <term_list> " <term>

<term> ::= <variable> | <structure>

< structure > = <atom>"(" <term_list> ”)”

<atom> ::= <variable>

<variable> 1= <text> (<text>)x
<text> ::= <char> | <charupper> | <digit> | <symbol>

<char>:u=a|blc|d]| .. |y]z
<charupper> :==A|B|C|D]| .. | Y|Z
|23 14]5[6]7]8]9

<digit> =0 | 1
| #

<symbol> = _

<exception> ::= "throw(error (" <IDENTIFIER>))”

Fig. 3. Prolog-based NPE (In BNF Form)

obli (
#pay,
Shopper,
goods,
in(#shopping_complete),
once(# transfer_currency),
throw(error (failure_topay_exception))).

Fig. 4. An Example of the Norm Obligated

actor has undertaken the action “#paid”. A full explanation of
keywords and conditions can be found in the next section. The
NPE representation of the norm also contains a representation
of the exception which would be thrown on violation. In this
case the exception is mapped directly from the original tuple
form.

These two examples also show how two norms can be very
different in their appearance and terms, but govern very similar
instances. Both of these norms attempt to make sure that the
shopper pays for goods before leaving the shop. An important
task for any implementing system, would be to decide whether
to allow both norms to co-exist.

forb (
#leave_shop,
Shopper,
goods,
in(#goods_in_basket),
once(#paid),
throw(error (shop_lifter))).

Fig. 5. An Example of the Norm Forbidden

1) Keywords: Prolog-based NPE tries to stick as closely
as possible to the original syntax of Prolog. This limitation
aims to ensure that interpreters can be easily created, and the
testing of documents is simple. On the whole this objective
has been achieved successfully, however some changes are
necessary to facilitate higher degrees of coupling with process
descriptions and handling of complex scenarios. Most notable
is the inclusion of identifiers preceded by the character “#’
linking NPE facts to regions or tasks in an underlying process
model or belief base. These identifiers can be processed nor-
mally (handled as literals or ignored) by many standard Prolog
interpreters. A specialised NPE processor would then make use
of these identifiers for linking to a given process model. A set
of specialised queries for condition processing have also been
added. Again these are normal Prolog statements, but they
have special meaning in an NPE setting. As with the above
identifiers these queries would be passed to a specialised NPE
interpreter for further evaluation. Most of these queries relate
to evaluating the contents of current states, the agents belief
base, or the current process model being evaluated. These
keywords include:

o in(#region)

— A query to test if at this time, the actor believes that
it is (or would be) “in” the given task “#region”.
e Once(#task)

— True once the actor evaluates that the task “#task” is

being undertaken
o if(#belief)

— True if the belief “#belief” is found in the belief base
of the actor. This may be the actors actual belief base,
or one created during the evaluation of any proposed
workflow.

2) Exceptions: Exceptions are an important part of NPE.
They enable developers to set what happens when a norm
is violated. This paper will not go into detail about how
exceptions might be defined or stored. Prolog-based NPE
contains a mechanism for the definition of which exception
is to be thrown on violation. This call would have to be

interpreted by the control logic as it see’s fit. We can envisage
that exceptions are likely to come in two variants; blocking
and non-blocking. Blocking exceptions will stop the flow of
the NPE interpreter and signal that a norm has been broken that
is of “severe” significance. Non-blocking norms will not stop
the flow of the interpreter, instead they contain a score or note
which is recorded by the interpreter. This could be used later
for the grading of workflows. Exceptions could also be used
to chain norms together. For example, violation of the norm in
Figure 5 would cause the exception “shop_lifter” to be thrown.
So long as this is a non-blocking exception, this could cause
any norm with the triggering condition “if(error(shop_lifter))”
to be triggered during the next interpretation cycle.

ISO Prolog provides a built-in exception handling mech-
anism through the catch/3 and throw/l control constructs.
However, the technique applied is somewhat limited and
certainly does not give the control expected by any developer
used to modern object oriented languages. In the scope of the
current research, exceptions are seen as calls thrown by the
interpreter when it detects that a norm has been violated. The
exception call is defined within the triggering norm, and may
or may not halt processing.

C. Example

Returning to the previously outlined example, we now have
a language in which we can describe a set of norms for the
what we believe to be acceptable for a service to expect us
to do. It is assumed that the consumer in question is a BDI
like agent, with a belief base, the ability to comprehend OWL-
S documents, and an NPE interpreter. An external matching
service has provided the consumer with the OWL-S documents
for Frango and Dupeme, the consumer must now decided
which of the services it wishes to interact with. Matching
based on inputs and outputs has been unable to differentiate
between either. So the consumer extracts the process models
from the provided OWL-S documents, and uses an NPE based
interpreter to reason over each step in the proposed workflows.

The consumer has a set of norms which includes the
two outlined in Figure 6 and Figure 7. When the consumer
evaluates the workflow for the Frango service they find that
the norm in Figure 6 is violated. This consumer has never used
this service before, has no prior knowledge, and no reason to
trust it, thus the step which requires the consumer to share their
email address with the service triggers the norm. This norm is
however non-blocking and so a note placed by the service. The
second service for Dupeme is also processed. This is stopped
very early on, as before the consumer and service have got to
the point when an agreement about the terms of any access to
the resource have been made, Dupeme wants the consumer
to send credit card and payment details. This violates the
second norm (Figure 7). This norm is serious enough to be
blocking, so the processing of the Dupeme workflow stops.
The consumer is now left with the following choice; use
Frango which is asking for my email address despite the fact
that I have no reason to trust it with such data, or use Dupeme,
a service which triggered a serious norm violation by asking

for sensitive payment details before a deal on access has been
made. The final choice would be left to a matching algorithm
of the consumers choosing, this research would like to suggest
that in this case the Frango service would be the best solution,
as it violates only a minor norm.

forb (

#send_email,

Consumer,

email_address,

in(# seller_unverified),

once(# seller_verified) || once(
S$transaction_safely_completed),

throw(error (seller_not_verified))).

Fig. 6. Example Norm 3

forb (
#send_payment_details,
Consumer,
cc_number,
not(in(#access_agreed)),
in(#access_agreed),
throw(error (no_agreement))) .

Fig. 7. Example Norm 4

D. Scope of This Language

Prolog-based NPE is not perfect. It has been designed to
show how a language might be created to represent norms
within the abstract model outlined in this paper. Details of
how exceptions are to be handled and how an actor might
produce a plan against which these norms can be tested have
been left out as have concrete implementation issues. It was
our intention in this paper to lay down an initial case for this
language, and show how it might be used in a fuller system. By
limiting the scope it is hoped that this language can be made
easier to understand, and that a wider range of applications
can be considered.

V. FUTURE WORK

We believe the proposed NPE model is applicable to a wide
range of different areas. A model for norms has been adopted
which can readily be advanced to other technologies such
as peer-to-peer systems, or Grid Services. An initial Prolog
language has been created, but the simplicity of the underlying
model should allow it to be easily delivered using a different
technology. The next step we believe is to build an ontology
of norms to store this data, with a focus on delivering norms
to agents and services on the Semantic Web.

The work presented here offers a model for norms which is
applicable to many different areas of use, It is our intention to
narrow this use down with a future version aimed at modelling
norms in workflows and semantically annotated workflow
descriptions.

Future work may also focus on the use of norms in a wider
global context. An ontology for norms would enable semantic
repositories for norms to be created. As norms differ between
groups and societies around the world, an applicable extension
would be to have numerous repositories, each holding norms
related to a different group. In this way a business wishing to
utilise a service in a country or culture differing from there
own would be able to search for the applicable norms.

VI. CONCLUSION

In this paper we have shown how norms can be represented
using a simple model. That model has enabled the production
of NPE, a language for norms based on Prolog. It has been
shown that norms can be a useful tool for agents and in
SOC environments. Not only can they control participants
in an open computing environment, they can also serve to
validate potential actions. Applicable to both the monitoring
of external, and the planning of internal actions, NPE is a
versatile solution to the question of how norms might be used.

A simple example showed how NPE can be used to repre-
sent norms, and what might happen if they are violated. This
example showed how norms could be used to differentiate
between similar services on the basis of behaviours exposed
by there process models. This approach differs from many
existing IOPE based matching methods [22], [23] as it enables
the differentiation of services based on small differences
within proposed workflows.

Our approach has shown that there are numerous ways
in which norms can be utilised by actors interacting using
SOAs. The flexibility normative approaches contribute to agent
and SOC, in enabling participants to adapt to differing social
and economic situations make them well suited for use in
an ever expanding global economy. A language, NPE, has
been suggested as a starting point for the representation norms.
Future work will focus on refining this language, making the
automated selection and utilisation of norms easier and more
available.

REFERENCES

[1] P. H. Huang and H. Wu, “More order without more law: A theory of
social norms and organizational cultures,” Journal of Law, Economics
and Organization, vol. 10, no. 2, pp. 390-406, October 1994.

[2] S. Beller, “A model theory of deontic reasoning about social norms,”
in Proceedings of the Twenty-third Annual Conference of the Cognitive
Science. Erlbaum, 2001, pp. 63—68.

[3] F. Dignum, “Abstract norms and electronic institutions,” in Proceedings
of International Workshop on Regulated Agent-Based Social Systems:
Theories and Applications, 2002, pp. 93 — 104.

[4] C. Castelfranchi, “Formalising the informal? dynamic social order,
bottom-up social control, and spontaneous normative relations,” Journal
of Applied Logic, vol. 1, no. 1, pp. 47-92, Febuary 2003.

[5] J.Logsdon and D. Wood, “Business citizenship: From domestic to global
level of analysis,” Business Ethics Quarterly, vol. 12, no. 2, pp. 155-187,
April 2002.

[6] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” Knowledge Engineering Review, vol. 10, no. 2, June 1995.

[71 W. Shen, Q. Hao, S. Wang, Y. Li, and H. Ghenniwac, “An agent-
based service-oriented integration architecture for collaborative intelli-
gent manufacturing,” Robotics and Computer-Integrated Manufacturing,
vol. 23, no. 3, pp. 315-325, June 2007.

[8] M. Huhns and M. Singh, “Agents are everywhere,” [EEE Internet
Computing, vol. 1, no. 1, pp. 87-87, January 1997.

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker, “Uddie:
an extended registry for web services,” in Proceeding of the 2003
Symposium on Applications and the Internet Workshops, IEEE. 1EEE
Computer Society, January 2003, pp. 25-29.

P. A. Bonatti and P. Festa, “On optimal service selection,” in Proceedings
of the 14th international conference on World Wide Web, ACM. ACM,
2005, pp. 530 — 538.

M. Klusch, B. Fries, M. Khalid, and K. Sycara, “Owls-mx: Hybrid owl-s
service matchmaking,” in Proceedings of 1st Intl. AAAI Fal | Symposium
on Agents and the Semantic Web, 2005.

V. X. Tran and H. Tsuji, “Owl-t: A task ontology language for automatic
service composition,” in Proceedings of the IEEE International Confer-
ence on Web Services, 2007. 1EEE Computer Society, July 2007, pp.
1164-1167.

A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
bdi-architecture,” in Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, J. Allen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann Publishers Inc.,
1991, pp. 473-484.

F. Dignum, D. Morley, E. Sonnenberg, and L. Cavedon, “Towards
socially sophisticated bdi agents.” in Proceedings of the Fourth Inter-
national Conference on MultiAgent Systems. 1EEE Computer Society,
2000, p. 111.

A. S. Rao and M. P. Georgeff, “Bdi agents: from theory to practice,”
in Proceedings of the First International Conference on Multi-Agent
Systems ICMAS 95, 1995.

F. Dignum, “Autonomous agents with norms,” Artificial Intelligence and
Law, vol. 7, no. 1, pp. 69-79, March 1999.

J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre,
“The boid architecture: conflicts between beliefs, obligations, intentions
and desires,” in Proceedings of the fifth international conference on
Autonomous agents, SIGART. ACM, 2001, pp. 9-16.

F. L.y Lopez, M. Luck, and M. d’Inverno, “A framework for norm-based
inter-agent dependence,” in Proceedings of 3rd Mexican International
Conference on Computer Science, September 2001, pp. 15-19.

L. deSilva and L. Padgham, “Planning on demand in bdi systems,” in
Proceeding of he International Conference on Automated Planning and
Scheduling (ICAPS), June 2005.

M. Kollingbaum and T. Norman, “Noa - a normative agent architecture,”
in Eighteenth International Joint Conference on Artificial Intelligence
IJCAI’03, G. Gottlob and T. Walsh, Eds. Morgan Kaufmann Publishers
Inc., 2003, pp. 1465-1466.

G. Andrighetto, M. Campenni, R. Conte, and M. Paolucci, “On the
immergence of norms: a normative agent architecture,” in Proceedings
of AAAI Sympoisa Fall 2007, AAAL. AAAI Press, 2007.

M. Klusch, P. Kapahnke, and B. Fries, “Hybrid semantic web service
retrieval: A case study with owls-mx,” in Proceedings of the Second
IEEE International Conference on Semantic Computing. 1EEE Com-
puter Society, August 2008, pp. 323-330.

K. Sycara, M. Klusch, S. Widoff, and J. Lu, “Dynamic service
matchmaking among agents in open information environments,”
SIGMOD Rec., vol. 28, no. 1, pp. 47-53, 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=309895

