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Abstract—Web mashups are a new generation of applica-
tions based on the composition of ready-to-use, heterogeneous
components. In different contexts, ranging from the consumer
Web to Enterprise systems, the potential of this new technology
is to make users evolve from passive receivers of applications
to actors actively involved in the creation of their artifacts,
thus accommodating the inherent variability of the users’ needs.
Current advances in mashup technologies are good candidates
to satisfy this requirement. However, some issues are still largely
unexplored. In particular, quality issues specific for this class
of applications, and the way they can guide the users in the
identification of adequate components and composition patterns,
are neglected. This paper discusses quality dimensions that can
capture the intrinsic quality of mashup components, as well as
the components’ capacity to maximize the quality and the user-
perceived value of the overall composition. It also proposes an
assisted composition process in which quality becomes the driver
for recommending to the users how to complete mashups, based
on the integration of quality assessment and recommendation
techniques within a tool for mashup development.

I. INTRODUCTION

Mashups are new-generation Web applications that integrate

heterogeneous “components”, such as RSS/Atom feeds, Web

services, content wrapped from third party Web sites, or

public APIs (e.g., Google Maps). Such components may have

their own user interface, reused to build the interface of the

composite application, may provide computing or visualization

support, or may just act as plain data sources. Independently

of the nature of the components, the goal of mashups is to

provide novel features by integrating resources in a value-

adding manner, similar to service composition, which however

only focuses on the application logic layer.

The interest in mashups has grown constantly over the last

years. Mashups and their “lightweight” composition approach

represent indeed a new opportunity for companies to leverage

on past investments in service-oriented software architectures

and Web services, as well as on the huge amount of public

APIs available on the Web. In fact, the possibility to integrate

Web services with UIs greatly supports the development of

complete applications. Furthermore, the emergence of mashup

tools, which aim to support mashup development without

the need for programming skills, has moved the focus from

developers to end users, and from product-oriented software

development to consumer-oriented composition [1].

So far, research on Web mashups has focused on the

definition of composition technologies and tools, while limited

efforts have been devoted to quality concerns [2]. Research

on Web Engineering has proposed several quality models

addressing Web applications. However, as also proved by a

study that we conducted on a large collection of mashups from

the programmableWeb.com repository [3], the application of

traditional and generic models not always captures the real

value of Web mashups. Although the majority of such applica-

tions are characterized by a simple one-page structure, specific

concerns, related to the component-based development and to

the dynamics that characterize the mashup ecosystem, require

specific attention.

In this paper we discuss the quality of mashups in the light

of the activities that characterize their development process. In

this context, the quality and the role of the constituent compo-

nents become relevant ingredients for quality assessment [4],

[5], [3]; the added value introduced by the integration logic is

however also relevant. We thus propose evaluation techniques

taking into account these features, and show how they can be

integrated into the mashup life cycle to enable a quality-aware
mashup development process. We also show how this process

can be supported by a mashup-maker tool [6] that we have

developed as a result of our experience on the definition of

models and methods for mashup development.

The paper is organized as follows. In Section II we illustrate

the rationale of our research on assisted mashup composition,

describing the composition paradigm that we have defined for

supporting mashup composition by end-users and highlighting

the need for quality-based mechanisms guiding users in the se-

lection of components and composition patterns. In Section III

we illustrate the typical scenario for mashup development and

the different quality issues related to component creation and

mashup composition. Section IV introduces a set of techniques

to assess mashup quality, also illustrating how they can be used

for the generation of quality-aware recommendations assisting

mashup composition. Section V illustrates how the assessment

techniques have been integrated into the architecture of our

own mashup tool. Section VI discusses related works. Finally
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Section VII concludes the paper and discusses our future work.

II. MOTIVATION AND BACKGROUND

Mashups are Web applications that are strongly charac-

terized by the reuse of ready-to-use components. They pre-

serve the data, the logic and the UI (if any) of the original

components, and introduce an additional integration logic to

synchronize the behavior of the different components. In the

last years we have assisted to an evolution of the way mashups

are created. Initially, mashups were merely developed manu-

ally by skilled programmers, who took advantage of reusable

components and mainly devoted their efforts to programming

the composition logics. Soon, mashup development emerged

as a paradigm to enable end-users, not necessarily expert

programmers, to compose their applications. This phenomenon

therefore started inspiring a new generation of tools for the

“assisted composition of mashups”, the so-called mashup-
makers, providing visual editors where intuitive notations

allow the users to select components and synchronize them

by defining data or control flows.

The aim of mashup-makers is to ease mashup development,

empowering also unskilled users to compose their own appli-

cations [7]. However, they still require the users to identify the

“right” components, i.e., components that i) best fit the current

composition from the point view of the syntactic and semantic

compatibility and that (ii) increase the mashup quality, also

from the point of view of the added value that they can provide

in terms of additional data and functions. As found out in

recent user-centric studies [8], this task could not be trivial

for the average users. The need therefore emerges for design-

time assistance mechanisms, guiding the users in the selection

of components.

In the last years we have worked on the design of mashup

tools fostering end-user development [10], [11], [6], also trying

to identify mechanisms to assist the users in the composition

activity. Figure 1 illustrates the visual editor of one of such

tools, PEUDOM (Platform for End User Development) [9]. A

visual menu shows the available components, previously reg-

istered into the platform by defining appropriate descriptions

and wrappers for the services they relate to1. The end-users

can add components into their mashups by simply moving the

corresponding icons into the central workspace. The effect of

this action is the immediate visualization of the component’s

UI. For example, the mashup illustrated in Figure 1, which is

supposed to retrieve and visualize data about music events, is

built by “moving” into the workspace a number of heteroge-

neous components that refer to public APIs, namely Facebook

and LastFM, both used to retrieve music events (e.g., concerts),

Flickr, to retrieve images, Youtube to retrieve videos, Google

Maps, for geo-localizing events, and TimelineJS, to visualize

the retrieved events on a timeline.

The visual composition paradigm also allows composers to

add synchronization bindings among the different components,

1The component registration is a technical activity, performed by the
platform administrators, that is necessary to provide the end-users with ready-
to-use components.

by defining “parameter-operation” couplings, through which

parameters propagates from one component to another, thus

synchronizing the state of the different components involved

in a binding chain. The selection of an icon in the left-

hand upper corner of a component’s window opens a pop-up

where users can choose to activate the available bindings. The

user’s choices of components and component bindings are then

translated into a composition model, in which listeners specify

the way in which operations exposed by some components

subscribe to events raised by other components, according

to an event-driven publish-subscribe paradigm [10]. The so-

achieved composition model is then used at runtime to manage

the execution of the mashup, by invoking and synchronizing

the services involved in the composition.

In the rest of this paper we will show how we have extended

our composition paradigm with quality assessment techniques

able to assist the users in the selection of components for the

construction of quality mashups. In particular, as highlighted

in Figure 1, the tool has been extended with functions that,

based on the assessment of quality properties, suggest the use

of alternative components that can improve the quality of the

current composition, and of additional components that can

extend the composition by improving its added value.

III. QUALITY ISSUES IN MASHUP DEVELOPMENT

Mashup applications generally consist of a single page, with

a simplistic presentation layer, usually deriving from the com-

bination of the layout of each individual component, and an

application logic mainly deriving from the operations exposed

by the involved components [3]. The additional integration

logic has a limited complexity.

One could assume that, being mashups “simple” Web ap-

plications, their quality could be addressed by the methods

so far proposed for traditional Web applications. This is

partially true: traditional principles must not be neglected;

however, models need to be repurposed to capture the salient

characteristics of these applications. This is the conclusion

we reached by analyzing about 100 mashups available on

programmableWeb.com, by applying criteria and metrics re-

lated to traditional dimensions of the perceived quality of Web

applications, e.g., accessibility and usability [3]. We compared

the results achieved through such traditional metrics with the

results of a heuristic evaluation conducted by a pool of five in-

dependent evaluators, PhD students and researcher acquainted

with Web Technologies and Web mashups. The study revealed

a discrepancy between the two assessments, highlighting that

understanding the quality of mashups requires models that

takes into account the specifics of such applications. For

example, several applications were ranked as good on the

basis of Web quality metrics, but the expert inspection revealed

that they just “embedded” some APIs without any attempt to

define an integration logic, which is instead a typical aspect

of mashups. It is indeed fundamental to ground assessment

techniques on the typical activities in the mashup life-cycle,

which spans from component development (this task is gen-

erally accomplished by expert developers, outside of mashup-
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Fig. 1: The visual editor of the PEUDOM tool [9], [6], with an example of mashup composition for searching information on

music events.

maker tools) to the identification and integration by the end-

users (not necessarily experts, possibly using a tool like the

one described in the previous section) of components into a

final mashup composition.

A. Component Development

When used in a mashup composition, components are

selected by considering some external properties. Indeed,

publishing mashup components as APIs or services hides

their internal details and gives more importance to external

properties [12]. In line with this black-box view, in [4]

we proposed a quality model for mashup components that

privileges properties of the component APIs. This is indeed

the perspective that is most relevant to the mashup composer

and to the mashup user, as also emerged by our own experience

with the development of components and mashups and on

the experimental evidence gathered by analyzing data from

programmableweb.com [3]. We organized the model along

three main dimensions:

• Data quality, focusing on the suitability of the data

provided by the component in terms of accuracy, com-
pleteness, timeliness, and availability;

• API quality, referring to software characteristics that can

be evaluated directly on the component API and that

relate to the offered functionality, reliability, and API
usability;

• Presentation quality, addressing the user experience, with

attributes such as presentation usability, accessibility, and

reputation.

Independently of the adopted quality model, we assume that

the component developer tries to maximize quality properties,

but especially that within the adopted mashup-maker tool such

properties are visible through ad-hoc descriptions on which the

choice of components by mashup composers can be based. For

example, in our mashup tool components are made available

in a repository where component descriptions specify both the

functional properties of the component (e.g., exposed opera-

tions, I/O parameters, their syntactic and semantic categories

to assess component compatibility and similarity), and also

quality annotations. Figure 2 reports a simplified example of

such a descriptor. For a given component - Google Maps in the

example - the descriptor specifies the exposed operations and

events, i.e., the main ingredients at the basis of our event-

driven publish-subscribe composition paradigm, adequately

annotated to express syntactic and semantic categories. The

descriptor also specifies quality annotations, expressing quality

properties such as the complexity of the component’s techno-

logical properties (e.g., languages and data formats enhancing

operability and interoperability), the richness and complete-

ness of the provided data, the UI usability. These properties

(e.g., the available languages and formats) are partly derived

from the documentation of services and APIs, disclosed by
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Fig. 2: Excerpt of a descriptor adopted in PEUDOM for

the specification of functional and quality properties of a

component.

the component developers - if any. Some other properties

may also derive from evaluations that the administrator of the

mashup platform performs at the component registration time.

Also, quality and popularity data disclosed by public ranking

services (e.g., Alexa (http://www.alexa.com)) can be taken into

account.

B. Mashup Composition

When composing a mashup, the composer first needs to

identify the “right” components. The selection can be based

on the syntactic and semantic fitness of each component within

the mashup under construction, but also on quality measures.

As soon as components are added into the composition, the

assessment of the quality of the overall composition can indeed

take place, and recommendations can be provided to the user

accordingly.

Figures 3a and 3b shows examples of the recommendations

generated by our tool, to guide the user in the selection of

alternative or additional components. The starting point for

computing the quality indexes on which the recommendations

are based is the quality of each single component. However,

the composition model is also taken into account, to identify

the role, i.e., the importance, that components play within

the composition [5]. The quality of the composition can thus

be evaluated as an aggregation of the quality of the single

components, weighed on the basis of the components’ role.

The analysis of the composition model can also provide

indications about the richness of the integration logic, reveal-

ing whether the composition introduces information spaces,

functionality sets and visualizations that are richer than what

would be achieved by accessing separately individual compo-

nents. Recommendations can thus be generated, by ranking the

components available in platform on the basis of their attitude

to increase the quality and the value of the mashup.

IV. QUALITY-AWARE ASSISTED COMPOSITION

Let us assume that, using a mashup-maker tool, the mashup

composer can access a component registry C in which each

component ci is associated with a component descriptor
specifying functional properties [6], [10], and a quality vector,

QVi = [qai1, qai2, . . . , qain], storing the values computed

through the metrics associated with a set of component quality

attributes. It is thus possible to define the value of a quality
index for the i-th component (QIi) as an aggregation of

the different qai, possibly weighed to privilege some quality

attributes over others. The QI computed for each single

component is the basis for the generation of quality-aware

recommendations. When the user starts the composition, and

the workspace is empty, components are first ranked based

on the value of their QIs. Each time the user adds a new

component, all the other components in C are classified

and ranked according to the criteria that we describe in the

following.

A. Component Compatibility and Similarity

Inconsistencies at the composition logic level can cause

a low quality of the mashup. When the user extends the

current composition with new components, the compatibility
of such components with the current status of the composition

is an important factor; components in C can be therefore

analyzed and scored accordingly. In particular, compatibility

can be estimated as the combination of syntactic and semantic

compatibility:

• Syntactic compatibility checks for type compatibility
among the operation parameters exposed by one can-

didate component and the parameters of all the other

components already in the composition.

• Semantic compatibility subsumes the syntactic compat-

ibility, and checks whether the operation parameters of

the candidate component belong to the same (or a sim-

ilar) semantic category of at least one of the operations

exposed by the other components already in place.

Component similarity can also help determine in which

measure some components in C can functionally substitute the

ones already in the composition. This property can be useful
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to recommend alternative components that can improve the

composition quality.

Compatibility and similarity can be verified on the basis

of annotations that enrich the components’ descriptor with

semantic categories (based on ontological entities) for both

operations and parameters. Examples of such annotations in

a component descriptor are represented in Figure 2, where

the specification of events and operations are enriched with

“similarity” tags expressing semantic meanings.

B. Aggregated Quality

Compatibility and similarity can ensure that a more consis-

tent composition is produced. An estimation of the mashup

quality can be then achieved by aggregating the QIs of

the individual components. In particular, as soon as new

components are added into the composition workspace, the

compatible components in C can be ranked based on their

capacity to increase the quality of the overall mashup.

The quality of the overall composition cannot be simply

quantified as a plain aggregation of the individual QIs; rather

the aggregation must take into account the role that each

component plays in the composite logics. By analyzing the

most popular mashups published on programmableWeb.com

we identified a number of composition patterns, in which two

component roles emerge [5]:

• In most cases one component assumes a central role in

the composition, being the service the user interacts with

the most. We call this component master. The master

is the starting point of the user interaction causing the

other connected components to react and synchronize

accordingly, in practice implementing a “star” compo-

sition pattern. For example, in the mashup reported in

Figure 1, the Facebook component is master with respect

to Flickr and GMaps, since the selection of one of its

displayed concerts propagates parameters that trigger the

visualization of related images in Flickr, and the display

of the concert locations in GMaps.

• A slave is then a component whose behavior depends

on another component; its state is mainly modified by

events originating in a master component. Many mashups

also allow the user to interact with slave components.

However, the filtering of the content displayed by slave

components depends on the user’s interaction with the

master component and occurs by automatically propagat-

ing synchronization information from the master to the

slaves. In Figure 1, Flickr and Gmaps are examples of

slave components.

It emerges that master components, being central points

of synchronization, have a major influence on the mashup

quality - a master could even degrade the quality of the other

components that depend on it. Therefore, the aggregation of

the different QIs must be adequately weighted.

In order to identify master-slave dependencies during

mashup composition, we model a mashup as an directed

weighted graph G = (V,E), where each vertex vi ∈ V
represents a component and each arc eij ∈ E represents that

one binding is defined between the two connected components,

and therefore that vi is master with respect to vj .

Based on the analysis of all the paths in the compo-

sition graph, which reflect the defined bindings, for each

component vi we then define the centrality of a component

vi, Centralityi, as a variant of the betweenness centrality
measure [13], weighting all the shortest paths inversely pro-

portional to their length [14].

This measure, applied to each component in the composi-

tion and normalized with respect to the maximum centrality,

provides the weights to be used to aggregate the different QIs.

The quality of the overall composition is therefore defined as:

QC =
∑

i

Centralityi ∗QIi

QC is computed every time a new component ci is added to

the composition to identify in which measure ci and all its

similar components increase the quality of the composition.

Figure 3a shows the window that in our tool visualizes

such recommendations. The window displays on the left the

components currently included in the mashup together with

an evaluation of their quality expressed in form of stars.

Internally, the tool exploits the graph-based representation of

such a composition, to identify the existing inter-component

dependencies and scoring the composition quality according

to the QC metric. If one component is selected, for example

Google Maps in figure, the right panel shows a list of com-

ponents that are similar to Google Maps and compatible with

the other components in the composition. These components

are ranked by taking into account their capacity to increase

the composition quality if replaced to Google Maps. Further

details about their quality and their similarity with Google

Maps are also given. Quality measures are normalized with

respect to a selected scale. For example, in Figures 3a we

express measures in a scale from 1 to 5, and visualize them

in form of stars.

C. Added Value

In our analysis of mashups, we also tried to capture the

concept of added value of a composition, conceived as the set

of additional features (data, functions, visualizations) that the

composition logics introduces with respect to accessing single

services separately [3].

Mashups are developed in order to offer a set of functions

that we call MFS (Mashup Function Set), and consequently

retrieve and give access to a data set, MDS (Mashup Data

Set), exploiting a set of visualization mechanisms, MV S
(Mashup Visualization Set). Each single component ci is also

characterized by its own data set DSi, a function set, FSi, and

a set of visualization mechanisms, V Si
2. When used within

a mashup, smaller, situational portions of such sets, SDSi

2Depending on their nature, components may or may not provide all the
three layers. For example, map APIs expose data, functions and multiple
visualizations. On the other hand, other components may just offer one of
these layers. For example, an RSS Feed is a plain data source for which
functionality, e.g., feed filtering, and visualizations have to be provided by
other components.
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(the component’s Situational Data Set), SFSi (the compo-

nent’s Situational Function Set) and SV Si (the component’s

Situational Visualization Set) are considered, depending on the

specific needs that the mashup is supposed to satisfy [5]. The

composition thus provides an added value if the number of

features that it offers, at least at one of the three layer (data,

function, visualization), is greater than the amount of those

offered by the single components, i.e., if
⋃

i

SFSi ⊂ MFS ∨
⋃

i

SDSi ⊂ MDS ∨
⋃

i

SV Si ⊂ MV S.

Operatively, to evaluate the added value of the composition

at the data layer, it is possible to consider the richness
of data formats, e.g., whether the mashup provides plain,

multimedia or social data, which can be assessed on the

basis of a classification of components reflecting the nature

of their data sets. Also, it is possible to consider the richness
of additional information deriving from the join queries en-

abled by the synchronization among the different components.

This measure can be quantified as the ratio between the

data bindings actually defined among components, and the

number of all the possible data bindings. The former are

evaluated by analyzing the composition model, where the data

bindings actually defined are specified; the latter are instead

evaluated by defining and analyzing a compatibility matrix,

derived from the component descriptors, to identify all the

possible join queries that could be achieved combining output

parameters produced by a component with compatible data

filtering operations exposed by other components. The added

value at the data layer thus aggregates the richness of data

formats with the richness of additional information.

The functionality layer addresses the richness of functional-
ity. Similarly to what we propose at the data layer, this measure

can be quantified as the ratio between the number of function

bindings actually defined and the number of all the possible

function bindings, which can be derived respectively from the

components and the composition descriptions.

At the presentation layer, we then relate the multiplicity

of visualizations with the multiplicity of data sources. In

particular, we classify components as data sources when they

have an own data set, and viewers, when they only provide

visualizations on top of any external data set3. The added value

can be assessed by considering the richness of visualizations,

i.e., the number of different viewers associated with the

involved data sources. In fact, in many cases, the analysis

of the same phenomenon from the different perspectives that

different visualizations can offer can better support decisions.

Symmetrically, in other situations the analysis can be improved

by aggregating heterogeneous data into a unified visualization.

Hence, we also take into account the cohesiveness of visual-
izations, i.e., the capacity of a viewer to convey integrated

data.

The aggregated measure of the composition added value

can then be achieved by averaging the three distinct values,

3Some components, e.g., GMaps, can fall in both categories.

possibly assigning different weighs to the three layers. Such

a measure is especially useful to understand whether the

value of the current composition can be increased by adding

new components. Figure 3b shows an example of completion

recommendation that our tool produces on the basis of the

added-value measure. Assuming that the current composition

consists of the components listed in the left-hand side of

the window, our technique identifies candidate components

(reported in the right-hand panel) that can increase the com-

position value. In the example, the suggested components

would provide content of different nature, i.e., multimedia

data (YouTube) and user-generated contents (Twitter), and

an additional timeline visualization (TimelineJS) that in the

example mashup would support the temporal characterization

of the music events. In the rest of this section we will show

how such recommendations can be better contextualized by

taking into account the most frequent composition practices

emerging from the analysis of mashup repositories collecting

the contributions of communities of mashup composers.

D. Community-Perceived Quality

The notion of recommendations can be further extended to

take into account the best practices adopted by communities

of mashup developers, so exploiting collaborative filtering

mechanisms. If large repositories of components are available,

then the most frequent associations among (categories of)

components can be mined and exploited to suggest typical

composition patterns that get consensus in a given community,

and that therefore reflect the users’ perception of the quality

of the created mashups.

With the exception of few mashup-maker tools available

online (e.g., Yahoo! Pipes), it is uncommon for a mashup

platform to have large repositories with a number of com-

ponents and compositions adequate for the mining tasks. In

order to perform experiments on this quality dimension, we

therefore mined recurrent composition patterns from a data

set crawled from programmableweb.com, the largest collec-

tion of mashups and mashup components currently available

on the Web. From the so-achieved database, we selected

mashups with at least two components; then we mined the

most recurrent combinations of components. Given the huge

number of distinct components (more than 6000 at the time

of our experiment), and the difficulty to reproduce such a

large variety in a local repository, we identified the most

recurrent categories; the extracted association rules thus reflect

recurrent combinations at the category level. We thus defined

a technique that exploits such extracted knowledge to guide

the production of recommendations.

We assume all the components available in the local repos-

itory be classified according to the same categories used for

the mining tasks. As soon as the state of the composition

evolves, the set of categories of the involved components guide

the filtering of pertinent association rules, i.e., of those rules

where the set of categories in the antecedent part corresponds

to the set of categories in the composition. Thus the categories

appearing in the consequent part of the rule with higher

15



Iteration no. Categories already in the composition Selected Association Rule Suggested Component
1 Reference Reference → Photo Flickr
2 Reference, Photo Reference, Photo → Social Twitter
3 Reference, Photo, Social Reference, Social → Search Google Ajax Search

TABLE I: Selection of association rules in the construction for the Shahi sample mashup.

(a) Example of quality-based recommendations for alternative components.

(b) Example of recommendations for additional components based on the
assessment of the perceived quality and added-value dimensions.

Fig. 3: Recommendation windows in the PEUDOM visual

editor [3].

confidence are projected over the local repository, to identify

the components falling into those categories. For example,

the recommended components shown in Figure 3b belong to

categories frequently associated with the components already

included in the composition. At this point, the quality and

added-value metrics described above are taken into account

to rank the identified components based on their capacity to

improve the overall composition.

E. Recommendation procedure: an example

In order to test the effectiveness of our approach, we

performed a set of experiments in which we simulated the

creation of a number of mashups based on our assisted compo-

sition method. We selected a set of well-designed and popular

mashups, top-ranked in the programmalbleWeb repository and

we used such mashups as benchmarks. More specifically, we

used such mashups for the identification of our goal mashups.

We wanted indeed to understand in which measure, given a

properly selected set of components including the ones in the

selected goal mashups, our mechanism would have led to the

composition of quality mashups.

In order to identify the set of benchmark mashups, we con-

sidered the popularity ranking provided by programmableWeb

and we mediated it with the judgment of five evaluators,

achieved in a previous study [3] through heuristic evaluation

sessions that did not take into account our quality metrics. For

each goal mashup, we simulated our assisted composition as-

suming as starting point the inclusion of one of the components

in the considered goal mashup. Our recommendation technique

was able to suggests different alternative compositions, that in

80% of the cases were very close to our goal mashups, with a

distance of maximum 2 components. In any final composition,

the quality was not degraded with respect to the goal mashups.

We here describe one of the performed composition exper-

iments, in which the goal was to create a mashup providing

a visual encyclopedia: the idea is to enrich the textual con-

tent extracted by an online encyclopedia or dictionary with

visual content. The benchmark mashup selected to verify the

resulting composition is Shahi4, a popular mashup which is

also one of the top-ranked mashups among those that we

have analyzed. In particular, Shahi is a visual dictionary that

combines Wiktionary content with Flickr images, and offers

search facilities by using Google Ajax Search and Yahoo

Image Search.

As described in the previous sections, the assisted com-

position procedure mainly relies on the component registry,

and on the association rule extracted from the analysis of

mashup repositories. The component registry contains all

the available components together with their descriptors in

which operational and quality features are described. The

association rules repository instead suggests valuable patterns

for combining different components’ categories. Once the user

selects the first component to be included in the composition,

the recommendation procedure starts, and proceeds according

to two fundamental steps: i) the selection of the category

of the component to adopt in order to enrich the current

4http://blachan.com/shahi/
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composition and ii) the selection of a specific component,

within the selected category, to add. In the second step, the

selection of the most suitable component is driven by the

compatibility with the components already in place and the

potential mashup quality. The two steps are repeated until the

user reaches the desired goal, or the algorithm does not find

any other components to include in the composition.

For example, in order to build the visual encyclopedia

mashup, we consider Wikipedia as the first component; apply-

ing iteratively the procedure for the assisted composition we

obtain the results summarized in Table I. Here, the second col-

umn refers to the categories to which the components already

involved in the mashup belong. The third column specifies the

association rule that drives the selection of the category of the

new component that can extend the composition. When more

rules are identified, support and confidence are considered to

identify a single rule. In case of more rules with the same value

for such parameters, the different possible expansions of the

mashups are ranked based on the quality and added value of

the components falling in the involved categories. Finally, the

fourth column contains the name of the component selected

because it results to be the top-ranked, based on the assessment

of quality measures.

After the third steps, the recommendation procedure did

not find any other association rules to apply for expanding

the current composition. Comparing the obtained mashup with

our benchmark, Shahi, we noticed that both mashups address

the same situational need, but our quality-aware assisted

composition also suggested to extend the composition with a

“social” component (i.e., the Twitter API), not included in the

original mashup. This in a sense proves that the aggregation

of different quality dimensions lead to the consideration of

different composition solutions that can improve the value of

the final composition.

V. ARCHITECTURE AND IMPLEMENTATION

The techniques for quality assessment described in the

previous section have been integrated in our tool for mashup

development, PEUDOM [6], [9]. Figure 4 illustrates the main

architectural components, with particular emphasis on those

in charge of executing the quality-based ranking algorithms.

In the platform back-end, the component registry stores

the component wrappers that enable the platform to invoke

the services the components relate to. The registry also in-

cludes component descriptors specifying teh functional and

quality properties of the component that are exploited by the

recommendation algorithms. In particular, every time a new

component is added in the component registry C:

• The functional properties augmented with semantic an-

notations are exploited to compute the Compatibility
and Similarity matrices. More specifically, the type
and similarity attributes in the descriptors are re-

spectively exploited to assess the compatibility and the

similarity among all the components in the repository. A

semantic reasoner is used for this purpose 5. The two

XML-based matrices are computed at the first use of the

platform, and updated every time a new component is

added into or dropped from the component registry C.

• The quality annotations specified in its descriptor are used

to compute the quality vector. A quality vector stores

the quality measures achieved by computing metrics,

such as those defined in our quality model for mashup

components [4], starting from the quality annotations.

The association rules reflecting community-based composi-

tion practices are also computed off-line periodically, starting

from the data crawled from mashup repositoris, publicly

available (such as programmableWeb.com) or local to the

adopted mashup platform.

Based on the data described above, the recommendations

algorithms are executed every time a component is added

into the composition. The event handler module intercepts the

component addition in the front-end visual environment, and

triggers corresponding actions to i) update the composition

model, and to ii) activate the component recommender. The

component recommender generates the component ranking.

It analyzes the association rules, to discover the component

categories to recommend for mashup completion, and iden-

tifies the components in those categories that are compatible

and similar with the components already in the composition.

It then exploits a quality broker to compute the aggregated

quality and the added value indexes, based on the analysis of

the quality vectors and of the composition model. The result is

a ranking of components, based on the quality and the added-

value increment that components can give to the composition

under constructions.

All the modules related to the generation of recommenda-

tions run on the server. In particular, the component recom-

mender is implemented as a REST service. The event handler

is instead a client-side AJAX-based module, which sends re-

quests to the component recommender service. The component

ranking, represented in JSON, is then sent back to the client

AJAX front-end that finally manages the visualization of the

recommendations window.

VI. RELATED WORKS

Several works have proposed quality models for Web ap-

plications (see, among others, [15], [16], [17], [18]). Few pro-

posals also concentrate on modern Web 2.0 applications. For

example, in [19] the authors extend the ISO 9126-1 standard,

and discuss the internal quality, external quality, and quality

in use of Web 2.0 applications. Our model for component

quality [4] is also derived from the quality attributes defined

by the ISO standard. We however add a specific perspective

that concentrates on the external quality of components, i.e.,

on the set of properties that affect the component’s quality

as perceived by the mashup composer. Other works focused

on API quality in the more general SOA (Service-Oriented

5Our current implementation uses the Pellet reasoner (http://clarkparsia.
com/pellet/).
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Fig. 4: Modules for quality-aware recommendations in the PEUDOM architecture.

Architecture) domain, by specifically addressing the API ease

of use (the so-called API usability) [20], [21], [22]. Our

approach capitalizes on these contributions but tries to go

beyond, since it considers a broader set of external quality

factors – not only usability, all having impact on the success

of mashup components. In [23] we also proposed a method

to select trustworthy, relevant data sources and compose them

into a mashup. The proposed model specifically focuses on the

quality of sources providing user-generated contents. In this

paper we instead try to capture several other issues related to

generic services and their composition into mashups.

In relation to service-based applications the literature pro-

vides some approaches in which quality is the main driver

for service selection and composition (e.g., [24], [25]). In

particular, similar to our approach, in [24] the authors assess

the overall quality of the final applications by aggregating

the quality of the composing services. The importance of

considering quality in service composition is also discussed in

a recent paper describing the current approaches and the open

challenges in quality-aware, service-oriented data integration

[2]. However, this paper also highlights the lack of proposals

for mashup composition, recognizing the need of specialized

approaches. In fact, some works have proposed design-time

assistance mechanisms. For example, MashupAdvisor [26]

generates recommendations through a probabilistic model that

ranks candidate mashup compositions retrieved in a commu-

nity repository based on their popularity and on AI metrics

that identify a maximum utility plan. Also, some of the

authors of this paper defined algorithms to query mashup

repositories and discover relevant composition knowledge, i.e.,

reusable composition patterns, based on syntactic similarity

[27]. None of these works however addresses quality. The

assisted composition method described in this paper, being

based on quality models that are specific for mashups [5], [3],

tries to fill this gap.

VII. CONCLUSION

This paper presented our perspective on the quality of

Web mashups, based on peculiar features of this class of

applications. It also illustrated the integration of quality-

based recommendations in the mashup development process,

to aid (inexperienced) end-users to complete and improve their

mashups. We showed the application of our method within

our tool for mashup composition. However, we believe that

the proposed technique can easily be replicated within other

frameworks for mashup composition, provided that adequate

descriptions for specifying the component quality and the

graph-based composition structure are available.

The selection of the dimensions along which quality is

measured and recommendations are generated is based on

our experience gained during the last years in the develop-

ment of mashups and mashup-maker tools. The emphasis on

component quality also derives from research conducted in

the field of Web service composition [24], [25]. The focus

on the mashup integration logic, and especially on the role

of components within the composition, is what we consider

peculiar for mashups. Therefore we invested several efforts to

assess this dimension. Finally, the consideration of the added

value and user-perceived quality dimensions is related to the

nature of mashups as artifacts that can enable innovation [7].

The composition of different resources should be indeed aimed

at introducing innovative uses of the resources themselves.

With this respect, the added-value dimension can help guiding
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the users to introduce new value. The perceived quality can

then help composing applications along directions that are

“generally” considered useful by other users too.

Our current work is devoted to validate our quality-aware

composition paradigm through experiments with users. In a

context of a previous study focusing on the usability of our

mashup tool [6], we collected some data about the satisfaction

of the users with a preliminary version of our quality-aware

recommendation mechanism. The users showed a good level

of satisfaction and found the mechanism useful to help them

select components to complete the mashup. We are planning

more formal validation experiments, also focusing on our

last extensions towards the added value and the perceived

quality. We will also compare our quality-based approach

with other recommendation mechanisms. In this respect, we

already investigated the potential of generic, quality-agnostic

recommender systems [28]. We will therefore observe the

users when exposed to the two kinds of approaches, quality-

aware vs. quality-agnostic, and compare their performance to

assess the effect of taking into account quality.
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