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Abstract—Recent technological advancements show promise
in leveraging quantum mechanical phenomena for computation.
This brings substantial speed-ups to problems that are once
considered to be intractable in the classical world. However, the
physical realization of quantum computers is still far away from
us, and a majority of research work is done using quantum
simulators running on classical computers. Classical comput-
ers face a critical obstacle in simulating quantum algorithms.
Quantum states reside in a Hilbert space whose size grows
exponentially to the number of subsystems, i.e., qubits. As a
result, the straightforward statevector approach does not scale
due to the exponential growth of the memory requirement.
Decision diagrams have gained attention in recent years for repre-
senting quantum states and operations in quantum simulations.
The main advantage of this approach is its ability to exploit
redundancy. However, mainstream quantum simulators still rely
on statevectors or tensor networks. We consider the absence of
decision diagrams due to the lack of parallelization strategies.
This work explores several strategies for parallelizing decision
diagram operations, specifically for quantum simulations. We
propose optimal parallelization strategies. Based on the exper-
iment results, our parallelization strategy achieves a 2-3 times
faster simulation of Grover’s algorithm and random circuits than
the state-of-the-art single-thread DD-based simulator DDSIM.

Index Terms—Decision diagrams, quantum computation, sim-
ulation, parallelization, performance

I. INTRODUCTION

In 2019, Google demonstrated quantum supremacy using
its Sycamore processor, which can support 53 qubits [1].
Since then, quantum computation has attracted more attention
and has become a promising solution in various fields for
solving previously intractable problems in the classical world
[2] [3] [4]. However, since realizing physical quantum devices
requires a massive investment of resources, they are still not
accessible to most researchers. Currently, most still rely on
classical devices for simulating quantum computations. The
statevector based simulation, i.e., using matrices and arrays
to store quantum operators and quantum states, works fine
for mathematical calculations. However, when implemented
on classical machines, this method requires an exponentially
large memory size, limiting the number of qubits algorithms
can support.

Quantum algorithms are expressed as a unitary evolution of
a quantum state. Quantum states and quantum evolution are
respectively modeled using vectors and matrices in a Hilbert
space whose sizes grow exponentially with respect to the num-
ber of subsystems, i.e., qubits [5]. A straightforward method

to simulate quantum algorithms is to store quantum states and
operators as one- and two-dimensional arrays. The exponential
growth of the array size limits the simulation scale. Binary
decision diagrams(BDDs) are a canonical tool for solving the
state explosion in model-checking and formal verification [6].
They have been engineered to simulate quantum circuits in the
works such as in [7]. In BDDs, nodes represent matrices or
sub-matrices, and edges represent quantum state transitions.
It is memory-friendly in the sense that identical sub-matrices
across all matrices can be stored using a unique node. Variants
of BDDs have been proposed to date for simulation and
analysis of quantum computing?for example, QuIDD [8] and
QDD [9]. They extend the original BDDs by assigning weights
to edges and attaching more terminals. The discussion in this
paper is based on QMDDs [10], which explicitly support
complex-valued entries and multiple-valued basis states.

Parallelization has proven its success in most large-scale
scientific computations. Undoubtedly, it is also a potent tool
in quantum simulation. Parallelizing simulations based on
statevectors and tensor networks are discussed in [11] [12].
However, it is yet to be answered how decision diagrams can
be efficiently parallelized for quantum simulation. We consider
this absence due to its distinctive characteristics. First, decision
diagrams are designed to avoid data duplication. This leads
to a typical time-space trade-off as synchronizations become
essential for updates. Second, parallelization strategies for
auxiliary data structures in decision diagram packages, such as
the operation cache and the unique table, are not unique and
have different performance characteristics in various contexts.
Third, parallelism can be achieved via different concurrency
primitives??. Their performance requires examination.

This paper answers these questions by investigating different
strategies for parallelizing QMDD-based quantum simulation
on a shared-memory machine. We examine three concurrency
primitives: tasks, threads, and fibers. Fibers are common in
building game engines. However, we have yet to see their
appearance in the field of quantum simulation. Our experi-
ment results demonstrate its power in parallelizing decision
diagrams. Meanwhile, the effects of the operation cache and
the unique table are examined, revealing results not suggested
before. For example, global and local caches perform dis-
tinctively for different numbers of threads and qubits. We
summarize our findings: DD-based quantum simulation can be
parallelized to boost performance; however, the parallelization
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Fig. 1: Proposed architecture.

strategies require careful examination. Fibers have advantages
over threads for quantum simulations. When the number of
qubits is large(e.g., above 30), using fibers with thread local
operation caches beats other approaches. Fibers with a global
operation cache are preferable for an intermediate number of
qubits(e.g., 20 to 30). For less than 10 qubits, parallelization
brings extra overheads, which may outweigh its benefits. In
the extreme case when the circuit becomes highly random,
the operation cache can be removed. Our strategy achieves a
2-3 times faster simulation of Grover’s algorithm and random
circuits than the state-of-the-art single-thread DD simulator
DDSIM [13].

This paper is organized as follows. Section II covers the
design of our parallel simulation strategy. Section III provides
the experiments result and section IV concludes this paper.

II. DESIGN OF SIMULATION ENGINE

The operation cache and unique table are two core com-
ponents of decision diagram libraries. They are the source
of DDs’ time and space efficiency, respectively. The unique
table ensures that a unique node represents identical sub-
matrices. Thanks to the uniqueness of nodes, calculation
results can also be cached. In a parallel simulation engine,
the first question to answer is how to synchronize these data
structures with the least sacrifice of performance. Furthermore,
what parallelization schema most appropriately fits quantum
simulation? We propose the architecture in Fig 1. In general,
we find fibers have better performance than threads- and tasks-
based parallelization. The unique table needs to be global,
whereas the choice between a global and local cache depends
on the simulation tasks. Work stealing can offer automatic
load balancing. Our experiments show this architecture makes
better use of resources and accelerates simulations by 2 to
3 times than a single-threaded DD-based simulation. This
section illustrates each design choice.

A. Thread local versus global unique table

Decision diagrams achieve a higher memory efficiency by
using the unique table. A single copy of identical nodes
is stored in the unique table and shared among decision
diagrams. We can choose the unique table to be thread local or

Fig. 2: A comparison between thread local and global unique
table.

global. A thread local unique table can be accessed with no
synchronization. However, it reduces the effects of memory
saving as the same node not present in the local table may
appear in other tables. The fundamental issue of using a local
unique table is that it renders the operation cache hard to hit.
The operation cache uses the memory addresses of operand
nodes for equality checking, and if the result is present in
the cache, the complete computation can be skipped. Using
thread local unique tables generates different addresses for the
same nodes if they are created by different threads. This does
not make the computation inaccurate; however, the cache hit
ratio dramatically drops. Fig. 2 compares a thread local and
global unique table in a random circuit. The circuit consists
of 100 gates randomly sampled from the set of RX, RY, RZ,
and CNOT. We conclude that a thread local unique table is
inferior to a global unique table for both a higher qubit count
and depth. The former suffers from a considerable drop in the
cache hit ratio. For example, in a circuit with 100 gates and
20 qubits, the multiplication operation cache hit ratio drops
from 17.54% to nearly none. A global unique table is used in
the rest of the comparison. The synchronization is managed
by updating the pointer pointing to the next entry in the linked
list using compare-and-swap.

B. Thread local versus global operation cache

Similar to the unique table, the operation cache can be either
global or local. A global operation cache shares calculation
results conducted by any thread with others, whereas a local
operation cache only serves its owner. The global cache can
theoretically cache more computations with an additional cost
of synchronization. However, quantum simulations exhibit
both time and spatial locality. First, besides some circuit
identities, most quantum gates do not commute and thus must
be applied in sequence. Furthermore, each quantum gate is
constructed with tensor products between identity gates and
the target gate. This makes the resulting matrix contain many
sub-identities that can preserve sub-trees from the input state
to the output state. The locality supports the use of thread local
caches.

QMDDs divide each matrix into four sub-matrices, and
most cache hits happen among the calculations on these sub-
matrices since quantum matrices tend to be structured(e.g.,



Fig. 3: A comparison between thread local and global opera-
tion cache.

symmetric). The majority of these calculations are done within
a single thread. This also reinforces the use of thread local
caches. We observe that the hit ratio of using thread local
caches is only lower than that of a global cache to a slight
extent but comes with no cost of synchronization. In fig. 3,
we present a comparison in Grover’s algorithm. The gap
between the local and global cache hit ratio is small. The
local cache relieves the burden of synchronization and leads
to better performance. We also see that the hit ratio of the
multiplication is tens of times higher than the addition cache.
The hit ratios for multiplication and addition are virtually zero
for a random circuit, so they are not shown. From the cost-
effectiveness perspective, assigning a larger memory space to
the multiplication cache is more sensible.

C. Fibers versus threads

Fibers are a lightweight execution context in the userspace
and share some data with the underlying threads. For exam-
ple, fibers own stacks but share the address space with the
underlying thread. This means the same amount of memory
can support more fibers, and the context switch among fibers
is faster. Fibers use cooperative scheduling. The idea is that
they deliberately yield to others at a chosen point. It should be
noted that using fibers does not provide extra concurrency. The
concurrency level still depends on the number of operating
system threads(hardware threads, to be precise). Within a
single thread, only one fiber can execute at a single point
in time. The benefit of this is that no extra synchronization
needs to be handled at the level of fibers as long as threads
are appropriately synchronized.

D. Parallelization schema

We analyze three strategies for parallelizing the simulation
process: task-based outer parallelization, thread-based inner
parallelization, and fiber-based inner parallelization.

Consider a quantum circuit representing the state evolution
of |output⟩ = U4U3U2U1 |input⟩. Task-based outer paralleliza-
tion launches a fixed number of worker threads and creates
tasks for each multiplication Ui+1Ui or Ui |state⟩. The non-
commutativity of multiplication induces dependencies among
tasks. Task dependencies are handled by constructing a task

(a) A linear task graph.

(b) A associative task graph.

graph with nodes representing operations and edges repre-
senting task prerequisites. Fig. 4a shows a toy example.In
the task graph, we use MulMV and MulMM to represent the
operation of matrix-vector multiplication and matrix-matrix
multiplication. Such a task graph does not offer any true con-
currency. For example, all MulMV nodes must be executed in
a linear sequence. We improve this by leveraging the fact that
multiplication is associative. Thus worker threads can simulate
different parts of the circuit simultaneously. We use associativ-
ity to construct the task graph in fig. 4b. Dependencies among
MulMV nodes are removed, and thus they can be executed in
parallel. We call this outer parallelization since sub-trees of a
single decision diagram are all processed by the same thread.
The whole task graph is processed in parallel by multiple
threads. Nevertheless, we find this approach performs poorly
in our experiment. Matrix-vector multiplication is faster than
matrix-matrix multiplication in general. This also applies to
decision diagrams. Therefore, it is more efficient to reduce the
dimension faster and earlier by allocating more resources(i.e.,
worker threads) to compute matrix-vector multiplication rather
than matrix-matrix multiplication. However, MulMV nodes in
fig 4b, the only type of node generating a vector and reducing
the dimension, it only taken by a single thread.

We recommend constructing a task graph in which de-
pendencies are set such that tasks are processed in batches
following the flow of the circuit. This means worker threads
work jointly in a sub-part of the circuit to accelerate the
dimension reduction and avoid working on arbitrary parts of
the circuit. We construct such a task graph by introducing a
node of type Reduce. It serves as a hub in the graph. The
reduce nodes segregate the graph and enforce worker threads
to work on earlier parts of the circuit before later can be



Fig. 5: A task graph with reduce nodes.

Fig. 6: Grover’s algorithm with different processing orders.

processed. Fig. 5 shows an example of such a graph. In our
experiment, we find the inclusion of reduce nodes improves
the performance by approximately two times compared with
the other two kinds of task graph.

The vital problem of the outer parallelization is its poor
cache utilization. As threads may take arbitrary task nodes,
decision diagrams processed by a single thread can come from
remote parts of the circuit and thus exhibit low similarities.
This means cached results are rarely reused, leading to a

lower cache hit ratio. In fig. 6, we run Grover’s algorithm
with a single thread using the same task graph but different
processing orders: one for sequentially multiplying decision
diagrams and one for picking decision diagrams randomly. It
illustrates that random processing decreases the cache hit ratio
and leads to a longer execution time.

Inner parallelization does not simulate the entire circuit
concurrently. Quantum gates are applied to the start state
vector in sequence, and only one main thread carries out
this. What distinguishes this strategy is that different threads
will process sub-trees of a single decision diagram. We create
fibers when the operation is recursively applied on child nodes
until a lower bond of qubit count is reached to avoid having
too many fibers. Inner parallelization with fibers offers the
following advantages. First, fibers are dynamic, whereas task
graphs are static. This means we can query the operation
cache first and avoid launching a new fiber if it returns a hit.
Second, inner parallelization boosts cache efficiency. Quantum
circuits tend to evolve the input state gradually. At each step,
quantum gates are applied to the state vector locally. This
means a majority of subtrees in the decision diagram remain
unchanged across each gate. Third, workloads on different sub-
trees are imbalanced due to different tree sizes. Fibers can be
inexpensively created, destroyed, and migrated among threads.
This realizes an automatic load balancing. In our experiment,
we discover that worker threads spend over 50% of time idling
and waiting for tasks in outer parallelization. In fiber-base



TABLE I: RESULTS ON GROVER’S ALGORITHM

Qubit Local Cache Global Cache
single fibers OpenMP taskgraph fibers OpenMP taskgraph DDSIM Qiskit Aer

10 0.701 1.231 2.451 0.122 0.054 0.512 0.964 0.353 0.053
12 0.854 3.789 3.732 0.255 0.044 0.863 0.863 0.324 1.788
15 0.833 3.995 4.125 1.786 0.037 0.076 0.984 0.475 538.869
18 0.856 3.865 5.915 178.315 0.017 0.187 76.253 0.466 OOM
21 1.061 4.124 6.663 1756.357 0.148 0.474 679.356 0.874
24 1.223 5.062 7.027 5928.232 0.368 1.668 4486.656 3.129
27 7.654 2.132 8.095 TIMEOUT2 1.442 6.055 TIMEOUT 13.254
28 8.734 2.967 10.323 3.065 9.346 19.074
29 10.825 5.075 16.627 4.869 21.364 29.465
30 16.298 10.157 15.486 10.422 50.331 49.016
31 51.677 20.722 107.316 20.341 176.749 62.346
32 94.687 50.865 193.427 91.261 385.245 89.123
33 130.568 45.338 504.925 720.365 OOM1 137.456
34 330.462 82.455 OOM 2400.412 OOM 197.957

1 Out Of Memory
2 Exceed 7200 seconds

TABLE II: RESULTS ON Random circuit(depth = 200)

Qubit No Cache Local Cache Global Cache
single fibers OpenMP taskgraph single fibers OpenMP taskgraph fibers OpenMP taskgraph

10 0.037 0.023 0.261 1.456 0.903 10.551 5.289 6.536 0.125 1.851 12.535
12 0.152 0.058 1.048 2.633 1.059 11.727 6.048 10.341 0.437 7.681 254.241
14 0.639 0.159 3.991 15.674 1.754 10.965 8.921 88.234 1.411 28.847 873.436
16 3.141 0.573 14.733 164.634 5.012 12.579 18.786 364.523 4.479 95.337 2034.231
18 35.847 5.377 82.552 1042.534 42.215 17.649 92.232 3442.464 26.091 460.021 TIMEOUT
20 147.693 21.181 314.501 5654.523 159.452 35.651 305.234 TIMEOUT 78.194 1353.537
22 4804.881 631.768 6226.24 TIMEOUT 4935.112 656.172 6403.212 731.654 TIMEOUT
24 TIMEOUT 1258.325 TIMEOUT TIMEOUT 1358.234 TIMEOUT 1658.241
26 1484.643 1648.353 1994.234
28 2346.351 2476.423 2857.341
30 3994.442 4124.527 4572.421

TABLE III: RESULTS ON Random circuit continued(depth =
200)

Qubit DDSIM Qiskit Aer
10 0.046 0.022
12 0.191 0.025
14 6.602 0.037
16 55.133 1.416
18 258.163 17.723
20 436.237 82.552
22 6942.452 725.074
24 TIMEOUT 2593.534
26 OOM
28
30

inner parallelization, this falls to approximately 10%.

III. EXPERIMENTS

To evaluate the effectiveness of each parallelization strategy,
we implement a QMDD-based quantum simulator in C++.
We implement our task graph engine. We use Boost fibers
and OpenMP [14] for fiber-based and thread-based paral-
lelization. Work-stealing is enabled for load balancing. In the
experiments, we compare with the state-of-the-art QMDD-
based simulator DDSIM and Qiskit Aer [15] with default
qubit statevector-based backend. We conduct the experiments
on a server with AMD Ryzen 9 7950X 16-core processor

and 128GB RAM. The Linux kernel is 5.19.0. We set the
timeout limit to 7200 seconds. The Linux kernel manages out-
of-memory abortions.

Table ?? presents the result of Grover’s algorithm. Our
implementation first create the unitary gate for one complete
Grover iteration, the number of Grover’s iterations is com-
puted by ⌊π

√
N

4 ⌋. The oracle we use can be described by
U |x⟩ = (−1)f(x) |x⟩ where f(x) = 1 only for a single
input. The number of threads is fixed to 16 for all multi-
thread cases. Each thread is pinned to a separate core to
remove the impacts from thread migration. The results show
that taskgraph performs poorly for both local and global cache.
Substantial overheads come from traversing the task graph
and waiting for dependencies. The cache hit ratio of Grover’s
algorithm is expected to be high because of its repeated ap-
plications of Grover’s iteration. However, we find the hit ratio
is below 10% in taskgraph due to worker threads randomly
working on different parts of the circuit. This pollutes the
cache content and leads to unnecessary evictions. Qiskit Aer
uses the statevector. It outflows the memory above 18 qubits
on our server. It is also slower than all the other decision
diagram based approaches.

When OpenMP is used for parallelization, using a global
cache accelerates the simulation for small qubit counts. The
global cache simulates more than ten times faster than the
local cache when the number of qubits is below 24. Local



caches start to boost the performance when the qubit count
gets larger. We also observe the same phenomenon in the
case of fibers. The profiling results suggest the following
reasons. First, higher qubit counts generally require a longer
execution time. This makes the costs associated with locking
the cache more severe. Second, the size of decision diagrams
also increases with qubit count. Therefore, more sub-trees
share the same structure, thus the same cache bucket. Using
separate local caches alleviates cache contention.

The performance of DDSIM is among the first tier. Our
single-thread implementation targets on matching DDSIM to
serve as a reasonable baseline. Therefore, their results are
comparable. DDSIM uses a single thread. However, it is
superior to the sixteen-thread OpenMP implementation with
a global cache. This confirms the negative impacts of unduly
synchronization. In our experiments, when the qubit count
is below 27, fibers should be used in conjunction with a
global cache. This offers the optimal performance among all
strategies we have benchmarked. With more qubits, fibers
should be used with local caches. This combination is the only
one superseding DDSIM in our experiments, and it reduces the
simulation time by 3-4 times.

The issue of a single-thread decision diagram simulator
becomes more evident in a random circuit. In table II and III,
a pure random circuit with depth 200 is tested. We randomly
sample 200 gates from the gate set of RX, RY, RZ, and CNOT.
Each gate’s rotation angle and target qubit are also uniformly
distributed. Decision diagrams are generally unsuitable for
highly random circuits as the operation cache barely helps,
and random memory accesses incurred from traversing the
decision tree further hurt the performance. Consequently, the
no cache case performs the best for larger qubit counts. Global
cache performs worse than local cache as it cannot obtain
a higher cache hit ratio but adds synchronization overheads.
Qiskit’s performance is satisfactory. It is faster than DDSIM
for all qubit counts before it outflows the memory. We cannot
observe any advantage from using OpenMP than a single-
thread implementation, suggesting that naive parallelization
can, in fact, hurt the performance.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we examined decision diagram based quantum
simulation. Using QMDDs as an alternative to the basic binary
decision diagrams in quantum simulators has been around for
a while. Although its performance is superior to statevectors
and tensor networks, its lack of parallelization strategies
limits its scale. Components of decision diagram libraries,
such as the unique table and operation cache, complicate the
adaptation to parallelization. Consequently, traditional thread
based strategies bring little, if any, performance improvement.
Their synchronization costs occasionally are even harmful to
the results. In order to address these problems, we present
a comprehensive overview of the trade-offs of several paral-
lelization strategies. Furthermore, we propose a design that
allows a faster simulation than the state-of-the-art single-
threaded simulator DDSIM.
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