

ODEL-DRIVEN Engineering (MDE), or its
formal and foundational approach Model-

Driven Development (MDD), aims at supporting
Software Engineering by using models (and models
about models – metamodels), and (automatic)
transformations among models as first class entities
in the process to derive Software Products. It makes
use of Models as abstractions to represent the
systems and their different concerns or views,
specified in adequate languages (formalisms), either
Domain Specific Modeling (DSMLs) or General
Purpose Modeling (GPMLs), at appropriate levels
of abstraction.
On the one hand GPMLs such as UML, have made
significant impact in the software industry, as it is a
kind of “Lingua Franca”, where Software Engineers
are able to express and easily interchange
information about their software products and
processes. However, with the growing complexity
experienced within certain Domains, GPMLs are
becoming hard to handle specially due to their lack
of expressive power. Namely, domain specific
notations that use powerful and intuitive declarative
concepts (such as justice, fairness, safety, etc.),
otherwise difficult (or impossible) to express with
the notations provided by traditional GPMLs which
usually concentrate on notions from the domain of
the solution (such as object orientation, data
structures within the corresponding imperative
programming languages).
On the other hand DSMLs are meant to narrow
down the conceptual distance between the
expressive power within HCI, and the way the users
think about their work Domain, and how they
specify and analyse their systems. This is achieved

by providing suitable expressivity based on
notations that use concepts used on the domain of

the problem, while abstracting away concepts that
are used in the domain of the solution which are
usually influenced by a given computational
platform or framework.
Once specified, these models can be transformed
into other models by means of transformation
models and/or automating code generation. The
MDD approach allows for the possibility to soundly
integrate into the same development framework:
Code generation; Verification tools such as Model-
Checkers or SAT solvers; Optimizers; and
Simulation tools.
The common sense says that Quality is achieved by:
a) reducing the complexity of Software
development; b) involving the stakeholders into the
software development process; c) speeding-up the
development lifecycle, not only by increasing
productivity (together with rapid prototyping) but
also allowing for a sound and agile validation of
requirements; d) promoting non-oportunistic re-use
of components, by introducing the concept of
software factories, or target platforms, that once
tested can be used over and over reducing the risk
of deriving defect software products, among others.
However, there is a wide range of problems related
to the Quality of the process and the tools, that still
remain to be solved so that this can be a solid
framework. For instance, it is necessary to find
adequate approaches, and find real life application
examples, to assess the quality during the life-cycle
and validate claims of increased quality and
productivity by separating business and application
logic from underlying platform technology. We
should understand not only how to measure the
quality of the MDD process (and determine if it is
better than other approaches), but also to understand
the quality of the models themselves (design
patterns, and anti-patterns). Also, the transformation

Foreword
Quality in Model Driven Engineering

Vasco Amaral
FCT-UNL, Portugal

vasco.amaral@di.fct.unl.pt

M

237

models need to be verifiable so that we know, with
a certain degree of confidence, that the derived
models are trustworthy representations of the
originals. Besides, as verification tools like Model-
Checkers have the well known scalability problem,
not being usable for all situations, we have to
complement with Model-Based Testing techniques.
This years’ QUATIC thematic track we have
contributions that approach some of the referred
problems and that we will summarize next:
i) Achieving Quality by Model-Based Testing
techniques: In “Structuring and Verifying
Requirements Specifications through Activity
Diagrams to Support the Semi-automated
Generation of Functional Test Procedures”, Jobson
Massollar, Rafael de Mello and Guilherme
Travassos present a methodology (with associated
tools) for the specification of use cases with activity
diagrams, with semantic check and test generation.
In “Test Generation from UML Sequence
Diagrams” by João Faria, Ana Paiva and Zhuanli
Yang, the authors propose a lightweight method,
and a plugin for Enterprise Architect, for generating
test cases from sequence diagrams.
ii) Quality Assessment and MDD: In “A
Multimodel for Integrating Quality Assesment in
Model-Driven Engineering”, Javier Gonzalez,
Emilio Insfran and Silvia Abrahao present presents
a multimodel approach for explicitly representing
the relations or inter-relationships between models
that might be expressed in different languages or
not. The authors provide a syntactic model of the
multimodel language, and a process for defining
multimodels.
iii) Cases Studies to enhance Quality of Models and
Product:
a) Comparison analysis: In “Survey on Cross-
Platforms and Languages for Mobile Apps”
André Ribeiro and Alberto Rodrigues Da Silva, a
brief comparison of some cross-platform
development environments for mobile applications
is presented.
b) Building automation: Finally in “Towards a
robust solution in Building Automation Systems:
supporting rapid prototyping and analysis”, Vasco
Amaral, Paulo Carreira and Bruno Barroca discuss
the benefits of applying MDD is the domain of
Building Automation as a way to fight
heterogeneity and contribute to the integration of
complex multi

-
disciplinar information, being the

technological enabler for BA Software Systems
(simulation, monitoring, control, among others)
systems’ certification both at design time and
runtime.
This said, as we can confirm, this year papers are
over hot topics of quality in MDD and it is expected
an exciting discussion during the presentations
session.

238

