
Model Driven Development of Software Product Lines

Alexandre Bragança1 and Ricardo J. Machado2
1 Dep. Eng. Informática, ISEP, IPP, Porto, Portugal,

alex@dei.isep.ipp.pt
2 Dep. Sistemas de Informação, Universidade do Minho, Guimarães, Portugal,

rmac@dsi.uminho.pt

Abstract

Software product lines and related approaches, like

software factories, are starting to capture the attention
of the industry practitioners. Nevertheless, their
adoption outside the research community and big
companies is still very restricted. We believe that
model-driven approaches, like OMG’s MDA, with
proper tool support, can bring the advantages of
product lines to a broader audience. In this thesis we
propose an approach to achieve this goal in which
modeling is inspired by UML and automation is based
on metamodeling and transformation languages using
publicly available tools.

1. Introduction

The development of software systems is still a very
hard and difficult engineering process. Complexity in
the software systems is increasing everyday. Almost
every project has to deal with supporting some sort of
internet technology, integrate with legacy software and
using more than one programming language or
software platform.

The development of software systems requires
knowledge from two main sources. One is of technical
(computer) nature, e.g., programming in a specific
language, manipulating xml documents, or
understanding a communication protocol. The other is
usually of non-technical (computer) nature and relates
to knowledge about the problem that the software
system is supposed to attack. This latter knowledge is
necessary to understand the problem domain, while the
former is used to build a solution, i.e., it relates to the
solution domain. Because usually abstractions from
those domains are so far apart it is very difficult to
make accurate previsions about software projects. As a
result, software projects are hard to manage, their costs
may largely surpass budgets and the solution may not
correspond entirely to the requirements.

A software product line is an approach to software
development based on intra-organizational reuse
through the explicitly planned exploitation of
similarities between related products. This implies one
(or more) common domain(s) shared by the developed
applications (products) of the organization. Because
applications share domains, it becomes possible to
reuse software artefacts between applications and
reduce the conceptual gap between the problem
domain and the solution domain.

In a software product line approach the domain
knowledge grows as each new application of the
domain is developed. It is commonly accepted in the
field that the initial investment in a product line
approach can have return by the third developed
application. Some authors, particularly Krueger, go
further and defend that the adoption of a software
product line can be beneficial from the first application
developed if the approach is introduced incrementally
[1, 2]. Nonetheless, all well-known software product
lines have been implemented in large organizations or
have required significant consultant knowledge from
software product line specialists. Examples of such
organizations are: Nokia, Philips, Motorola, Hewlett-
Packard and Cummins Engine. Examples of software
product line expert support organizations are SEI and
IESE. Even if there are a few documented examples of
software product lines in small to medium enterprises
[3], one has to agree that the effort required
implementing the necessary processes and methods
may be out of reach for the majority of SMEs.

Recently, the software engineering community has
witnessed the appearance of several proposals, such as
aspect-oriented programming, feature-oriented
program, domain-specific languages and model-driven
development. Although diverse in nature, they all share
the pretension of complement or solve some
limitations of the dominant object oriented paradigm.
Some of these proposals, notably domain-specific
modeling and model-driven development are starting

Sixth International Conference on the Quality of Information and Communications Technology

0-7695-2948-8/07 $25.00 © 2007 IEEE
DOI 10.1109/QUATIC.2007.25

199

to capture the attention of the industry and major
software development environments, like Eclipse and
Visual Studio .Net are starting to support them. Also,
large industry consortiums, such as OMG, are
supporting and promoting such proposals.
We particularly defend the model-driven approach
because it can be used at several levels of abstraction
and in different components of a method. Also, with
adequate tool support, this approach may automate the
more cumbersome and demanding tasks of software
engineering methods, like the methods used in
software product lines.

The primary objective of this thesis is to provide a
method that effectively enables the widely adoption of
software product line approaches by software
engineering practitioners. We propose to accomplish
this goal by adopting model-driven engineering
techniques and metamodeling

The remainder of this paper is structured as follows. In
Section 2, we briefly present the state of the art of the
research field. In Section 3, we present our research
objectives and approach. Section 4 is dedicated to
present our current work and preliminary results. In
Section 5, we present the work plan. Section 6 is
dedicated to concluding remarks.

2. State of the Art

The state of the art of this PhD work relates to
essentially two fields of knowledge: Domain
Engineering and Model-Driven Development. The first
year of the PhD was dedicated to produce a report that
covers a significant part of the state of the art [4]. We
have also published work that describes our experience
in the development of a domain-specific platform in a
Portuguese software-house [5].
Providing a domain engineering state of the art is an
overwhelming task. We could start with the work of
Parnas on program families [6] and with the work of
Neighbors, to my knowledge, the first explicit domain
engineering methodology [7]. If we want to go even
further, we can say that domain engineering appears
also in the work of Dijkstra on structured programming
[8], where he already speaks of step-wise program
composition and program families. The more recent
works are, naturally, on more specific sub-topics of the
domain engineering field of knowledge. A most
referenced work in the product-line area is the work of
Kang et al. with the introduction of feature diagrams
[9]. Regarding methodologies, Gomaa discuss the
adoption of UML 2.0 for software product-line
development [10]. IESE has produced a lot of

industrial experience reports on software product-lines
[11]. An overview of the practical application of
domain engineering in product lines can be found on
[3] and on software factories on [12].

Model-driven development is commonly associated
with the OMG interoperability initiative named
Model-Driven Architecture (MDA) [13]. Jean Bezivin
states, however, that Model-Driven Engineering
(MDE) encompass a more broader vision than MDA
[14]. In this vision, models become first class entities
and any software artifact becomes a model or a model
element. MDE has its sources on other approaches
such as domain-specific languages (DSLs) [15],
model-integrated computing (MIC) [16] and generative
programming [17]. One could argue that model-driven
development (or model-driven engineering) is by its
nature a domain engineering sub-field. In fact, in many
model-driven approaches, domain-specific modeling
languages are developed through metamodeling.
However, such approach is not mandatory. It is
possible to use generic software modeling languages,
such as UML, in a model-driven approach. Therefore,
our option is to view model-driven development in a
broader way. When a model-driven approach implies
metamodeling then it usually also becomes a domain
engineering approach.

3. Research Objectives and Approach

As we have seen in the previous sections, domain
engineering and, particularly, software product lines,
have been adopted and are in use from some time now.
However, the methods used, the existing tools and the
required knowledge are not at the reach of all
organizations. Some efforts have been done in this
area, notably the work at IESE with PuLSE [18] and
Kobra [19]. In such approaches, the heavy methods
and techniques required for domain engineering are
adapted to be used in more general contexts, like the
ones where organizations use object-oriented or
component-oriented approaches. Even so, adoption is
difficult, because not all models are supported by tools
and the degree of automation is low. As a result,
organizations are required to keep models
synchronized manually and, eventually, they abandon
these tasks. Since the software product line approach is
based on models (e.g., generic architecture, variability
representation and domain requirements), in this
context, its successful adoption by small organizations
is difficult.
The primary objective of this thesis is to provide a
method that effectively enables the widely adoption of
software product line approaches by software

200

engineering practitioners. We propose to accomplish
this goal by adopting model-driven engineering
techniques. Particularly, we aim at provide specific
approaches to support the automation of some key
components of software product line methods by
adopting techniques from the model-driven
engineering field.

This objective is not pursued as a theoretical study.
Instead, we take a pragmatic viewpoint in which
existing theories, methods, tools and techniques can be
combined to support our goal.

We also take this approach because our research is in
the field of software engineering where, in contrast to
other fields of computer science, the human factor is of
the most importance. In this context, it is not sufficient
to have the best technical solution; the process and all
involved resources/persons must be taken into account.

This thesis follows the classification for software
engineering research methods proposed by Adrion
[20]: Scientific, Engineering, Empirical, and
Analytical. Of these four research methods, and
according to the same author, the empirical method is
the most appropriate for software engineering research.
The empirical method is based on the application of the
proposed model to case studies in order to measure and
analyze the results and, eventually, repeat the process.
In contrast, the analytical method does not force the
use of case studies; the results can be derived. The
scientific method is the traditional research method
that is based on the observation of the real world, and
as such, is more tailored to natural sciences. In the
engineering method, existing solutions are observed
and better solutions proposed and developed. The new
solutions are measured, analyzed and evaluated and the
process is repeated if needed.

Although the empirical method is the most suited for
software engineering research it is also a very
demanding method since it requires the application of
the proposed models to case studies in order to
measure the results. In the context of the work of this
thesis, it is not realistic to think it is possible to develop
the sufficient case studies that the method requires and,
consequently, we probably will not have the necessary
quantitative evaluations of our work. As such, we
decided to adopt qualitative measures of our proposals.
These measures result essentially from our own
experience in several software engineering projects in
the form of discussions and observations with
practitioners. These qualitative assessments of our
proposals are usually presented in the form of
demonstration cases that reflect real cases but are

simplified in order to facilitate their description in
research papers. We also use another form of
evaluation of our work that consists in the analysis and
comparison of other solutions to the same problems,
which is a validation more common to the engineering
research method.

Regarding validation approaches used by software
engineering research works, Mary Shaw identifies the
following types of validation [21]: Analysis,
Evaluation, Experience, Example, and Persuasion.
Shaw states that it is essential to select a form of
validation that is appropriate for the type of research
result and the method used to obtain the result. She
also states that a simple example derived from a
practical system may play a major role in validating a
new type of development method. This is more in
phase with the validation that, realistically, we hope to
provide. Another indirect form of validation of our
work is the feedback that scientific experts of the field
provide at top conferences and workshops. In the last
phases of the PhD, we also plan on support our
approaches with concrete experimental
implementations. We hope this also serves as
validation, at least for validating the technical
possibility of the implementation of the method
proposals.

4. Current Work and Preliminary Results

During the PhD, we have adopted the 4SRS (Four Step
Rule Set) model-driven method [22, 23], developed at
Minho University, as a framework where we could
integrate the different pieces of our work.

Figure 1 presents a very high-level and filtered
overview of the activities involved in the 4SRS
adapted for product line development. This adaptation
was based on key characteristics of domain
engineering and software product lines methods, such
as the ones presented in Section 2. Our approach is also
inspired by UML [24]. We have made this option
because the original 4SRS is also based on UML. We
also hope our findings will be more interesting to the
community if based on a standard modeling language
like UML.

201

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

Figure 1. Proposed Process for Model-Driven Development
of Software Product Lines.

The goal of this thesis is divided in three sub goals.
Next, we detail the sub goals.

Sub goal 1: Provide a methodological approach to
explicitly support variability in model-driven software
development processes.

1.1 Extend model-driven methods to explicitly
support variability.
1.2 Propose a variability notation for analysis
models of model-driven methods.

Sub goal 2: Provide model-driven support to the
analysis phase of the development of variability
intensive systems.

2.1 Propose an approach to support the inclusion of
analysis models into model-driven methods such
that their transformation into platform independent
models can be automated.
2.2 Propose an approach to integrate variability
specific models and general purpose models such
that their mappings can be automated.

Sub goal 3: Provide model-driven support to the
architectural design phase of variability intensive
systems.

3.1 Propose an approach to support the
transformation between computation independent
models and logical architectural models (platform
independent models).
3.2 Propose an approach to support multi-staged
model-driven scenarios, which are common in
variability intensive systems.

Each of these sub goals topics resulted in approaches
that were already described in research articles. These
articles were all peer-reviewed anonymously. They
were also publicly presented and discussed by
researchers specialized in the scientific field.

Next we present our contributions and relate them to
the major activities of the method (see Figure 1):
1) Extend the 4SRS model-driven method to support
variability [23] (sub-goal 1.1, phases b, c, f, g, h).
2) Extend the UML 2.0 metamodel to add support for
variability in use case diagrams [25] (sub-goal 1.2,
phases b, c).
3) Propose an approach to specify the behavior of use
cases by using activity diagrams [25, 26] (sub-goals
1.2 and 2.1, phases b, c).
4) Propose an approach to realize use case behaviors
by using component diagrams [26] (sub-goal 3.1,
phases b, c, f).
5) Propose an approach to refactor component
diagrams in order to achieve the logical architecture of
a system (or product line) [26] (sub-goal 3.1, phases g,
h).
6) Propose an extension to the UML-F profile to
support UML analysis models [27] (sub-goal 1.1,
phases b, c, f, g).
7) Propose a clarification of the relationships between
features and use cases and the automation of
transformations between use cases and features (based
on EMF and QVT) [28] (sub-goal 2.2, phases b, e, c).
8) Propose an approach to create Feature instantiation
models from feature configuration models [28]
(sub-goal 2.2, phase e).
9) Propose a set o patterns for multi-staged
model-driven scenarios (and their solutions) [29]
(sub-goal 3.3, phase d).

5. Work Plan

In the remainder of our work we plan on continue the
research in the method in order to integrate all its
phases and workproducts. We also plan on integrate all

202

the technological proposals into a set of tools based on
EMF [30] and QVT [31].

6. Conclusions

In this paper we have presented our PhD work. Our
goal is to provide a method that effectively enables the
widely adoption of software product line approaches
by software engineering practitioners. We have
presented our work so far. A significant part of the
work is already done. In the near future, we plan on
integrate all the specific proposals into a set of
experimental tools that can be used in case studies
realized in the context of software development
enterprises.

7. References

[1]C. W. Krueger, "New Methods in Software Product Line

Development," 10th International Software Product Line
Conference SPLC 2006, Baltimore, Maryland, USA, 2006.

[2]A. Braganca and R. J. Machado, "A Methodological Approach to
Domain Engineering for Software Variability Enhancement,"
OOPSLA'2004 Second Workshop on Method Engineering for
Object-Oriented and Component-Based Development, Vancouver,
Canada, 2004.

[3]P. Clements and L. Northrop, Software Product Lines - Practices
and Patterns: Addison Wesley, 2002.

[4]A. Braganca, "Run-Time Variability in Domain Engineering for
Post-Deployment of User-Centric Software Functional
Completion," U. Minho, Guimarães, PhD Report 2003.

[5]A. Braganca and R. J. Machado, "Run-time Feature Realization
based on Domain-Specific Platforms," ICSR8 (Poster
Presentation), Madrid, 2004.

[6]D. Parnas, "On the Design and Development of Program
Families," vol. 2, pp. 1-9, 1976.

[7]J. Neighbors, "Software Construction Using Components," in
Department Information and Computer Science. Irvine: University
of California, 1980.

[8]E. W. Dijkstra, "Notes on Structured Programming,"
Technological University of Eindhoven, Eindhoven, The
Netherlands 1969.

[9]K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, "Feature-Oriented Domain Analysis (FODA) Feasibility
Study Technical Report," Software Engineering Institute, Carnegie
Mellon University CMU/SEI-90-TR-21, 1990.

[10]H. Gomaa, Designing Software Product Lines with UML:
Addison Wesley, 2005.

[11]M. Anastasopoulos, J. Bayer, O. Flege, and C. Gacek, "A
Process for Product Line Architecture Creation and Evaluation -
PuLSE-DSSA - Version 2.0," IESE 038.00/E, 2000.

[12]J. Greenfield, K. Short, S. Cook, and S. Kent, Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools: Wiley, 2004.

[13]OMG, "Model-Driven Architecture Guide Version 1.0.1," OMG,
2003, Available at http://www.omg.org.

[14]J. Bezivin, "Model Driven Engineering: Principles, Scope,
Deployment and Applicability," Generative and Transformational
Technics in Software Engineering, Braga, Portugal, 2005.

[15]P. Hudak, "Modular Domain Specific Languages and Tools,"
Fifth International Conference on Software Reuse, Victoria,
Canada, 1998.

[16]A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.
Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi, "The
Generic Modeling Environment," WISP'2001, Budapest, Hungary,
2001.

[17]K. Czarnecki, "Generative Programming Principles and
Techniques of Software Engineering Based on Automated
Configuration and Fragment-Based Component Models," in
Department of Computer Science and Automation: Technical
University of Ilmenau, 1998.

[18]J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud, "PuLSE: A Methodology to
Develop Software Product Lines," Symposium on Software
Reusability ‘99 (SSR’99), Los Angeles, 1999.

[19]C. Atkinson, J. Bayer, and D. Muthig, "Component-Based
Product Line Development: The KobrA Approach," First Software
Product Line Conference, Denver, Colorado, 2000.

[20]W. R. Adrion, "Research methodology in software engineering,"
Dagstuhl Workshop on Future Directions in Software
Engineering, 1993.

[21]M. Shaw, "Writing Good Software Engineering Research
Papers," 25th International Conference on Software Engineering,
2003.

[22]R. J. Machado, J. M. Fernandes, P. Monteiro, and H. Rodrigues,
"On the Transformation of UML Models for Service-Oriented
Software," ECBS International Conference and Workshop on the
Engineering of Computer Based Systems, Greenbelt, Maryland,
2005.

[23]A. Braganca and R. J. Machado, "Deriving Software Product
Line's Architectural Requirements from Use Cases: an
Experimental Approach," 2nd International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software,
Rennes, France, 2005.

[24]OMG, "Unified Modeling Language Version 2.0: Superstructure
(formal/05-07-04)," OMG, 2005, Available at
http://www.omg.org.

[25]A. Braganca and R. J. Machado, "Extending UML 2.0
Metamodel for Complementary Usages of the «extend»
Relationship within Use Case Variability Specification," SPLC
2006, Baltimore, Maryland, 2006.

[26]A. Braganca and R. J. Machado, "Adopting Computational
Independent Models for Derivation of Architectural Requirements
of Software Product Lines," Mompes 2007, Braga, Portugal, 2007.

[27]A. Braganca and R. J. Machado, "Tracing Variability from
Requirements to Design: A Model-Driven Approach with UML-
F," unpublished, 2006.

[28]A. Braganca and R. J. Machado, "Automating Mappings
between Use Case Diagrams and Feature Models for Software
Product Lines," SPLC 2007, Kyoto, Japan, 2007.

[29]A. Braganca and R. J. Machado, "Transformation Patterns for
Multi-Staged Model-Driven Software Development," unpublished,
2007.

[30]Eclipse, "Eclipse Modeling Framework," Eclipse Foundation,
2006, available at http://www.eclipse.org/emf/.

[31]OMG, "MOF QVT Final Adopted Specification (ptc/05-11-01),"
OMG, 2005, Available at http://www.omg.org.

203

