
Defining and Observing the Compliance of Service
Level Agreements: A Model Driven Approach

Anacleto Correia
CITI / QUASAR / FCT / UNL

and IPS/EST Setúbal
Setúbal, Portugal

accorreia@fct.unl.pt

Fernando Brito e Abreu
CITI / QUASAR / FCT

Universidade Nova de Lisboa
Caparica, Portugal
fba@di.fct.unl.pt

Abstract — IT Service Management (ITSM) is the set of processes
that allow planning, organizing, directing and controlling the
provisioning of IT services. Among the concerns of ITSM,
namely within the service level management process, are the
requirements for services availability, performance, accuracy,
capacity and security, which are specified in terms of service-
level agreements (SLA). SLA definition and monitoring are open
issues within the ITSM domain. This paper overviews an ongoing
research initiative concerned with three specific problems in this
context: (1) SLAs in the context of ITSM are informally specified
in natural language; (2) SLAs specifications are not grounded on
models of ITSM processes; (3) SLAs compliance verification in
IT services is not performed at the same level of abstraction as
service design. To mitigate those problems, we propose a model-
based approach to IT services SLA specification and compliance
verification. The specification part will be based on a SLA
language - a domain specific language (DSL) for defining quality
attributes as non functional requirements (NFRs) in the context
of ITSM. Its metamodel will be an extension of the metamodel of
the adopted process modeling language. As such, it will be
possible to ground SLA definition on the corresponding IT
service model constructs. SLA monitoring and compliance
validation will occur at the same abstraction level as service
specification, therefore being understood by all stakeholders.

Keywords- IT Service Management, ITIL; Service Level
Management; Service Level Agreements, Metamodels, MDA;
Domain Specific Language, Process Model, BPMN.

I. INTRODUCTION
Most organizations rely on Information Technology (IT)

services to support their business processes. IT services are
built upon the technical infrastructure (servers and network
devices), as well as on systems and application software. The
set of processes that allow planning, organizing, directing and
controlling the provisioning of IT services is usually called an
IT Service Management (ITSM) framework. Several ITSM
frameworks have been proposed, such as ITIL [1], ISO 20000
[2] (based on ITIL v.2), MOF [3] (a Microsoft proposal, also
influenced by ITIL), ISM [4], or HP ITSM [5]). Specially
tailored examples of ITSM frameworks have also been
proposed, such as eTOM [6], for the telecom industry.
Although these frameworks are mainly abstract and
prescriptive (of best practices), some efforts are being made to
help practitioners to instantiate them by using process

modeling notations such as the Business Process Modeling
Notation (BPMN) [7].

In ITIL, the most widely used ITSM framework, some of
the processes are: incident management, problem management,
change management, service asset and configuration
management and service level management [8]. In order to
support these processes, IT providers use two kinds of
applications: service management applications, which allow to
track IT services incidents and problems; and systems
management tools, for monitoring and control networks,
systems or applications [9]. Currently, there are many service
management ITSM tools [10] , as well as systems management
tools [11] available with quite similar functionalities. Service
management applications often overlie and rely, to some
extent, on information collected by systems management
applications.

Among the concerns of ITSM, namely within the service
level management process, are the requirements for services
availability, performance, accuracy, capacity and security,
which are specified in terms of service-level agreements (SLA)
[5]. In SLAs, such requirements, built upon quality attributes,
are quantitatively bounded (e.g. maximum time to recover or
repair, maximum latency or response time, minimal percentage
of availability). However, although those requirements are non-
functional in nature, and many non-functional requirements
techniques have been proposed in the literature [12, 13], to the
best of our knowledge, those techniques are not being used in
SLA specification.

SLAs are important during the service design phase [14]
and during operation, to guarantee that service delivery
matches the agreed-upon levels and that it can be continuously
improved [15]. Despite the current availability of applications
for supporting service level management, SLA definition and
monitoring are still identified as open issues within the ITSM
domain [16]. In our research we are particularly concerned
with three specific problems:

1. SLAs in the context of ITSM are informally specified in
natural language;

2. SLAs definition is not grounded on models of ITSM
processes;

3. SLA compliance verification is not performed at the same
level of abstraction as service design.

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 Crown Copyright

DOI 10.1109/QUATIC.2010.32

165

The conjunction of these problems has hard consequences
to ITSM practitioners. The first problem arises from the current
practice in SLA specification for IT services, mostly based in
templates filled with natural language descriptions [17]. Such
descriptions are not amenable to the automation of SLA
compliance verification. Since SLA definition is subjective in
nature, it renders the second problem: it is not clear to all
involved stakeholders which are the activities upon which SLA
compliance should be verified, and how their non-compliance
will affect the evolution in the process describing the IT service
delivery. The third problem concerns a semantic gap which
occurs in SLA compliance verification. This gap comes from
the fact that compliance checking has been relying mostly in
Quality of Service (QoS) information from systems
management applications, instead of consolidated data
presented at the process model representation of the IT service.

Somehow the first problem is similar to the one object-
oriented modeling languages faced previously to the Unified
Modeling Language (UML) [18] [19] unification effort.
Diagrammatic notations were not able to capture business
rules, so the latter were represented in natural language
requirements aside from model diagrams. It was not possible to
generate code from those requirements and traceability to
implementation was hampered. With the advent of UML came
the Object Constraint Language (OCL) [20], a constraint
language that allows expressing business rules textually, based
on the modeling concepts (e.g. classes and associations)
represented graphically.

The main expected contribution of this research work is
mitigating the above problems by proposing a model-based
approach to SLA specification and compliance verification.
The SLA specification will be derived by way of domain
specific languages (DSL). Through SLA specification we seek
to elicit quality attributes, applying techniques like the ones
from requirements engineering, and specifically from non
functional requirements (NFRs) [21], to the context of ITSM.
The metamodel for the SLA specification will be an extension
of the metamodel of the adopted process modeling language of
IT services (BPMN). As such, it will be possible to ground
SLA contracts definition on the corresponding IT service
model constructs.

Regarding SLA compliance verification, we will use a SLA
evaluator tool that will be able to run statements of the SLA
language. This component will process SLA contracts
expressed in the SLA language, as well as information of IT
service instances execution, delivered by a process animation
tool. The current state of the delivered IT services will be
depicted, with visual tags, by that process animation tool, after
handling events captured by IT service and system
management tools. The SLA evaluator will supply information
to a SLA visualizer, to display current levels of service being
provided, namely if SLA limits have been surpassed. This
environment will allow monitoring process execution and SLA
compliance at the process modeling abstraction level, which is
easier to understand by all stakeholders involved in IT service
specification and deployment. We plan to validate this
approach in the context of an IT service management project
on the domain of financial self-service systems.

This paper is organized as follows: in the following section,
we start by surveying the SLA lifecycle; in section III we
identify the main challenges of this research work; in section
IV we present the conceptual building blocks of our model
driven approach for SLA specification and validation; in
section V we describe the architecture of the SLAVE
environment that is expected to demonstrate the feasibility of
our approach; then, in section VI, we describe the validation
context of our work; finally, in section VII, we present the
main conclusions that could be drawn so far.

II. THE SLA LIFECYCLE

Service Design

Service Transition

Service Operation & Continual Improvement

SLA negotiation

SLA available

agreement found/SLA owner assigned
agreement not found/IT service not provided

quality attribute identified/attribute range definition

IT service created

SLA required

Service Operation

Continual Service Improvement

start service operation

start continual improvement

Monitor SLA compliance

Analyse SLA data

Distribute SLA report

Active Suspended

SLA deployed

IT service decommissioned

suspend

activate

non compliance found/record non compliance

SLA revision requested

activate

report produced

period expired/start new period

ongoing period

Figure 1. SLA lifecycle, according to ITIL v3

To get a better picture of the context of our proposal, we

will now briefly describe the SLA lifecycle. The latter is

166

associated with ITIL’s Service Level Management (SLM)
process and is spread out by service phases from Service
Design [14] to Continual Service Improvement [15], as
represented in Figure 1.

SLA Specification. When a new IT service is conceived
and the need for an SLA is identified by its stakeholders, the
SLA negotiation takes place at some point of Service Design.
For each relevant quality attribute identified, the definition for
its acceptable range must be sought. When an agreement is
found around the SLA specification, a SLA owner/manager is
assigned and the SLA becomes available for Service Transition
activities, in preparation for deployment.

SLA Validation. When the IT service starts to be provided,
the monitoring of SLA compliance can be activated. While
active, whenever a non-conformance is detected, it should be
recorded. SLA monitoring can be suspended (e.g. when an
SLA update is required) and re-activated again. Continual
Service Improvement occurs in parallel with Service Operation.
Within it and at regular observation periods, SLA compliance /
non-compliance data records should be analyzed, hopefully in
a partially automated fashion. The SLA manager should
discuss the results of SLA data analysis in a report to distribute
to all relevant stakeholders. Based upon consumer satisfaction
surveys, the identification of potential improvements, known
problems in service support, changing service requirements, or
simply the will to improve service levels to get a better market
share, the SLA specification may go through a revision.

III. CHALLENGES
As in Software Engineering, where functional and non-

functional requirements (NFRs) cannot be seen as completely
orthogonal aspects [22], there is also a trade-off among the
several quality attributes of the provided IT services, which
may vary from service to service. Therefore, the SLA
specification should consider that a given level for a quality
attribute can never be met in isolation, since thriving to meet
the specified level of a quality attribute may have a positive or
negative effect on the level of another quality attribute. The
requirements engineering techniques for dealing with
conflicting non-functional requirements [12] can help us to
address quality attributes in the context of ITSM. Some
examples of the tension among quality attributes follow:

• security and reliability - a more secure system has less
points of failure, whereas a more reliable system should
have more redundant elements (points of failure);

• performance and portability - performance is negatively
affected by almost every quality attribute, namely
portability. A technique for achieve portability is to isolate
system dependencies, which introduces overhead into the
system's execution, and hurts its performance.

A second challenge concerning our work is related to the
fact that some service quality attributes (e.g. scalability,
performance) are more amenable to quantification than others
(e.g. credibility, auditability). The latter are then less prone to
be captured automatically and therefore their compliance
verification cannot be deployed in a tool.

IT service outsourcing, nowadays a common practice,
poses another challenge for SLA compliance verification.
Indeed, many organizations provide IT services that depend on
services from other organizations. For example, an online
shopping system may interact with (1) banks to authorize credit
cards, (2) a warehouse to check availability and reserve the
items to be sold, and (3) a delivering company for checking
availability of transport. Another example are IT services
provided upon technical infrastructures based on cloud
computing, where shared resources (e.g. software, hardware
infrastructure) are provided on-demand, like a public utility.
The unavailability or poor performance of one of the services
may compromise the whole IT service.

A final challenging issue is the automation of the SLA life
cycle in the context of ITSM, in order to enable the negotiation,
provisioning and compliance validation of standard IT services
among organizations in real time.

IV. A MODEL DRIVEN APPROACH FOR SLA SPECIFICATION
AND VALIDATION

Our proposal is framed by the Model-Driven Engineering
(MDE) paradigm. MDE was operationalized by the OMG’s
initiative known as Model-Driven Architecture (MDA) [23],
which refers to the systematic use of models as primary
engineering artifacts, to express domain concepts effectively,
throughout the engineering lifecycle. MDE assumes that any
problem can be represented by a model which captures its
essence [24] [25].

In our case, the problem domain is related with the SLA
specification, and compliance verification in the context of IT
services. In order to address the problem, our intention is to
adapt NFR techniques from the requirements engineering
domain [26] to the ITSM domain. NFR approaches allow
elicitation of non-functional requirements, grounded in
knowledge bases and functional requirements documentation
[27]. By following the MDE approach, a set of model
transformations from the domain specification models (the
SLA contracts) to the implementation models (for SLA
compliance verification) will be accomplished.

One possible alternative for expressing contracts upon IT
service process model would be to extend the general-purpose
UML modeling language with a profile that would restrict the
scope to a particular domain with stereotypes, tagged values
and constraints. This alternative has the advantage of tools
availability, although the effort for creating a new profile is
usually considerable. However, the main disfavor of this
alternative is that the representation richness of UML renders
the corresponding modeling tools excessively complex for IT
service designers and clients.

To mitigate the previous problem we adopted a Domain-
Specific Modeling (DSM) approach [28]. In other words, we
are developing a Domain Specific Language (DSL) for
expressing SLAs. DSLs allow solutions to be expressed in the
idiom and at the level of abstraction of the problem domain.
For instance, it will be possible to operate with familiar terms
related with service level management (e.g. availability,
performance), instead of using QoS terms which are more
implementation oriented (e.g. bit rate, bit error, latency).

167

Consequently, domain experts can more easily understand,
modify and validate specifications at the domain level.
Summing up, we believe that this choice will reduce the effort
to express a contract specification. Moreover, a DSM
environment, aka graphical DSL tool, can automate the
creation of tools that are costly to build from scratch, such as
the editor required for specifying SLA contracts [29].

«specification»
SLA Language

Metamodel

«specification»
BPMN Metamodel

M2

«specification»
SLA Contract

(SLA Language)

«specification»
ITSM Process Model

(BPMN)

M1

«compliesTo»«compliesTo»

«specification»
OCL Metamodel

«specification»
Contract Validation

Clauses (OCL)

«compliesTo»

Process Instances
(tokens and events)

M0

«compliesTo»

Figure 2. MDD approach to SLA specification and validation

In the following description of our approach we will use
OMG’s MDA abstraction levels M2 (metamodel level), M1
(model level) and M0 (model instances / objects level) [23] as
represented in Figure 2. A SLA contract is a set of contractual
clauses. To grant the required hooks for the SLA contracts,
which stipulate levels for quality attributes upon specific
activities in the process model, our SLA language metamodel
will be an extension of the process modeling language to be
used (BPMN). A given contract, expressed with our SLA
language, will therefore be conformant to the SLA language
metamodel and will extend the corresponding process model.
While editing a contract, we must therefore provide SLA
language metamodel checking ability (M1 to M2 compliance),
while allowing to hook contractual clauses on abstractions of
the process model under consideration (M1 to M1
relationships). The metamodel of the SLA language is being
built upon ECore1, a meta-metamodel language very close of
the Essential MOF (EMOF) [18]. Notice that for the same
process we can have more than one contract (e.g. different
scenarios for different clients). The IT service process model
under consideration (e.g. configuration management, incident
management or problem management) should also be
conformant with the BPMN metamodel (M1 to M2
compliance). Since this compliance is supposedly granted by
existing process modeling tools, it will not be a concern here.

Using a M1 to M1 model transformation, we will generate
the contract validation clauses (an OCL specification) out of

1 - The ECore has been defined in the Eclipse Modeling Framework
(http://www.eclipse.org/modeling/emf/)

the SLA contract. These clauses extend the ITSM process
model, should be conformant to the OCL metamodel and will
be used to validate the ITSM process model loaded with
process instances (events and tokens) originating from run-time
capture or simulation. By executing the OCL clauses upon a
process model we can detect SLA compliance or violation.

Model transformation is a critical component of MDA. The
Query/Views/Transformations (QVT) is the current standard
compatible with the MDA recommendation suite (UML, MOF,
and OCL). Transformations take model specifications as input
(the SLA contracts expressed in the SLA language, in our case)
and perform actions upon them, resulting in a different model
specification (the contract validation clauses, in our case).
Several model transformation languages are presently available
(e.g. GReAT [30], UMLX [31], VIATRA [32], MOLA [33],
ATL [34], Kermeta, Stratego/XT, MT [35] and Tefkat), with
different levels of compliance to the QVT standard. In the
present research work the transformations are exogenous, i.e.
their source and target metamodels are different.

V. ENVIRONMENT ARCHITECTURE
To illustrate the feasibility of our approach for SLA

specification and compliance validation upon ITSM services
modeled in BPMN, we are building the SLA specification and
Validation Environment (SLAVE). Its architecture addresses
two main stages in the SLA life cycle: the SLA specification
stage, when a negotiation phase takes place among the
stakeholders; and the validation stage, which comprises the
SLA life cycle phases of monitoring, reporting, evaluating and
improving [14]. Each of those stages is implemented by a
different subsystem, schematically depicted by the component
diagrams in Figure 3 and Figure 4. Grayed components are
produced by a third-party.

Specification subsystem

«executable»
SLA Editor

«file»
Process Model

«file»
SLA Contract

write

«executable»
Validation Clauses Generator

SLA Manager

+uses

«file»
Contract Validation Clauses

*
1

read

ITSM Manager

«executable»
BPMN Tool

write

+uses

write

Figure 3. SLAVE (Specification subsystem)

168

Our approach considers that ITSM processes were
previously modeled with BPMN, by the ITSM Manager role,
with the support of a BPMN modeling tool, as represented in
Figure 3. The resulting Process Model can be persisted in a
standard format (e.g. XMI).

The negotiation phase aims to define the conditions of the
SLA contract, agreed between the IT service provider and the
customer, and expressed with the SLA language, which will be
inspired in techniques of NFRs elicitation [36]. An SLA Editor
supports this activity. This tool is used by the SLA Manager
role and serves to specify the SLA terms. This editor will be
built using a DSL tool.

The output of the SLA Editor will be an SLA Contract
complying with the SLA metamodel, with hooks on the
corresponding BPMN process model. Those hooks specify
where in the process a specific contractual clause (which will
refer to given SLA quality attributes) applies (e.g. diagram
elements such as activities, gateways or data objects). The
Validation Clauses Generator is a component that performs a
transformation between SLA language and OCL and it will
also be built with a DSL tool. This generator takes the SLA
Contract (expressed in the SLA language) as input and
generates the Contract Validation Clauses (expressed in OCL)
as output.

Validation subsystem

«executable»
Process Model Animator

Events API

«executable»
Real Time Facade

«executable»
Simulation Facade

read

«file»
Events Scenario Snapshot

«executable»
IT Management Gateway

SyMT API

«executable»
System Management Tool

«executable»
Service Management Tool

SvMT API

read

«file»
Process Model

«file»
Contract Validation Clauses

«executable»
SLA Evaluator

«executable»
SLA Visualizer

Evaluator API Visualizer API

ITSM Manager

+uses

read

RealTime API

Simula API

Figure 4. SLAVE (Validation subsystem)

In the validation stage (Figure 4), the ITSM Manager role

interacts with the Process Model Animator. The latter allows

observing the dynamics of the execution of the ITSM process
on a BPMN diagram. To do so it takes the Process Model as
input and processes its events received from one of two façades
[37]. The Real-Time Façade is a front-end to an existing IT
Management Gateway that performs a centralized processing
of events coming either from System Management Tools (e.g.
network management, software distribution) or Service
Management Tools (concerning the execution of ITIL
processes such as incident management or problem
management). The Simulation Façade reads previously
recorded Event Scenario Snapshots. The latter can be
artificially generated (e.g. taking as basis the process model) or
created by logging IT Management Gateway sessions and
storing events in a standard format such as CIMOM [38],
WBEM [39] or a CMDB [40].

The Process Model Animator will have two plugins: the
SLA Evaluator and the SLA Visualizer. The former is basically
an OCL interpreter that is able to check the Contract
Validation Clauses against the instantiated Process Model,
thereby being able to deliver information regarding SLA
conformance or non-conformance. The SLA Evaluator is the
cornerstone of the SLAVE environment since it joins the
specification and validation stages.

Finally, the SLA Visualizer will extend the Process Model
Animator with graphical views (e. g. dashboard or balanced
scorecard) upon the running or simulated IT service processes.
For instance, they will be filtered by SLA fulfillment or non-
fulfillment in a specified timeslot.

VI. VALIDATION CONTEXT
We have established a joint research project between our

research center and an industrial partner specialized in
producing financial software, whose main operational
processes will provide an adequate background for this work.
In the realm of this joint project we will participate in the
conception of a new events management system for financial
self-service terminals networks (ATMs, kiosks and POS).
Events management is concerned with faults or malfunctions
related to the use or operation of the terminals, either by final
users or by support team members (supervisors, maintenance
and replenishment agents and helpdesk). Events are caused by
total or partial unavailability of terminals (due to hardware or
software problems), as well as other causes such as security
breaks, communications failure or inadequate user operation.

The project’s broad scope will extend the current version of
a solution, which manages hundreds of ATMs in Portugal, to
enable its simultaneous use, spanning several countries, with
tens of thousands of terminals. An innovative approach to the
delivery and processing of messages will take place in this
project. The goal is to implement a model where the
dispatching of events will result from the conjunction of rules,
namely settled in service level agreements contracts. This will
differ from solutions deployed in the market today, that are
based in the paradigm of division of the total of terminals in
groups, by one or two criteria, allocating each group to one
professional helpdesk.

169

VII. CONCLUSIONS AND FUTURE WORK
The main expected contribution of this research work is a

model-based approach to IT services SLA specification and
compliance verification. The specification part will encompass
the proposal of a domain-specific language for expressing
SLAs in the context of ITSM – the SLA language, for short. Its
metamodel will be an extension of the metamodel of the
adopted process modeling language, which is BPMN. As such,
it will be possible to ground contractual clauses on the
corresponding IT service model constructs.

Regarding the SLA compliance verification, a process
model animation tool will be used, fed by the events that will
be captured by IT service and system management tools. The
process model animator will be integrated with the SLA
evaluator to allow visual information related to current levels
of service being provided, namely when SLA limits are
exceeded. Therefore, process execution and SLA compliance
validation will be made at the level of abstraction that is
understood by all the stakeholders involved in IT service
specification and deployment.

ACKNOWLEDGMENT
The work presented herein was partly supported by the

VALSE project of the CITI research center within the
Department of Informatics at FCT/UNL in Portugal.

REFERENCES
[1] ITIL3Sm, OGC-Office of Government Commerce: Summary, ITIL

Version 3, ITSMF- IT Service Management Forum, 2007.
[2] ISO20000-1, Information technology -- Service management -- Part 1:

Specification; ISO20000-2, Information technology -- Service
management -- Part 2: Code of practice, International Organization for
Standardization, 2005.

[3] MS, M.C.-. Microsoft Operations Framework (MOF) 4.0, Microsoft
Corporation, 2008.

[4] Lindquist, D., Madduri, H., Paul, C.J., and Rajaraman, B.: ‘IBM Service
Management architecture’, IBM Systems Journal, 2007, 46(3), pp. 423-
440.

[5] Sallé, M.: ‘IT Service Management and IT Governance: Review,
Comparative Analysis and their Impact on Utility Computing’, Hewlett-
Packard Research Labs, 2004.

[6] TMF, TeleManagement Forum: Enhanced Telecom Operations Map®
(eTOM) - The Business Process Framework - Version 7.1, 2007.

[7] BPMN, OMG: ‘Business Process Model and Notation (BPMN) ’,
dtc/2009-08-14, 2009.

[8] Bon, J.v., Pieper, M., and Veen, A.v.d. (eds.): Foundations of IT Service
Management: Based on ITIL, ITIL Version 2, Van Haren Publishing,
2005.

[9] Mayerl, C., Vogel, T., and Abeck, S.: ‘SOA-based Integration of Service
Management Applications’, Proc. of the IEEE International Conference
on Web Services, 2005.

[10] http://www.pinkelephant.com/pinkverify/pinkverifytoolsetv3.htm, accessed
on 30-06-2010.

[11] Gläßer, L.: ‘Development and Operation of Application Solutions
2005/2006’, Siemens Business Services, 14.09.2005, 2005.

[12] Mylopoulos, J., Yu, E., Nixon, B.A., and Chung, L.: Non-Functional
Requirements in Software Engineering, Springer, 1st edn, 0792386663,
1999.

[13] Kassab, M.: Non-Functional Requirements: Modeling and Assessment,

VDM Verlag, ISBN 3639206177, 2009.
[14] ITIL3D, OGC-Office of Government Commerce: Service Design, ITIL

Version 3, ITSMF- IT Service Management Forum, 2007.
[15] ITIL3C, OGC-Office of Government Commerce: Continual Service

Improvement, ITIL Version 3, ITSMF- IT Service Management Forum,
2007.

[16] Coyle, D.M., and Brittain, K.: ‘Magic Quadrant for IT Service Desk’,
Gartner, 2009.

[17] Wedemeyer, M., and Menken, I.: ‘The ITIL V3 Service Management
Awareness Pocket Guide’: (The Art of Service, 2007).

[18] MOF: ‘Meta Object Facility (MOF) Core Specification - Version 2.0’,
No. formal/06-01-01, OMG-Object Management Group, January, 2006.

[19] UMLs, OMG-Object Management Group: OMG Unified Modeling
Language (OMG UML), Superstructure, V2.1.2, 2007.

[20] OCL, OMG- Object Management Group: OCL - Object Constraint
Language Version 2.0, 2006.

[21] Röttger, S., and Zschaler, S.: ‘Tool support for refinement of non-
functional specifications’, Software and Systems Modeling Journal
(SoSyM) 6(2), 2006, pp. 185–204.

[22] Bass, L., Clements, P., and Kazman, R.: Software Architecture in
Practice, Addison Wesley, 2nd edn, 0-321-15495-9, 2003.

[23] MDA, OMG: ‘Model Driven Architecture (MDA)’, No. ormsc/2001-07-
01, July 9, 2001, 2001.

[24] Frankel, D.S.: Model Driven Architecture Applying MDA to Enterprise
Computing, Wiley Publishing, Inc, 0-471-31920-1, 2003.

[25] Mellor, S.J., Scott, K., Uhl, A., and Weise, D.: MDA Distilled: Principles
of Model-Driven Architecture, Addison Wesley, 0-201-78891-8, 2004.

[26] Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J.: Non-Functional
Requirements in Software Engineering, Boston, Kluwer, 2000.

[27] Cysneiros, L.M., Leite, J.C.S.d.P., and Neto, J.d.M.S.: ‘A Framework for
Integrating Non-Functional Requirements into Conceptual Models ’,
Requirements Engineering, 2001, Springer-Verlag London Limited(6),
pp. 97-115.

[28] Langlois, B., Jitia, C.-E., and Jouenne, E.: ‘DSL Classification’, Proc. of
OOPSLA’07 – Domain-Specific Modeling Workshop, October 21-22,
2007, 2007.

[29] Kalnina, E., and Kalnins, A.: ‘DSL tool development with
transformations and static mappings’, Proc. of MODELS 2008 Workshops
- Doctoral Symposium, Toulouse, 29.9.2008, 2008.

[30] Balasubramanian, D., Narayanan, A., vanBuskirk, C., and Karsai, G.:
‘The Graph Rewriting and Transformation Language: GReAT’, Proc. of
the Third International Workshop on Graph Based Tools (GraBaTs
2006), Electronic Communications of the EASST, Volume 1, 2006.

[31] Willink, E.D.: ‘UMLX : A graphical transformation language for MDA’, ,
Proc. 18th Annual ACMSIGPLAN Conf. on OOPLA,
Anaheim,CA(2003), pp. 13–24, 2003.

[32] OptXware: ‘The Viatra-I Model Transformation Framework Pattern
Language Specification’, Technical report August 2006.

[33] http://mola.mii.lu.lv/, accessed on 30/06/2010
[34] http://wiki.eclipse.org/index.php/ATL, accessed on 30-06-2010.
[35] Tratt, L.: ‘The MT model transformation language’, Technical report TR-

05-02, Department of Computer Science, King’s College London, 2005.
[36] Matoussi, A., and Laleau, R.: ‘A Survey of Non-Functional Requirements

in Software Development Process’, Technical report TR-LACL-2008-7,
Departement d’Informatique, Université d Paris 12, 2008.

[37] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[38] http://www.dmtf.org/standards/cim/, accessed on 30-06-2010.
[39] http://www.dmtf.org/standards/wbem/, accessed on 30-06-2010.
[40] http://www.dmtf.org/standards/published_documents/

DSP0252_1.0.0c.pdf, accessed on 30-06-2010.

170

