
Model-Driven Development for Requirements Engineering:  

The Case of Goal-Oriented Approaches 

Rui Monteiro, João Araújo, Vasco Amaral, Miguel Goulão, Pedro Patrício,  

CITI/Departamento de Informática 

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa 

2829-516 Caparica, Portugal 

{rm.chambel | pedropt}@gmail.pt, {vma | joao.araujo | mgoul}@fct.unl.pt 

 

 
Abstract— Goal-Oriented Requirements Engineering (GORE) 

has received increasing attention over the past few years. 

There are several goal-oriented approaches, each one using 

different kinds of models. We believe that it would be useful to 

relate them or even perform transformations among them 

automatically, in order to understand their similarities and 

differences, their advantages and disadvantages, allowing a 

possible migration or comparison between approaches. This is 

something that has not received enough attention. In this paper 

we propose the definition and implementation of goal model 

transformations between i* and KAOS. As an immediate 

contribution, the approach can be used to migrate from one 

goal model to another through automatic model 

transformations. This approach also contributes to relate the 

concepts of i* and KAOS models and will help, for example, a 

development team in making the decision on which approach 

to follow, according to the nature of the project and the 

expressiveness of an approach to represent certain concepts 

(e.g., obstacles are represented explicitly in KAOS, but not in 

i*). Another contribution is to facilitate communication among 

members of the same team, if they are specialized in different 

approaches.  

Keywords- Goal-Oriented Requirements Engineering, Model-

Driven Development, Domain Specific Language 

I.  INTRODUCTION 

Model-Driven Development (MDD) has a recognized 
role in software development in general due to its 
capabilities of producing more reliable software in a faster 
way. However, the main focus of MDD has been on design 
and implementation levels. But Requirements Engineering 
(RE) could also benefit from its advantages by allowing 
different kinds of requirements models transformations 
between different paradigms or inside the same paradigm. 
We are interested in studying the use of MDD in Goal-
Oriented Requirements Engineering (GORE). GORE has a 
great impact and importance in the RE community [1]. It 
helps in identifying, organizing and structuring requirements, 
as well as in exploring and evaluating alternative solutions to 
a problem [1, 2]. In the context of GORE there is a wide 
variety of goal modeling languages, such as i* [3], KAOS 
(Knowledge Acquisition in AutOmated Specification) [4], 
GBRAM (Goal-Based Requirements Analysis Method) [15], 
GRL (Goal-oriented Requirement Language) [5] and NFR 
(Non-Functional Requirements) framework [6]. Despite the 
existing work on these approaches, such variety, according to 
[7], neither facilitates the selection of the appropriate 

approach, nor the mappings of models of different 
approaches. Thus, it is important to have a way to make it 
easier to learn the main differences of each one. It may be 
desirable to convert a model into another one because we 
may want to: refine an organizational level model (e.g. using 
i*models) to a system level model (e.g., by using a KAOS 
goal model); compare different approaches and decide which 
one is more expressive for a particular domain or to an 
organization culture (i.e. an approach can be more expressive 
than another to represent certain concepts — e.g. obstacles 
are represented explicitly in KAOS, but not in i*); facilitate 
the communication between professionals specialized in 
different approaches.   

To achieve requirements model transformations, Model-
Driven Development (MDD) [8] techniques can be used. 
These techniques range from metamodeling to 
transformation languages and tools (e.g., [9, 10, 11]).  The 
final result is a more productive software development 
process. In this work, we propose a model transformation 
framework, called MDGore, to transform i* models into 
KAOS models through rules defined in ATL (Atlas 
Transformation Language) [9]. To achieve this, i* and 
KAOS models are specified using our tools that were 
developed in an Eclipse platform, LDE i* [12] and 
modularKAOS framework [13]. The application of the 
transformation rules is done at abstract syntax level, defined 
in the metamodel of each one of the frameworks mentioned, 
and uses the graph transformation paradigm [14], using the 
transformation language ATL. A poster version of this work 
was published with the very preliminary ideas [16]. Here we 
present a full-fledged approach with all the transformations 
implemented and applied to real-world case studies.   

The paper is structured as follows. Section II provides a 
background on MDD and GORE. Section III presents a 
description of MDGore and its validation. Section IV 
discusses related work. Finally, Section V concludes the 
paper and gives directions for future work. 

II. BACKGROUND 

This section introduces the MDD and GORE. In GORE 
there is a wide variety of goal modeling languages, as 
mentioned in the previous section. i* and KAOS are among 
the most popular ones. As such, we chose them to discuss 
and illustrate the transformations between two GORE 
approaches. 



A. Model-Driven Development 

MDD [8] is a recent paradigm for software development, 
whose main idea is the systematic use of models and model 
transformations for the specification and implementation of 
software systems. The goal of MDD is to automate the 
process of creating new software and to facilitate its 
evolution in changing environments through model 
transformations [8]. In MDD, a model is typically associated 
with an abstract syntax that is defined by a metamodel. In 
other words, a model must be constructed following certain 
rules, and conform to a certain metamodel, which defines the 
model abstract syntax. In the same way, the metamodel is a 
model of a modeling language and must conform to the rules 
defined in the meta-metamodel. Once the metamodels and 
models are defined, the model transformations are used to 
derive a model from one or more models. That is, a model 
transformation takes as input a model conforming to a given 
metamodel and produces as output another model in 
conformance to a given metamodel. In the context of model 
transformation, our work uses the graph transformation 
approach. A graph transformation [14] is a technique for 
model transformation that involves models that can be 
represented as graphs, which is the case of i* and KAOS 
models. Graph transformation rules consist of a LHS (Left-
Hand Side) graph pattern and a RHS (Right-Hand Side) 
graph pattern [14], which correspond to the input and output 
model elements respectively. The LHS pattern is matched 
against the model being transformed and the RHS pattern is 
generated as the output model.  

Model transformation languages [9, 10, 11] aim at 
automating the process of deriving one model from another 
one. We have chosen ATL [9] for specifying our model 
transformations, since it offers the possibility to define the 
rules in a hybrid way, that is, in a declarative or imperative 
programming style [9]. The preferred style of transformation 
writing is the declarative one. This style enables to simply 
express mappings between the source and target model 
elements. The imperative constructs can be used when 
mappings are difficult to specify in the declarative style. An 
ATL transformation program is composed of rules that 
define how source model elements are matched and 
navigated to create and initialize the elements of the target 
models [9]. 

B. The i* approach 

i* [3] was developed for modeling and reasoning about 
organizational environments and their information systems 
[3]. It focuses on the concept of intentional actor. Actors in 
their organizational environment are viewed as having 
intentional properties such as goals, beliefs, abilities and 
commitments. i* has two main modeling components: the 
Strategic Dependency (SD) model and the Strategic 
Rationale (SR) model. The SD model describes the 
dependency relationships among the actors in an 

organizational context. In this model, an actor (called 
depender) depends on another actor (called dependee) to 
achieve goals and softgoals, to perform tasks and to obtain 
resources. The SR model provides a more detailed level of 
modeling than the SD model, since it focuses on the 
modeling of intentional elements and relationships internal to 
actors. Intentional elements (goals, softgoals, tasks and 
resources) are related by means-end or decomposition links. 
Means-end links are used to link goals (ends) to tasks 
(means) in order to specify alternative ways to achieve goals. 
Decomposition links are used to decompose tasks. A task 
can be decomposed into four types of elements: a subgoal, a 
subtask, a resource, and/or a softgoal. Apart from these two 
links, there are the contribution links, which can be positive 
or negative.  

In this work we use LDE i* [12], a Domain Specific 
Language (DSL) [17] for i*. Its main objective is to ensure a 
better management of complexity and scalability of their 
models by introducing the notion of compartment where 
elements of an i* model can be grouped. This DSL was 
implemented using MDD techniques, and includes an Ecore 
[19] metamodel based on existing ones [3, 18]. Figure 1 
shows a fragment of the LDE i* metamodel. The full version 
can be found in [12]. The root of the metamodel is the class 
SRModel. This class is composed of zero or more nodes, 
represented by the abstract class Node, and zero or more 
links, represented by the abstract class Relationship. A node 
can be a DependableNode type, specialized as an Actor, or 
the Dependum type. A Dependum may be one of the 
following types: Task, Resource, Goal, SoftGoal, 
ElementContainer and SoftGoalContainer. The latter two 
represent the compartments. The ElementContainer 
compartment groups the Tasks, Goals and Resources. The 
SoftGoalContainer compartment groups the SoftGoals. A 
relationship can be one of the following types: 
ContributionLink, DecompositionLink, MeansEndLink and 
Link. The Link class represents the dependency relationship 
through classes DependeeLink and DependerLink. This DSL 
was implemented using the EMF/GMF [19, 20], which are 
plug-ins of Eclipse.   

C. The KAOS approach 

KAOS [4] is a systematic approach for discovering and 
structuring system level requirements. In KAOS, goals can 
be divided into requirements (a type of goal to be achieved 
by a software agent), expectations (a type of goal to be 
achieved by an environment agent) and softgoals (e.g., 
quality attributes). In KAOS, goals can be refined into 
subgoals through and/or decompositions. There is also the 
possibility of specifying conflicts between goals. KAOS also 
introduces the concept of obstacle that is a situation that 
prevents the achievement of a goal. Usually the solution to 
the obstacle is expressed in the form of a new requirement. 

 



 
Figure 1.  Partial LDE i* metamodel. 

 
Here we use modularKAOS [13], which is a DSL, 

implemented using MDD techniques (metamodeling), for 
dealing with KAOS models. This DSL also incorporates the 
notion of compartment, in KAOS models, to improve their 
scalability. Each compartment can contain elements of the 
KAOS model and can be collapsed to hide what is inside it. 
This feature can be useful to help analyzing just a portion of 
the model, while abstracting others. This DSL was 

implemented based on a metamodel defined in [21], using 
Ecore [19], extended with the concept of compartment. 
Figure 2 shows a partial modularKAOS metamodel. The full 
version can be found in [13]. The class KAOS is the 
metamodel root. This class is composed of zero or more 
CompartmentNode, Nodes and Links.  

 

 
Figure 2.  Partial modularKAOS metamodel. 

 
The Nodes class represents the nodes that can be Object, 

Goal or Obstacle. An Object can be of the Agent or Entity 
type. A Goal can be one of the following types: Expectation, 
Requirement or Softgoal. Links can be: ObstructionLink, 
SolutionLink, OrRefinement or AndRefinement. The link 
ObstructionLink connects an Obstacle to a Goal and a link 

SolutionLink connects a Goal to an Obstacle. Links 
OrRefinement and AndRefinement refine Goals. This DSL 
was implemented similarly to LDE i*. 



III. MDGORE: A MODEL-DRIVEN GOAL-ORIENTED 

REQUIREMENTS FRAMEWORK FOR I* AND KAOS 

This work proposes MDGore, a model-to-model 
transformation approach between i* and KAOS models. This 
transformation consists in transforming i* SR into KAOS 
Goal models. Figure 3 gives an overview of our framework. 
The dashed rectangle is the focus of our approach. The 
source model is the i* SR model which is transformed into a 
KAOS Goal model through the application of rules 
implemented in ATL.  

An i* SR model is specified using the LDE i* framework 
and it conforms to the i* metamodel implemented in this 
framework. A KAOS model conforms to the KAOS 
metamodel implemented in the DSL of modularKAOS. ATL 
rules conform to the ATL metamodel. Finally, these three 
metamodels were implemented using the Ecore formalism 
[19] and, therefore, conform to the Ecore meta-metamodel. 
This framework is semi-automatic, since the initial phase of 
the transformation process is applied for user intervention, to 
make decisions about the mapping of some i* elements into 
the corresponding KAOS elements. These specific cases will 
be addressed in the next section. We defined a metamodel, 
illustrated in Figure 4, to generate a “decision model” so that 
the users can make and record their choices. 

Conforms to

Through Through 

Transformed into

Conforms toConforms toConforms to

Conforms toConforms toConforms to

Meta -
metamodel

i*
Metamodel

ATL
Metamodel

KAOS
Metamodel

ATL Rules

i* Model KAOS Model

i* Log Model

 

Figure 3.  Process overview of the MDGore framework. 

 

Figure 4.  Metamodel of the decision model. 

The root of this metamodel is the ModelDecision class, 
which is composed of zero or more decisions, represented by 

the abstract class Decisions. This class represents an abstract 
decision element and has the attribute ElementName of 
String type that corresponds to its name. The ActorDecision 
class represents the i* element in which a decision will be 
recorded. This class extends the Decisions class and has an 
attribute, SoftwareComponent, of Enumeration type. The 
Enumeration, called SoftwareComponentOptions, has the 
values "Yes" or "No". The decision model is generated from 
the i* SR model and contains elements of type 
ActorDecision under which decisions are made. For each of 
these elements the user must decide which option, on the 
attribute SoftwareComponent, is more appropriate.  

One of the problems associated with the transformations 
between models of different approaches is the information 
loss. This problem arises from the fact that the abstract 
syntaxes of the approaches involved in the transformations 
are different and, as a consequence, it is not always possible 
to transform all the elements. This problem is also present 
when relating i* and KAOS models. To address this problem 
we introduce the notion of a Log model. This model keeps 
the information of all the elements that were not possible to 
transform. This model is represented using the i* notation. 
Looking again at Figure 1, the application of the 
transformation rules results in two models: one KAOS Goal 
model with the transformed elements and a Log model, with 
the non-transformed elements of the i* SR model. 

Another concern that we had was to ensure traceability in 
the transformation process. Through attributes in the KAOS 
metamodel, we store the history of the transformation in the 
transformed KAOS model. For example, when an i* element 
is transformed into a KAOS element, the type of the i* 
element is stored into an attribute of the KAOS element. This 
solution enables the possibility of transforming a KAOS 
Goal model back to the corresponding i* SR model, ensuring 
bidirectionality in the transformation process. 

Finally, our framework is flexible enough to change the 
transformed model, in particular by removing, adding, or 
changing, elements in the model. To implement the 
transformation rules, a study of relations between the 
elements of the two selected approaches was made, in order 
to establish their mappings. This is discussed next. 

A. Mapping between i* and KAOS elements 

Here we present the relations between i* and KAOS 
elements. These relationships have been established based on 
the concepts of the two approaches introduced in Section 2 
and based on the abstract syntax of each approach. The 
KAOS abstract syntax is defined in the modularKAOS 
metamodel that was based on the metamodel defined in [21]. 
In turn, the i* abstract syntax is defined in the LDE i* 
metamodel, which was based on the metamodel described in 
[3, 18]. Table I represents the mappings of i* model elements 
into KAOS model elements. 

As shown in Table 1, a task can be mapped to an 
expectation or a requirement, depending on the mapping of 
the actor that contains it. That is, if the actor is mapped to an 
EnvironmentAgent the task is mapped to an expectation, 
whereas if the actor is mapped to a SystemAgent the task is 
mapped to a requirement.  



The reason for this type of mapping is related to the 
restrictions imposed by KAOS. In KAOS, an expectation can 
only be associated with EnvironmentAgents, as well as a 
requirement can only be associated with SystemAgents. The 
i* actor types (actor, position, agent and role) can be mapped 
to SystemAgents or EnvironmentAgents. This is the only 
mapping that cannot be done automatically, since application 
domain knowledge is needed. Here, user intervention is 
necessary to select, through the decision model, the type of 
KAOS agent that corresponds the type of i* actor. The 
decomposition link can be mapped to an AndRefinement 
link or concernsLink. 

TABLE I.  MAPPINGS OF I* ELEMENTS INTO KAOS ELEMENTS 

i* KAOS 

Goal Goal 

Task Expectation; Requirement 

Softgoal Softgoal 

Resource Entity 

Actor, Position, Agent, Role SystemAgent; EnvironmentAgent 

Decomposition AndRefinement; ConcernsLink 

Means–End Link AndRefinement; OrRefinement 

Is-part-of Association Aggregation 

ISA Association Inheritance 

Break, Some-, Hurt Conflict 

Make, Some+, Help OrRefinement 

Dependency AndRefinement 

 
If a task is decomposed into subtasks, or goals, or 

softgoals, the decomposition link is mapped to an 
AndRefinement. If a task is decomposed into resources, the 
decomposition link is mapped to a concernsLink. This 
happens because an i* resource is mapped into a KAOS 
entity, and in KAOS the links that involve entities are 
concernsLinks. Finally, the means-end link has two possible 
mappings: AndRefinement or OrRefinement. If the source 

element of the means-end link has another means-end link, 
each of the destination elements is seen as an alternative to 
obtain the same source element. In this case, each means-end 
link is mapped to an OrRefinement. On the other hand, if the 
source element has only one means-end link, its target 
element is the only way to get it and this link is mapped to an 
AndRefinement. Regarding the dependency link, this is only 
transformed if the relationship occurs between the internal 
elements of the i* actors. If the dependency link is between 
actors it cannot be transformed, since there is no 
correspondence in KAOS. This dependency link between 
actors is the only i* element that is not possible to transform 
directly, so user’s intervention is needed. 

B. Example of transformation 

To help explaining the transformation process we will 
introduce a partial i* SR model (illustrated in Figure 5) of 
the “Project BTW: if you go, my advice to you” [22]. The 
main goal of this project is to develop a route planning 
system that allows community input. The model contains 
two actors: Travelers and Internet.  

The goal of the Travelers is to have a Trip to interesting 
places realized. The Task Travel to interesting places is a 
means to achieve that goal. This task is decomposed into the 
Planning trip subtask. To plan a trip it is necessary to 
perform the following subtasks: Get destination info, and 
(select) Transport to destination. The goal of the Internet is 
to have Services provided. The task Provide services is a 
means to achieve that goal. This task is decomposed into the 
following subtasks: Provide transport info and Provide 
places info. To provide info about transport, this subtask 
requires the resource Transport info. Finally, the actor 
Travelers depends on the actor Internet to achieve the goal 
Information be provided. 

 

 
 

Figure 5.  Partial i* SR model of the BTW Project 



 

C. Transformation Process 

In this subsection we will describe the transformation 
process of an SR model into a KAOS Goal model. This 
transformation process is based on the mappings described 
previously, and consists of: (i) generation of a decision 
model; (ii) generation of an annotated SR model; (iii) 
generation of an intermediate KAOS Goal model; (iv) 
generation of the final KAOS Goal model; and (v) 
generation of a Log model. For each step a set of ATL 
transformation rules was specified and implemented. 

 
Step 1: Generation of a decision model. In this step a 
decision model from the SR model is generated, so that the 
user can infer decisions about the type of some i* elements, 
based on domain knowledge of the problem. As mentioned, 
the four types of i* actors can be mapped into two types of 
KAOS agents: SystemAgent or EnvironmentAgent. It is up 
to the user to decide which agent should map to. A decision 
model is presented (Figure 6), containing the actors of the i* 
SR model.  

In this decision model, for each actor, the user must 
select whether it is a software component by using the 
options “Yes” or “No” of the property SoftwareComponent. 
The “Yes” option means that the actor is part of the system 
and in this case it will then be mapped to a SystemAgent. 
The “No” option means that the actor is an intervening one 
in the system and will then be mapped to an Environment 
Agent. 

  

 
 

Figure 6.  Decision model example 

In the example, for the Travelers actor it was selected the 
“No” option in the property SoftwareComponent, which 
means it will be mapped into an EnvironmentAgent. 
Although Figure 6 does not show, for the Internet actor it 
was selected the “Yes” option, which means that it will be 
mapped to a SystemAgent. 

 
Step 2: Generation of an annotated i* SR model. After 
taking all the decisions in the previous step, this step 
generates an annotated SR model, from the decision model 
and the original SR model, with all these decisions. In fact, 
the annotated model contains the same elements as the 

original SR model, and is enriched with user decisions. From 
this step all the mappings are defined and the conditions are 
satisfied to perform the transformation into an intermediate 
KAOS Goal model. 
 
Step 3: Generation of an intermediate KAOS Goal 
model. In this step, an intermediate KAOS Goal model is 
generated from the annotated SR model of the previous step. 
This model is intermediate because KAOS has responsibility 
links between the expectations or requirements and their 
agents that do not exist in i*. As a consequence, there is no 
i* element to serve as a pattern for generating the 
responsibility link. The solution was: an i* element generates 
two KAOS elements, one being the responsibility link and 
the other a task. However, this solution does not fully solve 
the problem, since the model is poorly structured. This 
problem is resolved in the next step.  
 

We selected 3 rules to illustrate the transformations we 
defined and implemented. The rules in Listings 1, 2 and 3 
specify how some i* elements are transformed into KAOS 
elements. These rules transform the pattern Means-End Link 
between a goal and a task into the pattern AndRefinement 
between a goal and an expectation. With the rule in Listing 1 
we can transform the i* goal Trip to interesting places into 
the KAOS goal with the same name. The from clause 
corresponds to the input pattern (LHS pattern according to 
graphs transformation technique). The variable i represents 
the i* goal. The to clause corresponds to the output pattern 
(RHS pattern) which is generated by the input pattern set in 
the from clause. The variable out represents the KAOS goal 
that will be obtained from the i* goal defined in the variable 
i. The attribute name of the KAOS goal is assigned with the 
name of the i* goal. The attribute TransformationSource is 
filled with the type of i* element to store the transformation 
history. 

 
rule IstarGoal2KaosGoal { 
     from i : iStarPrototipe!Goal (i.TransformationSource =   
            'Goal' or i.TransformationSource='' '' or 
i.TransformationSource.oclIsUndefined()) 
     to out : KAOS!Goal ( 
                name <- i.Name, 
                TransformationSource <- 'Goal') } 

Listing 1. ATL rule to transform i* Goal into KAOS Goal. 

rule IstarITask2KaosExpectation { 
     from i : iStarPrototipe!ITask    
            ( (thisModule.getActor(i).TransformationSource = 
'EnvironmentAgent' and  
            (i.TransformationSource = '' or 
i.TransformationSource.oclIsUndefined() ) )  or  
            (i.TransformationSource = 'Expectation') ) 
     to out : KAOS!Expectation ( 
                name <- i.Name, 
                TransformationSource <- 'ITask')} 

Listing 2. ATL rule to map i* Task into KAOS Expectation. 

With the rule in Listing 2 we can transform the i* task 
Travel to interesting places into the KAOS expectation with 



the same name. The description is similar to the previous one 
where the variable i represents the i* task, the variable out 
represents the KAOS expectation that will be transformed 
from the i* task set in the variable i. The name of the i* task 
is assigned to the attribute name of the KAOS expectation. 
With the rule in Listing 3 we can transform the i* means-end 
link, between the previous i* goal and the i* task, into the 
KAOS AndRefinement link. In the from clause the variable i 
represents the i* means-end link. In the to clause the variable 
out represents the KAOS AndRefinement link that will be 
transformed from the i* means-end link set in the variable i. 
The attribute andRefToGoal of the KAOS AndRefinement 
corresponds to the source link and is assigned the source link 
of the i* means-end link. The attribute andRefToOtherGoal 
of the KAOS AndRefinement corresponds to the target link 
and is assigned the target link of the i* means-end link. The 
remaining elements are transformed following the same 
procedure. 

 

rule IstarMeansEndLink2AndRefinement { 
     from i : iStarPrototipe!MeansEndLink  
            (thisModule.MoreThan1MeansEndLink(i.MeansEndHasGoal) < 2)  
     to out : KAOS!AndRefinement( 
                andRefToGoal <- i.MeansEndHasTask, 
                andRefToOtherGoal <- i.MeansEndHasGoal, 
                TransformationSource <- 'MeansEndLink')} 

Listing 3. ATL rule to map i* Means-End Link into KAOS AndRefinement 
 

Step 4: Generation of the final KAOS Goal model. The 
output of this step is a final KAOS goal model, illustrated in 
Figure 7, which is generated from the intermediate KAOS 
goal model of the previous step. The purpose of this step is 
to complete the KAOS goal model structure generated in the 
previous step. In this sense, it was created an ATL rule to 
restore the responsibility links between the elements and 
their agents. These responsibility links are visible in the 
Figure 7, between the EnvironmentAgent Travelers and their 
expectations and between the SystemAgent Internet and its 
requirements. 

Step 5: Generation of a Log model. The purpose is to 
generate a Log model from the annotated SR model in the 
second step, with the i* elements that were possible to 
transform. However, it may appear in the Log model 
elements that have been transformed, but were related to 
elements that are not able to be transformed, which is the 
case of some relationships. For example, in the SR model of 
Figure 5, the dependency relationship between actors is not 
possible to be transformed. This relationship is stored in the 
Log model, shown in Figure 8, together with the actors 
(Travelers and Internet) and the goal (Information provided) 
in the center of the dependency. Despite these elements 
(actors and goal) have been transformed, they appear in the 
Log model because they are part of the dependency link, that 
is not able to be transformed, and because it is not possible to 
store such a link without its source and target elements. If all 
the SR model elements are able to be transformed, an empty 
Log model is generated. Otherwise, a Log model is 
generated with the elements that are not transformed. 

D. Transformation result 

The output of the transformation process explained above 
is a KAOS goal model with the transformed elements, and a 
Log model with the i* elements that have not been possible 
to be transformed. In the KAOS goal model, illustrated in 
Figure 7, we can see that the i* goals were transformed into 
KAOS goals. The Travelers actor was transformed into an 
EnvironmentAgent, as in the decision model we decided that 
it is not a software component. For the Internet actor, in the 
same decision model, we decided that this actor is a software 
component and in this case it was transformed into a 
SystemAgent. The internal tasks of the Travelers actor were 
transformed into expectations since this actor corresponds to 
an EnvironmentAgent. Also, the internal tasks of the Internet 
actor were transformed into requirements, since this actor 
corresponds to a SystemAgent. Internal resources to the 
Internet actor were transformed into entities. 

 

 
 

Figure 7.  KAOS Goal model obtained. 



All decomposition links between tasks were transformed 
into AndRefinement links and decomposition links between 
tasks and resources were transformed into ConcernsLinks. 
The means-end link between the goals and tasks were 
transformed into AndRefinement, as each goal has only one 
means-end link.  

As we mentioned, our framework is flexible, allowing 
users to change the KAOS Goal model generated by the 
transformations. This is suitable since it is not possible to 
automatically transform the dependency relationship 
between actors (Figure 8). 

 

Figure 8.  Log model. 

So we changed the KAOS Goal model in order to 
establish a possible solution to this dependency relationship. 
The solution was to represent the dependum Information 
provided for both perspectives, i.e., Travelers’ and Internet’s. 
Firstly, we specified the expectation Information provided 
(Traveler’s perspective) resulting from the refinement of the 
expectation Travel to interesting places. Secondly, the 
expectation Information provided is refined into the 
requirement Provide services, which is under the 
responsibility of Internet SystemAgent, and as such depends 
on this requirement to be fulfilled. We also created the goal 
Information provided (Internet’s perspective) which is 
refined into the requirement Provide services, depending on 
this to be achieved. Thus, it is possible to establish the 
dependency relationship between Travelers and the Internet, 
through the dependency between the expectation and 
requirement. 

E. Validation  

As a proof of concept, we applied the approach to the 
Health Watcher case study. Health Watcher is a real-world 
system that provides information about public health [23]. 
By modeling it with the approach, we assessed our 
transformation rules correctness with a real-world case study. 
The detailed model of the Health Watcher system built with 
our approach can be found in [28]. 

Concerning the effect of the proposed approach and its 
tool support in Goal-Oriented Requirements Engineering 
activities, we conducted a pilot study with a group of 7 final 
year MSc students in Computer Science at [University name 
removed for the sake of the double blind review process]. 
These graduate students had previously taken courses on 
Requirements Engineering and on Domain-Specific 
Languages Development, so they had enough previous 
experience with GORE and MDD, as they had applied both 
to several case studies in the context of those courses. None 
of the participants was working under the supervision of the 
authors, or enrolled in courses taught by the authors, to 
minimize potential biases that could otherwise occur.  

The participants received 60 minutes training. After 
completing their training, they were asked to perform a set of 
modeling tasks. First, they created manually a KAOS Goal 

model based on the SR model of the BTW Project [22]. 
Then, using the approach, they transformed the SR model 
into the KAOS goal model and compared it with the Goal 
model they created manually. Finally, participants were 
asked to fill in a questionnaire to compare the approach with 
the baseline manual approach.  

The questionnaire included three questions: 

 Question 1: “How do you rate the model generated by 
the transformations in comparison to the model created 
manually?”(1 – Very bad; 2 – Bad; 3 – Similar 4 – 
Good; 5 – Very good) 

 Question 2: “Was there any information lost in the 
transformation process?” (1 – Yes; 5 – No) 

 Question 3: “How do you rate the simplicity of the 
transformation process?”(1 – Complex; 2 – Little 
Simple; 3 – Reasonably Simple; 4 – Simple; 5 – Very 
Simple) 

 Question 4: “How do you rate the usefulness of the 
approach?” (1 –Useless; 2 – Little Useful; 3 – Somehow 
useful; 4 – Useful; 5 – Very Useful)  

 
Table II summarizes the frequencies of responses, broken 

down by question. Note that we only have 2 categories for 
question 2, while we have 5 for the remaining questions.  

TABLE II.  QUESTIONNAIRE’S ANSWERS FREQUENCY, BY QUESTION 

Category Question 1 Question 2 Question 3 Question 4 

     1 0 0 0 0 

2 0 0 1 0 

3 0 0 5 0 

4 2 0 1 1 

5 5 7 0 6 

 
Overall we can observe higher frequencies in the 

categories implying some sort of success, for all but question 
3, where the results are neutral (meaning that most 
participants found the transformation process only 
reasonably simple). Assuming that answers falling into 
categories 1 and 2 mean that our approach is worse than the 
baseline, category 3 means that our approach is as good as 
the baseline, and categories 4 and 5 mean that our approach 
is an improvement from the baseline, we aggregated the 
answers into “No improvement” (categories 1, 2 and 3) and 
“Improvement” (categories 4 and 5). The aggregated 
frequencies are presented in table III. 

TABLE III.  AGGREGATED RESULTS, BY QUESTION 

Category Question 1 Question 2 Question 3 Question 3 

No improvement 0 0 6 0 

Improvement 7 7 1 7 

 
These aggregated results show improvements on 

questions 1, 2 and 4. For each of these questions, all 
participants chose the top categories. 5 out of 7 participants 
indicated that the model generated by transformations 
compared with the model they created was “Very good”. 
Only two users rated it as “Good”, which is still a positive 
rating. None of the participants reported any information loss 
with the approach, so this objective was fully met. 6 out of 7 



participants rated the approach as “Very useful”, while the 
remaining participant rated it as “Useful”. The participants 
particularly enjoyed the support for interoperability among 
teams with different expertise in GORE, which was one of 
the planned contributions of this approach. 

Concerning question 3, the answers were mostly neutral 
(5 out of 7 considered the transformation process to be 
“Reasonably Simple”). In contrast with the remaining 
questions, the simplicity of the approach was still considered 
a challenge with the proposed approach. We further explored 
this and found that the participants considered that the 
settings of the transformation process were not as simple as 
they would feel comfortable with. They suggested that the 
creation of a wizard in the tool support would mitigate this 
problem. 

Overall, these results are encouraging and helped us 
identifying an opportunity for improving the tool support, 
through the inclusion of the wizard for setting up the 
transformation process, as suggested by our participants. We 
performed a Chi-Square test on the distributions of the 
collected answers (both detailed and aggregated – only 
detailed for question 2, because it has only two possible 
answers). Table IV presents the test results with the Chi-
Square statistic, the number of degrees of freedom (Df) and 
the asymptotic significance. Although the asymptotic 
significance in all but the aggregated Question 3 results 
might lead us to conclude that the results are statistically 
significant, we must stress that the number of participants in 
this assessment was relatively small, with only 7 participants. 
As such, a replication of this evaluation should be performed 
before more definitive conclusions can be drawn in a sound 
way. To facilitate such replication efforts, an experimental 
package is available at (link omitted for the sake of the 
double blind review – the authors can make it available 
through the PC chair, if necessary for the paper review). 
Nevertheless, it is common for usability tests to be 
performed by a relatively small number of users, and still 
being considered meaningful, even if they are not 
statistically significant. Usability experts have noted that a 
group of 5 testers is enough to uncover over 80% of the 
usability problems [24]. As our questionnaire is focused on 
the usability of the approach, 7 participants is a reasonable 
number, from a pragmatic point of view, for this first 
assessment, at least with respect to identifying challenges on 
the usability of the approach. 

TABLE IV.  CHI-SQUARE TESTS STATISTICS 

Questions: Q 1 Q 2 Q 3 Q 4 

 
Detail. Aggr. Detail. Detail. Aggr. Detail. Aggr. 

Chi-square 13,714 7,000 7,000 12,186 3,571 19,429 7,000 

Df 4 1 1 4 1 4 1 

Asymp. Sig. 0,008 0,008 0,008 0,015 0,059 0,001 0,008 

 
Concerning external validity threats, we only used one 

case study due to limitations on participant’s availability. 
However, the chosen case study is significantly complex for 
evaluating the more intricate cases. Another threat to 
external validity is the fact that all participants were graduate 

students with little professional experience thus limiting our 
ability to generalize the results of validation. However, the 
knowledge level of the students can be considered adequate 
and even higher when compared to young software engineers 
in industry, in particular with respect to GORE. Using 
graduate students as surrogates for young professionals is a 
common approach in experimental software engineering [2]. 

IV. RELATED WORK 

In [25] a framework is proposed for tracing aspects from 
requirements goal models to implementation. The framework 
provides language support for modeling goal aspects and 
mechanisms for transforming models to aspect-oriented 
programs. The main difference between this approach and 
ours is that it uses model-to-code transformation, while our 
approach uses model-to-model transformation. 

[26] presents a semi-automatic approach that aims to 
derive an aspect-oriented (AO) architecture from an AO 
requirements specification. An AO requirements scenario 
model is automatically transformed into an AO architectural 
model. The transformations are implemented in ATL. 
Transformations are made to different levels of abstraction of 
software development – from requirements to architecture- 
while in our approach they are made at requirements level. 

The proposal presented in [27] describes a UML AO 
modeling tool, called MATA, which uses graph 
transformations to specify and compose aspects. Its main 
goal is to compose aspects in UML models. MATA currently 
supports composition for UML class, sequence and state 
diagrams. In contrast with our approach MATA graph rules 
are defined over the concrete syntax of the modeling 
language, in this case the UML. Comparing this approach 
with ours, MATA rules are defined in terms of concrete 
syntax, our approach’s rules are defined using abstract 
syntax.  

In [29], the authors present an algorithm to automatically 
generate UML statecharts from a collection of scenarios 
represented using UML sequence models. In this work, they 
address several issues, such as detecting conflicts arising 
from the merging of independently developed sequence 
models and find behavioural similarities between different 
sequence models. They do this at the algorithm or 
transformation level. In [30] the authors propose to generate 
automatically, through model transformations, an activity 
model representing the use case scenario from a textual 
template. In this work, we observed that the semantics 
inherent to the abstractions present on the template (if-then-
else, requirements numeration indicating parallelism) and on 
the activity model were very close, which resulted in a 
relatively trivial set of transformation rules. These 
approaches are focused on behavioral models’ 
transformations while our approach is concerned with goal 
models’ transformations.  

In [31] it is reported the current state of MDD approaches 
with respect to NFRs. The authors say that in general, NFRs 
are not addressed in MDD methods and processes. They 
outline a general framework that integrates NFRs into the 
core of the MDD process, however no full-fledged approach 
was proposed. 



In [32], we have proposed a new extensible language to 
unify and represent GORE languages. The unifying 
treatment of concepts in our model makes it possible to 
define more projections of each problem than the existing 
languages by themselves. Also hybrid models can be used. 
The proposed language provides mapping between syntactic 
constructs across languages, but cannot bridge the difference 
in semantics. Each language was developed based on 
specific theories. For example, i* was developed based on 
the resource dependency theory, but i* cannot just add 
constructs such as obstacle from KAOS. This is the reason 
why we introduced the idea of hybrid use of multiple 
languages. However, if the adoption of a unifying language 
is not possible, a transformation based approach, proposed in 
this paper is a plausible alternative.  

V. CONCLUSIONS 

In this paper, we have expanded a preliminary work [16] 
by producing a complete semi-automatic model-to-model 
transformation framework, to relate KAOS and i* models. 
For these models, we defined and implemented all the 
transformation rules (complementing the preliminary work), 
defined at the abstract syntax level, using ATL. We validated 
our approach by applying it to two case studies and via a 
questionnaire filled by a group of MSc students with 
knowledge on GORE and MDD. The validation process 
collected positive results and evidence to confirm the 
framework’s usefulness.  

Generally, by doing this work we observed that MDD 
can be used successfully to relate models of different 
approaches, in different abstraction levels, that share the 
same paradigm. Furthermore, the MDGore approach brings 
the following contributions to the requirements community: 
refinement of an organizational level model (e.g. using 
i*models) to a system level model (e.g. by using a KAOS 
goal model); help deciding which approach is more 
expressive than another to represent certain concepts — e.g. 
obstacles in KAOS, which does not exist in i* explicitly; 
facilitate the communication between professionals 
specialized in different approaches. 

Our future work includes the developing transformations 
to others requirements approaches using different paradigms. 
Finally, we have already concluded the transformations from 
KAOS to i*, which will be object of a future submission. 

REFERENCES 

[1] Lamsweerde, A. 2001. Goal-Oriented Requirements Engineering: A 
Guide Tour, RE’01, Canada. 

[2] Regev, G., Wegmann, A. 2005. Where do Goals Come from: the 
Underlying Principles of Goal-Oriented Requirements Engineering, 
RE’05, France. 

[3] Yu, E. 1995. “Modelling Strategic Relationships for Process 
Reengineering”, PhD thesis, University of Toronto, Canada. 

[4] Lamsweerde, A. 2009. Requirements Engineering: From System 
Goals to UML Models to Software Specifications, Willey. 

[5] GRL Webpage, http://www.cs.utoronto.ca/km/GRL/. 

[6] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. 2000. NFR in Software 
Engineering: Kluwer, 2000. 

[7] Matulevičius, R., Heymans, P. 2007.  Comparing Goal Modelling 
Languages: an Experiment, REFSQ’07, Norway. 

[8] Völter, M., Stahl, T. 2006. Model-Driven Software Development - 
Technology, Engineering, Management, Wiley. 

[9] ATL User Guide: http://wiki.eclipse.org/ATL/User_Guide. 

[10] QVT, Webpage: http://www.omg.org/ 

[11] VIATRA2 http://www.eclipse.org/gmt/VIATRA2/ 

[12] Nunes, C., Araújo, J., Amaral, V., Silva, C. 2009. A Domain Specific 
Language for the i* Framework, ICEIS'09, Italy. 

[13] Dias, A., Amaral, V., Araújo, J. 2009. Towards a Domain Specific 
Language for a Goal-Oriented Approach based on KAOS, RCIS'09, 
Morocco.  

[14] Czarnecki, K., Helsen, S. 2003. Classification of model 
transformation approaches, Workshop on Generative Techniques in 
the context of MDA, USA. 

[15] Antón, A. 1996. Goal-Based Requirements Analysis, ICRE’96, USA. 

[16] Monteiro, R., Araújo, J., Amaral, V., Patrício, P. 2010. Mdgore: 
Towards Model-Driven and Goal-Oriented Requirements 
Engineering,  RE’10, Australia. 

[17] Kelly, S., Tolvanen, J. 2008. Domain Specific Modeling, Wiley. 

[18] Alencar, F., Silva, C., Lucena, M., Castro, J., Santos, E., Ramos, R. 
2008. Improving the understandability of i* models, ICEIS’08, Spain. 

[19] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. 2008. EMF 
Eclipse Modeling Framework, Addison-Wesley. 

[20] The GMF Webpage: http://www.eclipse.org/modeling/gmf/. 

[21] Matulevičius, R., Heymans, P. 2005. Analysis of KAOS Meta-model, 
Technical report, University of Namur, Belgium. 

[22] Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J. 
2009. A Model Transformation Approach to Derive Architectural 
Models from Goal-Oriented Requirements Models, OTM Workshops. 

[23] Massoni, T., Soares, S., Borba, P. 2007. Requirements Health-
Watcher version 2.0, Early Aspects, ICSE’07, USA. 

[24] Nielsen, J., and Landauer, T. K. 1993. A mathematical model of the 
finding of usability problems, INTERCHI'93, The Netherlands. 

[25] Nan, N., Yu, Y., Baixauli, B., Ernst, N., Leite, J., Mylopoulos, J. 
2009. Aspects across Software Life Cycle: A Goal-Driven Approach, 
Transactions on AOSD, Vol. VI, Springer.  

[26] Sánchez, P., Moreira, A., Fuentes, L., Araújo, J., Magno, J. 2010. 
Model-driven development for early aspects. Information & Software 
Technology, Elsevier, Vol. 52(3). 

[27] Whittle, J., Jayaraman, P. 2007. MATA: A Tool for Aspect-Oriented 
Modeling based on Graph Transformation, MoDELS’07, AOM 
Workshop, USA. 

[28] Monteiro, R. 2010. "Model-Driven Requirements Engineering: The 
Case of Goal-Oriented Approaches”, MSc dissertation, FCT, 
Universidade Nova de Lisboa. 

[29] Whittle J., J. Schumann, J. 2000. Generating Statechart Designs from 
Scenarios,  ICSE’00, Limerick, Ireland. 

[30] Gutiérrez, J.,  Nebut, C., Escalona, M.,  Mejías, M., Ramos, I. 2008. 
Visualization of Use Cases through Automatically Generated Activity 
Diagrams, MoDELS’08, Toulouse, France. 

[31] Ameller, D., Franch, X., J. Cabot, J. 2010.  Dealing with Non-
Functional Requirements in Model-Driven Development, RE 2010, 
Sydney, Australia. 

[32] Patrício, P., Amaral, V., Araújo, J., Monteiro, R. 2011. Towards a 
Unified Goal-Oriented Language, COMPSAC 2011, Germany. 

 


