
Comparing Three Notations for Defining

Scenario-based Model Tests: A Controlled

Experiment

Bernhard Hoisl∗†, Stefan Sobernig∗, and Mark Strembeck∗†

∗Institute for Information Systems and New Media,

Vienna University of Economics and Business (WU Vienna)
†Secure Business Austria Research (SBA Research)

{firstname.lastname}@wu.ac.at

Abstract—Scenarios are an established means to specify re-
quirements for software systems. Scenario-based tests allow for
validating software models against such requirements. In this pa-
per, we consider three alternative notations to define such scenario
tests on structural models: a semi-structured natural-language
notation, a diagrammatic notation, and a fully-structured textual
notation. In particular, we performed a study to understand
how these three notations compare to each other with respect to
accuracy and effort of comprehending scenario-test definitions,
as well as with respect to the detection of errors in the models
under test. 20 software professionals (software engineers, testers,
researchers) participated in a controlled experiment based on
six different comprehension and maintenance tasks. For each of
these tasks, questions on a scenario-test definition and on a model
under test had to be answered. In an ex-post questionnaire, the
participants rated each notation on a number of dimensions (e.g.,
practicality or scalability). Our results show that the choice of a
specific scenario-test notation can affect the productivity (in terms
of correctness and time-effort) when testing software models for
requirements conformance. In particular, the participants of our
study spent comparatively less time and completed the tasks more
accurately when using the natural-language notation compared to
the other two notations. Moreover, the participants of our study
explicitly expressed their preference for the natural-language
notation.

I. INTRODUCTION

In model-driven development (MDD), models are used
to define a software system’s problem domain as well as
corresponding solutions. Thereby, models abstract from the
underlying implementation technology (see, e.g., [1], [2]). In
this context, models are not only used for documentation
purposes, but are first-class artifacts from which executable
code is generated. Consequently, the quality of a software
product considerably relies on the quality of the corresponding
models. To ensure such high quality models, the predominantly
code-centric testing strategies must be complemented with
approaches for testing at the model-level. Such model-level
tests help detect errors at an early development stage (see,
e.g., [3], [4]).

In recent years, scenarios have become a popular means for
capturing a software system’s requirements (see, e.g., [5]–[7]).
In MDD, scenario specifications can be used to test models
for compliance with corresponding domain requirements (see,
e.g., [3], [4], [8]). Different approaches have been proposed
to provide notations for specifying scenarios, for example

in a table-based layout, as message sequence charts, or via
formal methods (see, e.g., [7], [9], [10]). However, no generally
accepted standard notation exists and the different scenario no-
tations vary with respect to the corresponding application do-
main and with the professional background of the stakeholder
involved in a particular development project (see, e.g., [7]).
Nevertheless, independent of the visualization technique, three
cognitive activities are fundamental to determine the usability
and quality of different notations: learnability, understandabil-
ity, and changeability (see, e.g., [11]). These aspects have a
significant influence on the productivity (see, e.g., [12]): the
costs increase the longer a domain expert or software engineer
needs to understand a scenario and the less software errors
are corrected. Hence, by ensuring easy-to-understand scenario
tests, the software-development costs can be decreased.

In this paper, we report on a controlled experiment for
the comparison of three frequently used alternatives for sce-
nario notations (see, e.g., [7]) to test Ecore-based structural
models1. In particular, we compare a semi-structured natural-
language notation, a diagrammatic notation, and a fully-
structured textual notation. As the comprehension of a notation
is a cognitive process, it cannot be observed directly (see
[13]). Therefore, we compare the three notations with respect
to the accuracy and the required effort for comprehending
scenario-test definitions, as well as with respect to the detection
of errors in the models under test (MUT). The evaluation
consists of comprehension (learnability, understandability) and
maintenance (changeability) tasks (see, e.g., [14]). As concrete
measures, we use the response time and the correctness of a
solution (see, e.g., [12]). We report our experiment according
to the guidelines for empirical software studies defined by
Jedlitschka et al. [15] and by Kitchenham et al. [16].

The remainder of this paper is structured as follows. In
Section II, we describe the three notations that we compare
in our study. Subsequently, Section III gives an overview of
related work, before Section IV explains the planning and
design of the experiment. Section V describes the execution
of the experiment and Section VI provides an analysis of the
study’s results. Next, Sections VII and VIII interpret the results
and discuss threats to validity. Section IX concludes the paper
and points to future work. In the Appendix, we showcase a

1All materials used in the experiment as well as collected data, calculations,
and computed results can be downloaded from http://nm.wu.ac.at/modsec.

complete task actually performed during the experiment.

II. THREE NOTATIONS FOR SCENARIO-BASED TESTING

In this section, we provide an overview of the three
scenario notations. In particular, we show an example how the
same test scenario is described in each of the three notations.
The example is taken from the introductory tutorial given to the
participants of our study at the beginning of each experiment
session.

For the experiment, each scenario test consists of three
parts: (1) preconditions setting up the scenario context, (2)
events triggering an action, and (3) expected outcomes of the
action (see, e.g., [7], [17]). All three parts of a scenario test
must evaluate to true in order to make a scenario test pass as
a whole. In the example, and as required by the design of our
experiment, the MUT is an Ecore model2.

N-notation: The semi-structured natural-language notation
is adopted from Cucumber’s set of syntax rules for scenario
tests (called Gherkin; see [17]). The natural-language state-
ments follow a declarative sentence structure. In Listing 1, line
1 initializes a new scenario (Scenario). The keywords Given,
When, and Then define the start of a precondition, an event,
and an expected outcome, respectively (lines 2–4). This natural
language scenario definition can be automatically transformed
into executable test scenarios which can be processed by the
framework presented in [19]. The scenario test passes iff all
test expressions are fulfilled, otherwise it fails.

1 Scenario:

2 Given "that ClassH owns exactly three structural features"

3 When "all supertype classes of ClassB are abstract"

4 Then "in ClassJ there shall be at least one attribute of type EnumA

with an upper bound multiplicity of -1"

Listing 1. Semi-structured natural-language scenario notation (N-notation)
exemplified.

D-notation: The second scenario-test notation is based on
UML sequence diagrams [20]. It is inspired by related model-
based scenario-test approaches (see, e.g., [9], [21]). Fig. 1
shows the example scenario test defined via this diagrammatic
representation—it is semantically equivalent to the natural-
language representation in Listing 1. Lifelines represent in-
stances of a test runner, a test component, the MUT, and classes
contained in the MUT which collaborate to realize the tested
scenario. Interactions are shown as sequences of call and return
messages between the corresponding instances on the lifelines.
Events and expected outcomes are declared optional (see the
CombinedFragments with opt InteractionOperatorKind in
Fig. 1 [20]). The different scenario-test expressions are nested,
so that an event can only be triggered iff the precondition(s) are
fulfilled (see InteractionConstraint guards of Combined-
Fragments in Fig. 1). In the same way, an expected outcome
is only tested iff all preconditions and events are fulfilled.

E-notation: The third notation defines scenario tests
through an extension to a fully-structured language for model
management tasks (see Listing 2), called Epsilon [22]. In
Epsilon, model testing is supported by the Epsilon unit testing

2In this paper, we do not provide a background on Ecore models; for the
remainder, it is sufficient to refer to generic object-oriented modeling con-
structs such as classes, inheritance relationships between classes, references,
and attributes. For details on Ecore, see, e.g., Steinberg et al. [18].

Fig. 1. Diagrammatic scenario notation (D-notation) exemplified.

framework (EUnit) which we extended to define scenario tests
(see [4]). With this notation, scenario tests are imperatively
defined via textual sequences of commands. Listing 2 shows
our scenario-test example (again, semantically equivalent to
Listing 1 and Fig. 1) including a precondition (line 6), an event
(lines 8–10), and an expected outcome (line 11). Epsilon shares
similarities with OCL [23]. For example, regarding operations
on collections, a universal quantification can be expressed
identically (forAll(); see line 9 in Listing 2).

1 @TestSuite

2 operation testSuite() {

3 @TestCase

4 operation testCase() {

5 @TestScenario

6 $pre Model!EClass.all().selectOne(x|x.name="ClassH").

eStructuralFeatures.size() = 3

7 operation testScenario() {

8 if (

9 Model!EClass.all().selectOne(x|x.name="ClassB").closure(x|x.

eSuperTypes).forAll(x|x.abstract=true)

10) {

11 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassJ").

eStructuralFeatures.exists(x|x.isTypeOf(EAttribute) and x.

eType.name="EnumA" and x.upperBound=-1));

12 } else {

13 assertTrue(false);

14 }

15 }

16 }

17 }

Listing 2. Fully-structured textual scenario notation (E-notation) exemplified.

III. RELATED WORK

For this paper, we consider two categories of related work:
(1) studies regarding the comprehension of the three notation
types used in our experiment and (2) (empirical) evaluations
of requirements-driven scenario notations.

Our first notation uses a text-based format that closely
resembles natural-language expressions. Studies to measure
text comprehension via problem solving tasks—comparable to
the tasks performed in the experiment reported in this paper—
have a long history (see, e.g., [24]). Emerging from this back-
ground, program comprehension experiments try to measure
factors influencing the understandability of source code, such
as scenario tests defined via EUnit. For instance, Kosar et
al. [11] compare the accuracy and efficiency of domain-specific
languages with general-purpose languages and Feigenspan et
al. [12] evaluate the improved correctness in the development
of software-product lines by introducing background-color-
enhanced preprocessor directives. In both studies, a family
of experiments was conducted in which participants had to
perform comprehension-related tasks. As an example of a
model-based notation, Mendling et al. [25] examine factors
influencing how model viewers comprehend the syntactical
information in process models (UML sequence diagrams fall
in this category) in a four-part series of experiments. All re-
lated studies have in common that comprehension-influencing
factors (i.e. dependent variables) are measured via response
time and correctness of a solution.

As a representative for a non-empirical evaluation of
requirements-driven scenario notations, Amyot and Eberlein
[10] define evaluation criteria (e.g. decomposition and ab-
straction) and review fifteen scenario notations with respect
to their suitability for the telecommunication domain. Ricca et
al. [26] performed two controlled experiments to empirically
evaluate a table-based notation for defining scenario tests. In
particular, they investigate whether the notation contributes
to the clarification of domain requirements and whether any
additional comprehension effort is required. For requirements
elicitation, scenarios are frequently documented via use cases.
Gemino and Parker [27] explore the effectiveness of integrating
use case models [20] with a set of textual use case descriptions
(see, e.g., [7]). A study is conducted including comprehension,
retention, and problem solving tasks measuring the level of
understanding developed by the participants who either used
textual uses cases or textual use cases with a supporting
use case diagram. Likewise, Ottensooser et al. [28] report
on an experiment for comparing the success of participants
in interpreting business process descriptions for a graphical
notation (BPMN) and for a textual notation (based on written
use cases).

Our study complements existing contributions with a
systematic comparison of three notations for scenario-based
model testing.

IV. EXPERIMENT PLANNING

A. Goals and Variables

As mentioned above, the objective of our experiment is
to compare three notations (see Section II) regarding their
applicability for the scenario-based testing of models. For this
task, we selected three notations from the body of previously
screened literature on model-testing notations (see, e.g., [4],
[17], [19], [20], [22]). The MUTs were defined using Ecore,
a metamodeling language that provides the foundation of the
Eclipse Modeling Framework (EMF; see, e.g., [18]).

Results obtained in related studies indicate that different
scenario notations have an influence on the accuracy and
effort of fulfilling model-testing tasks. For our experiment, the
participants had to solve tasks which were identical except
for the alternate usage of different scenario notations (our
independent variable). Similar to related studies (see Section
III), we use the response time and the correctness of the
solution as dependent variables to measure the comprehension
of a particular notation. A change in the independent variable is
expected to have a measurable effect on one or both dependent
variables.

To ensure that the scenario notation is the only independent
variable, we had to control important confounding variables. In
particular, we focused on maximizing the internal validity of
our experimental setting to be able to draw sound conclusions
from our results. Prior to the experiment, we asked all partici-
pants to fill in a questionnaire regarding their experience with
topics that could have an influence on the tasks performed in
the experiment (e.g., experience with different testing methods
and testing notations relevant to the experiment). In addition,
we collected the basic demographic profile of the participants.
The process of building homogeneous groups was based on
these information to keep the influence of confounding param-
eters on notation comprehension constant (see Section IV-B).

B. Participants of the Study

For the experiment, we contacted 30 software professionals
(software engineers, testers, researchers) from different soft-
ware companies, universities, and research institutions. For
their participation, we offered a small reward in the form of a
voucher for a well-known e-commerce company. 24 individu-
als agreed to contribute to the experiment, the remaining six
did not respond to our request. We selected three participants
to take part in a pilot study to pre-test the experimental setting
(see also [12]). From the remaining 21, one participant could
not take part due to illness. As we conducted the experiment
at companies in different cities in Austria, we had to exclude
the ill participant due to travel requirements. Hence, our data
set consisted of 20 participants.

In our study we had five female and 15 male participants
with an average age of 30.5±2.953 years. Each participant
has obtained a computer-science degree or a related academic

3The value after ± shows the standard deviation (σ) from the arithmetic
mean (x̄).

degree and currently works in the IT industry. The experience
questionnaire consisted of five demographic and ten experience
questions. To measure the level of confounding parameters,
participants had to estimate their own experience level on a six-
point Likert scale4. The ten questions collected evidence about
the participants’ experiences with regard to: scenario-based
testing, Ecore modeling, natural-language testing, model-based
testing, and test-case programming. We grouped and classi-
fied the questions according to a pre-defined schema (five
groups, one to three questions per group). In a discussion
with colleagues, we allocated weights to each question in a
group. We classified general questions to be less important than
specific ones. For example, experience in writing software in
any programming language counted less than experience with
the Epsilon language or model constraint/validation languages
(such as OCL or EVL). The reason for this weighting was
that we explicitly used dialects of the Epsilon language for
validating models in our experiment. We assume, for instance,
that general programming knowledge does not help as much
in comprehending EUnit scenario tests as does knowledge in
a language specifically designed for model management tasks
(e.g. model navigation or element selection).

Our research design required to divide the participants into
three groups (see Section IV-E). According to the participants’
self estimations on the Likert scale, zero to six points (“no
experience” to “very high experience”) were allocated per
question. Then, questions were grouped and weighted accord-
ing to the schema explained above. The group building process
homogeneously spread the participants so that the combined
score of the weighted experience questions in each of the five
question groups was similar. After the allocation, each group
contained seven participants5.

Via the experience questionnaire, we informed the partici-
pants that the collected data will be used solely for the process
of conducting the experiment. Furthermore, we guaranteed that
all published results will be anonymized and that personal
data is neither made public nor given to any third-parties. In
order to ask clarification questions after the experiment, we
needed to know the participants’ names as well as the name
of their employer. As the collected data can be linked to the
participants, we consulted the Center of Empirical Research
Methods of WU Vienna which approved the ethical correctness
of our design. The participants could opt-out of the experiment
at any time, but no one did so.

C. Experimental Material

For the experiment, we prepared six different scenarios6.
For each scenario, we provide an Ecore-based MUT, a sce-
nario description specified in each of the three notations,
and questions to be answered (see also the example task
in the appendix). All materials were printed and fitted on
one A4 sheet respectively. The Ecore models were created
using the EMF project of Eclipse 4.2 [18]. The models
were taken from real-world examples (e.g., the ATL code

4Self estimation is expected to be a reliable way to judge experiences and
is recommended, for example, in Siegmund et al. [29].

5Note that the group allocation was done before we learned that one of the
individuals was not able to participate because of illness.

6All materials used in the experiment as well as collected data, calculations,
and computed results can be downloaded from http://nm.wu.ac.at/modsec.

generator metamodel, the Ant metamodel), were obtained
from the AtlanMod Metamodel Zoo7, and adapted to fit the
experimental setting (in terms of size and naming conventions).
The adapted size of the six models were similar to each other
and had been chosen to ensure a certain degree of complexity.
In particular, it was intended that the participants should
frequently consult the models during their tasks and should
not be able to memorize their structure easily. Regarding model
measures, on average, each model contained 23±1.17 classes,
8±1.03 of them declared abstract. These classes contained
on average 44±3.21 structural features consisting of 18±3.51
attributes and 26±2.1 references. 12±1.67 of these references
were defined as containment references. In a model, 19±3.14
inheritance relationships between classes were specified on
average.

All scenario descriptions included the definition of two
preconditions, two events, and two expected outcome speci-
fications. The creation of all scenarios was supported by tools.
The natural-language notation was defined via the infrastruc-
ture described in Hoisl et al. [19], the fully-structured notation
via the infrastructure described in Sobernig et al. [4], and
the diagrammatic notation by utilizing the UML sequence
diagram editor of No Magic’s MagicDraw 17.05. Each line
of the two textual scenario descriptions were numbered on the
left-hand side (see Listings 1 and 2 in Section II). The UML
sequence diagram shows scenario interactions via messages
passed between object instances. All call and return messages
were sequentially numbered from top to bottom and these
message numbers were displayed in front of each message
expression (see Fig. 1 in Section II).

The experimental material also included language refer-
ences for each of the three scenario notations as well as
for Ecore models. The language references explained the
syntactical format and the semantics of each notation and
served as a documentation for the study participants (e.g., for
the fully-structured notation, method calls and return values
were explained).

For each scenario, five questions were asked with “yes”,
“no”, and “don’t know” answer choices. For each question,
the possibility to insert line and message numbers was given.
At the top of the answer sheet, participants had to insert their
start time. An equivalent field was provided at the bottom for
the end time. The task, the participants had to carry out, was
explained on the sheet. At the bottom, space was reserved for
comments.

To correctly answer the questions in the experiment the
participants had to understand whether a scenario test passes or
fails when elements in the corresponding model are changed.
We classified the model changes referred to by the questions
according to Wimmer et al. [30]. On the one hand, solu-
tions to the questions required changes to existing modeling
concepts: attributes (context, multiplicity, datatype), references
(context, multiplicity, direction, containment), and inheritance
relationships (concreteness, depth, inheritance type). On the
other hand, we also asked for creation and deletion of classes,
attributes, references, and inheritance relationships (source-
target-concept cardinality differences).

7http://www.emn.fr/z-info/atlanmod/index.php/Zoos

At the end of the experiment, an ex-post questionnaire had
to be filled out. The participants should rate different criteria on
a five point scale (1=worst, 5=best) for all three scenario-test
notations. In particular, we asked the participants to evaluate
the notations according to eight different criteria:

• Clarity: Is the notation understandable regarding its
syntax and semantics?

• Completeness: Does the notation describe all neces-
sary information to review the scenario test without
consulting other information sources (e.g., the notation
reference)?

• Conciseness: Are the resulting scenario tests precise
(e.g., no ambiguities in the description, no misinter-
pretations when reviewing the description)?

• Expressiveness: Is the notation eligible to express
model tests (e.g., tests on Ecore-based models)?

• Generalizability: Is the notation eligible to express
tests other than model tests (e.g., code-unit tests)?

• Practicality: Does the notation require specific prepa-
ration (e.g., an extensive tutorial) and/or auxiliary
materials (e.g., frequent use of notation reference)?

• Scalability: Does the notation support increasingly
complex scenario tests well (e.g., increasing test
and/or model size, increasing number of test condi-
tions)?

• General rating: Overall, how did you like working
with the notation?

Furthermore, participants should elaborate on their ratings
(e.g. why did they favor a particular notation). Finally, we
asked if they would like to add anything else (related to the
scenario tests, improvements to the experiment etc.).

D. Tasks performed by the Participants

In total, each participant had to perform six tasks: one
comprehension and one maintenance task per notation (i.e. for
each of the three notations). All participants worked on the
same six scenarios, but each group received a different sam-
pling of scenario notations (according to the groups built
via the experience questionnaire; see Section IV-B). Every
task consisted of a scenario as described in Section IV-C:
an Ecore-based MUT, a scenario description in one of the
three notations, and five questions to be answered (see also
the example task in the appendix). For every notation, the
participants worked on the comprehension task first, followed
by the maintenance task for the same notation.

Both tasks measure the participants’ understanding of a
scenario. The questions were designed in a way such that they
could only be answered correctly if a subject fully understood
the scenario. For the comprehension task, the participants were
faced with a correct (i.e. passing) scenario test. We asked the
participants to look at the scenario description and the corre-
sponding MUT in order to answer five questions (“Does the
scenario test fail if . . . ”). The second task was a maintenance
task—here we provided an incorrect (i.e. failing) scenario test.
The participants were asked to look at the scenario description

and the corresponding MUT and find the line/message numbers
which are responsible for the failure of the scenario test (for
the maintenance task, an additional line/message number field
was inserted in the answer sheet). After the initial error was
found, the MUT had to be corrected in order for the scenario
test to pass. To achieve this, the participants had to answer five
questions whether changes in the model made the scenario test
pass (“Does the scenario test pass if . . . ”). All questions were
independent from each other (i.e. the participants had to answer
each question on its own).

The process and the design of the tasks resemble the
usual workflow of developing model-based software systems
via scenarios. In a first step, requirements-based scenario
descriptions are developed and executed to validate the MUT.
When the requirements change, so do the scenario tests. Now,
a discrepancy exists between the new scenario tests and the
unchanged MUT. As a consequence, the scenario tests fail. To
solve the problem, the MUT needs to be adapted in order
to meet the new requirements. Again, the conformance of
the (new) requirements is ensured via correct (i.e. passing)
scenario tests.

E. Design of the Experiment

Our controlled experiment has a between-subject design
(see, e.g., [31]). In particular, every participant worked with
all three notations (our independent variable) and on all six
scenarios, but not with every notation alternative on every
scenario (to exclude learning effects). The three homogeneous
groups built via the experience questionnaire determined the
notations which where given to each participant for a particular
task. For instance, Group 1 used the natural-language notation
for comprehension Task 1.1 and maintenance Task 1.2, Group
2 the diagrammatic notation, and Group 3 the fully-structured
notation for the same tasks. For the remaining tasks (2.1, 2.2,
3.1, 3.2) the notations alternated between the groups so that
every participant in each group worked with every notation
and that every task had to be solved with every notation.

Every scenario was independently designed and did not
reuse any elements from another scenario (i.e. different model,
scenario description, and questions). To reduce potential learn-
ing effects, none of the participants worked on the same
scenario twice. Weariness effects were eliminated by random-
izing the order in which participants had to work on the
different tasks. For further control, the questions per task were
also randomly arranged for each participant individually. As
domain knowledge has been shown beneficial for comprehen-
sion tasks (see, e.g., [32]), we factored out any domain bias
by neutrally naming all model elements (e.g. ClassA, refB,
attC). Hence, all participants had to use the same bottom-up
approach (increasing the internal validity of our experiment),
which means that the participants had to analyze the scenario
descriptions statement by statement. Thus, the participants first
had to understand a scenario statement and then gradually build
up to an understanding of groups of statements until the whole
scenario was understood completely (see, e.g., [12], [32]).

Before the participants worked on the different tasks, an in-
troductory presentation was given. The introduction explained
the objectives of scenario-based testing, the structure of the
scenario tests, and the syntax and semantics of Ecore models

TABLE I. PARTICIPANTS’ TIME SPENT AND ANSWERS GIVEN PER TASK AND PER NOTATION.

Task 1.1 Task 1.2 Task 2.1 Task 2.2 Task 3.1 Task 3.2

N D E N D E N D E N D E N D E N D E

Number of participants 6 7 7 6 7 7 7 6 7 7 6 7 7 7 6 7 7 6

Mean response time (in min.) 8.67 13.43 15.43 7.00 11.00 11.43 9.14 11.17 12.00 11.14 10.33 13.57 7.86 20.57 12.00 9.71 15.43 8.50

Standard deviation (in min.) 2.25 6.80 6.73 0.89 3.32 5.38 3.80 3.71 5.03 5.05 4.68 5.59 3.13 7.14 3.03 5.38 6.05 2.66

Min./max. response time (in min.) 7/13 7/24 8/27 6/8 7/16 6/20 6/16 8/18 6/20 6/22 5/16 8/24 5/13 10/28 8/16 5/19 9/24 4/12

Median response time (in min.) 8 9 14 7 9 9 8 10.5 11 10 10 12 6 23 11.5 7 12 8.5

Lower quartile (in min.) 7.25 8.5 10.5 6.25 9 7.5 6 8.5 9 9.5 6.5 10 5.5 15 10.25 5.5 11 8

Upper quartile (in min.) 8.75 18.5 19 7.75 13.5 15 11 11.75 14.5 10.5 14.25 15.5 10 26.5 14.25 13 20.5 9.75

Number of correct answers 29 29 32 27 21 28 35 26 30 27 23 22 29 28 26 26 27 19

Number of incorrect answers 1 5 1 3 5 7 0 4 5 8 7 8 5 4 4 7 8 11

Number of don’t know answers 0 1 2 0 9 0 0 0 0 0 0 5 1 3 0 2 0 0

Percentage of correct answers 96.67 82.86 91.43 90.00 60.00 80.00 100.00 86.67 85.71 77.14 76.67 62.86 82.86 80.00 86.67 74.29 77.14 63.33

0 min

5 min

10 min

15 min

20 min

25 min

30 min

Task 1.1 Task 1.2 Task 2.1 Task 2.2 Task 3.1 Task 3.2

(a) N-notation

----- ----- -----

0 min

5 min

10 min

15 min

20 min

25 min

30 min

Task 1.1 Task 1.2 Task 2.1 Task 2.2 Task 3.1 Task 3.2

(b) D-notation

----- -----

0 min

5 min

10 min

15 min

20 min

25 min

30 min

Task 1.1 Task 1.2 Task 2.1 Task 2.2 Task 3.1 Task 3.2

(c) E-notation

Fig. 2. Box plots of participants’ time spent per notation and per task. Please note that the dashed horizontal line indicates the mean response time and the
solid horizontal line the median response time.

as well as of the three notations. To train the participants, three
example tasks were presented—one for each notation (see
Section II). Two questions were asked per task, the participants
were motivated to answer the questions, and the solutions were
presented. At the end of the introduction, we explained what
the participants had to do for the experiment (see Section
IV-D).

V. EXECUTION AND DEVIATIONS

To evaluate our experimental setting (time needed, diffi-
culty of tasks etc.), we conducted a pilot study on March
4, 2014 (one participant) and on March 11, 2014 (two par-
ticipants), respectively. In each round, we received feedback
from the participants and revised the experimental material
and the process. The experience questionnaires for building
groups were submitted as editable PDFs to the participants on
March 9, 2014 via e-mail. The participants had to return the
questionnaires by e-mail until March 12, 2014 (the participants
were assigned to groups on the same day). As we conducted
the study at different locations and due to participants’ time
constraints, we had to execute the experiment multiple times
(between March, 14 and March, 28 2014). The dates were
arranged via e-mail communication. However, in every install-
ment the experimental setting was identical (i.e. amount of
introductory information presented, room with enough space
for all participants and a projector for the introductory presen-
tation etc.)—the experimental process did not differ as well.
First, the participants were seated and told that they only

need a pen to write and a clock for measuring time. After all
participants had arrived, we gave the introductory presentation
and performed the three warming up tasks which together took
about 20 minutes. Then, each participant received a copy of
their personal experimental material (according to the groups
they belonged to and with randomized task and question
orders; see Sections IV-D and IV-E) and were told that they had
to work on the tasks in their predefined order. No supporting
material or additional equipment was allowed. Subsequently,
the participants worked on their tasks as explained above.
Finally, each participant filled out the ex-post questionnaire
and handed-in the material.

After the experiment, we had to contact four participants
via e-mail and two personally because of ambiguous answers
and were able to clarify all issues (e.g., problems reading the
handwriting, unclear answer selections). After we evaluated
the experiment’s data, we informed the participants via e-mail
that they could review their personal and, for comparison,
the average results (correct answers, time needed etc.). Six
participants responded and we transmitted the results to them.

Deviations from the plan occurred as one participant was
ill and thus Group 1 consisted only of six participants instead
of seven. Furthermore, it was hard to find suitable time-slots
for the participants. Some participants took the experiment in
the morning, some in the afternoon, and some in the evening.
Although, the time of the day may influence the attention and
concentration of participants, the different groups as well as the
randomized tasks should compensate this deviation. The UML

97%

3%

83%

14%
3%

91%
3%

6%

90%

10%

60%

14%

26%

80%

20% 100%

87%

13%

86%

14%

77%

23%

77%

23%

63%

23%

14%

83%

14%
3%

80%

11%

9%

87%

13%

74%

20%

6%

77%

23%

63%

37%

0%

25%

50%

75%

100%

N D
Task 1.1

E N D
Task 1.2

E N D
Task 2.1

E N D
Task 2.2

E N D
Task 3.1

E N D
Task 3.2

E

Answers

Correct

Incorrect

Don't know

Fig. 3. Percentage of participants’ correct, incorrect, and don’t know answers
per task and per notation.

sequence diagrams needed the most space of all notations, but
we fitted each of the diagrams on one A4 page (otherwise
participants would have had to turn pages which would have
required additional time). Five participants commented that
the font sizes of the diagrammatic notation were too small
and hard to read. This deviation could have an effect on the
comprehension of the diagrammatic scenario notation.

VI. ANALYSIS

Table I as well as Figs. 2 and 3 summarize our collected
data in terms of the participants’ time spent on the individual
tasks and the answers given per task and per notation. The
participants measured their time to complete a task in minutes
(see Section IV-C). The correctness of a solution is derived
from the ratio of correct answers to the sum of all answers
(correct, incorrect, don’t know answers). Table II shows the
participants’ average ratings per notation and per dimension
from the ex-post questionnaire. The average least task-solving
time and highest percentage of correct answers per task as
well as the highest average rating per criterion are underlined
in Tables I and II, respectively.

On average (arithmetic mean) the participants spent the
following times for completing the six tasks: 53.52 min. for the
natural-language notation (N), 81.93 min. for the diagrammatic
notation (D), and 72.93 min. for the fully-structured notation
(E). Furthermore, the percentage of correct answers over all
tasks is 86.5% for the natural-language notation, 77% for the
diagrammatic notation, and 78.5% for the fully-structured no-
tation. On average, the participants spent 70.05±17.06 min. on
the six tasks. As each task contained five questions, each
participant had to answer 30 questions in total. On average,
each participant answered 80.67% of the questions correctly
(24.2±3.55 questions), 15.5% of the questions incorrectly
(4.65±2.18 questions), and the participants did not know the
answer to 3.83% of the questions (1.15±2.21 questions).

VII. INTERPRETATION

Table I and Fig. 2 show that, except for Tasks 2.2 and 3.2,
the participants required the least time to solve a task using the

TABLE II. EX-POST AVERAGE RATING PER NOTATION (1–5, 5=BEST).

N D E

Clarity 4.30±0.80 3.10±1.02 3.05±1.10

Completeness 4.40±0.82 3.45±0.89 3.15±1.04

Conciseness 4.00±0.79 3.35±1.14 3.80±1.15

Expressiveness 3.85±1.09 3.10±1.25 3.35±1.09

Generalizability 3.40±1.05 3.05±0.94 3.95±1.10

Practicality 4.65±0.59 3.00±0.97 2.50±1.00

Scalability 4.15±0.93 2.30±1.03 3.35±0.81

General 4.40±0.60 2.85±1.14 3.00±0.97

natural-language notation. Regarding these two tasks, the task-
solving times of the natural-language notation were close to
the times of the other notations: the diagrammatic notation in
Task 2.2 (participants required on average 0.81 min. less time;
an improvement by 7.27%) and the fully-structured notation in
Task 3.2 (participants required on average 1.21 min. less time;
an improvement by 12.46%). By using the natural-language
notation, the participants required on average 28.4 min. less
time to finish all six tasks than with the diagrammatic notation
(an improvement by 34.7%) and 19.4 min. less time than
with the fully-structured notation (an improvement by 26.6%).
Using the fully-structured notation, it took the participants 9
min. less time than working on the tasks in diagrammatic
notation (an improvement by 11%).

For the four Tasks 1.1–2.2, the participants reached most
correct answers by using the natural-language notation (see
Table I and Fig. 3). The fully-structured and the diagrammatic
notations are comparable regarding answer correctness (78.5%
and 77%). There was one participant who had a very low
score of only 14 correct answers (46.7%). When removing
this outlier from the data set, the natural-language notation
accounts for the highest amount of correct answers in all tasks,
including Tasks 3.1 and 3.2. The respective notation of the least
response time remains unchanged, both per task and overall.

In total, participants using the natural-language notation
required the least time to solve the tasks and answered the
most questions correctly. These results in favor of the natural-
language notation are also supported by the participants ex-
post rating (see Table II). Except for its generalizability, the
participants ranked the natural-language notation first in all
remaining dimensions.

Via the ratings and comments in the ex-post question-
naire (see Table II), the study participants criticized the poor
scalability of the diagrammatic notation (quote: “just over-
head”, “bloated”). Both the structure of the diagrammatic
notation and the general syntax of UML sequence diagrams
need comparably more space than the other two notations.
Thus, for complex scenarios, the diagrammatic notation might
incur the risk of comparatively large scenario-test definitions
which, thereby, become hard to comprehend. Furthermore, the
participants stated that the fully-structured notation requires
the most specific preparation and/or auxiliary materials to be
understood. Its practicality was therefore rated lowest (see
Table II). However, despite its lower ranked practicality, the
task-solving time was improved by 11% and the percentage
of correct answers by 1.5% when using the fully-structured
rather than the diagrammatic notation.

VIII. THREATS TO VALIDITY

Some threats to internal validity are caused by the devi-
ations that occurred (see Section V). Furthermore, our group
building process focused on a homogeneous distribution of
participants with the same experience level. We tried to equally
distribute demographic characteristics as well, and managed to
do so for the participants’ education and their age. Neverthe-
less, the data set did not allow for a homogeneous distribution
of female participants (n=5) which is also a threat to internal
validity. Our focus on internal validity limits external validity.
The participants were all software professionals working with
a selection of notations on a set of neutralized Ecore models to
solve specific scenario tasks. In order to generalize our results
and to improve external validity, we would need to repeatedly
conduct the experiment with different participants from diverse
professional backgrounds, different notation alternatives, dif-
ferent scenario descriptions and so forth.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an experiment to evaluate
three notations for their applicability to describe scenario-
based model tests. In particular, the experiment compared
the comprehensibility of three scenario-based notations and
showed that the choice of a specific notation has an effect
on the productivity when testing models for requirements
conformance. The results of our experiment indicate that
a natural-language-based approach for scenario-based model
tests is recommended, as it required the least task-solving time
and was the most accurate alternative as well as most favored
by the participants who worked with it.

As future work, we will repeat the experiment with par-
ticipants from a different professional background to be able
to draw more general conclusions. For the replication study,
we will revise the experimental setting and materials based on
the feedback collected so far (e.g., conducting the experiment
in one session, increasing the font size of the diagrammatic
notation). Furthermore, we will run extended quantitative
and qualitative analyses. For example, we will evaluate the
line/message numbers recorded for the failing scenario tests
by the participants.

APPENDIX

EXPERIMENT TASK 2.1

To illustrate the actual tasks performed during the exper-
iment, we present the comprehension Task 2.1 of our exper-
iment. For completing a task, we provided each participant
with an Ecore-based MUT (for Task 2.1 the MUT is shown
in Fig. 4) and a scenario-test definition in one of the three
notations. For Task 2.1, the scenario was either specified as
in Listing 3, as in Listing 4, or as in Fig. 5. Five questions
were to be answered on each task, the ones about Task 2.1 are
shown later in this section.

The MUT of Task 2.1 (see Fig. 4) is based on the Ant
metamodel and was adapted to fit the experimental setting (in
terms of size and naming conventions). The MUT of Task
2.1 contains 24 classes, 8 of them declared abstract. These
classes contain 46 structural features consisting of 22 attributes
and 24 references. 15 of theses references are defined as

containment references. In the MUT of Task 2.1, 19 inheritance
relationships between classes are specified.

The scenario descriptions of Task 2.1 for each notation are
shown in Listing 3, Listing 4, and Fig. 5, respectively. Please
note that all three scenario-test definitions are semantically
equivalent; i.e. all three scenario representations per task
describe the same scenario-based model test. Each participant
of the experiment was provided with exactly one of these
notations, depending on their group affiliation.

1 Scenario:

2 Given "that it is possible to navigate from ClassO to ClassA via

containment references refQ and refJ"

3 And "that ClassY includes ClassF, ClassP, and ClassE in its hierarchy

of supertypes"

4 When "ClassD, ClassR, and ClassV are not abstract"

5 And "exactly two attributes of ClassA are of type EString with a

multiplicity of 0..1"

6 Then "ClassY shall own exactly six structural features"

7 And "ClassG shall have any kind of reference pointing to ClassR named

refG"

Listing 3. Natural-language scenario notation of Task 2.1.

1 @TestSuite

2 operation testSuite() {

3 @TestCase

4 operation testCase() {

5 @TestScenario

6 $pre Model!EClass.all().selectOne(x|x.name="ClassO").

eStructuralFeatures.selectOne(x|x.name="refQ").eType.

eStructuralFeatures.selectOne(x|x.name="refJ").eType.name="

ClassA"

7 $pre Model!EClass.all().selectOne(x|x.name="ClassY").closure(x|x.

eSuperTypes).includesAll(Model!EClass.all().select(x|x.name="

ClassF" or x.name="ClassP" or x.name="ClassE"))

8 operation testScenario() {

9 if (Model!EClass.all().select(x|x.name="ClassD" or x.name="ClassR"

or x.name="ClassV").forAll(x|x.abstract=false)

10 and

11 Model!EClass.all().selectOne(x|x.name="ClassA").

eStructuralFeatures.select(x|x.isTypeOf(EAttribute) and x.

eType.name="EString" and x.lowerBound=0 and x.upperBound

=1).size() = 2

12) {

13 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassY").

eStructuralFeatures.size() = 6);

14 assertTrue(Model!EClass.all().selectOne(x|x.name="ClassG").

eStructuralFeatures.selectOne(x|x.name="refG").eType.name

= "ClassR");

15 } else {

16 assertTrue(false);

17 }

18 }

19 }

20 }

Listing 4. Fully-structured scenario notation of Task 2.1.

For the comprehension Task 2.1, the participants had to
answer the following five questions with either “yes”, “no”, or
“don’t know” (please note that the questions were randomly
ordered for each participant):

1) Does the scenario test fail if ClassF, ClassT, and
ClassD are declared abstract?

2) Does the scenario test fail if the reference refG of
ClassG is not a containment reference and has a
multiplicity of 1..1?

3) Does the scenario test fail if in ClassI the navigability
of reference refJ is inverted?

4) Does the scenario test fail if in ClassA the lower
bound of attribute attR is changed to 1?

5) Does the scenario test fail if the reference refB of
ClassY is inverted?

Fig. 4. Ecore-based MUT of Task 2.1.

If a scenario test was deemed failed (i.e. a question was
answered with “yes”), the participant had to mention the line
number(s) (in case of the natural-language or fully-structured
notation) or message number(s) (in case of the diagrammatic
notation) in the scenario description considered responsible for
failing the test. Furthermore, the participants had to fill in their
start and end time per task (in minutes). At the end of the
answer sheet, space was reserved for comments.

ACKNOWLEDGMENT

Thanks are due to Janet Siegmund for her advice on plan-
ning the experiment. This work has partly been funded by the
Austrian Research Promotion Agency (FFG) of the Austrian
Federal Ministry for Transport, Innovation and Technology
(BMVIT) through the Competence Centers for Excellent Tech-
nologies (COMET K1) initiative and the FIT-IT program.

REFERENCES

[1] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, Feb 2006.

[2] B. Selic, “The pragmatics of model-driven development,” IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sept 2003.

[3] P. Brosch, U. Egly, S. Gabmeyer, G. Kappel, M. Seidl, H. Tompits,
M. Widl, and M. Wimmer, “Towards scenario-based testing of UML
diagrams,” in Tests and Proofs, ser. LNCS. Springer, 2012, vol. 7305,
pp. 149–155.

[4] S. Sobernig, B. Hoisl, and M. Strembeck, “Requirements-driven testing
of domain-specific core language models using scenarios,” in Proc. 13th

Int. Conf. Quality Softw. IEEE Computer Society, 2013, pp. 163–172.

[5] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010.

[6] A. Sutcliffe, User-Centred Requirements Engineering. Springer, 2002.

[7] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.

[8] C. Nebut, F. Fleurey, Y. Le-Traon, and J.-M. Jézéquel, “Automatic test
generation: A use case driven approach,” IEEE Trans. Softw. Eng.,
vol. 32, no. 3, pp. 140–155, 2006.

[9] A. Ulrich, E.-H. Alikacem, H. Hallal, and S. Boroday, “From scenarios
to test implementations via Promela,” in Test. Softw. Syst., ser. LNCS.
Springer, 2010, vol. 6435, pp. 236–249.

[10] D. Amyot and A. Eberlein, “An evaluation of scenario notations and
construction approaches for telecommunication systems development,”
Telecommun. Syst., vol. 24, no. 1, pp. 61–94, 2003.

[11] T. Kosar, M. Mernik, and J. Carver, “Program comprehension of
domain-specific and general-purpose languages: Comparison using a
family of experiments,” Emp. Softw. Eng., vol. 17, no. 3, pp. 276–304,
2012.

[12] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do background colors improve
program comprehension in the #ifdef hell?” Emp. Softw. Eng., vol. 18,
no. 4, pp. 699–745, 2013.

[13] J. Koenemann and S. P. Robertson, “Expert problem solving strategies
for program comprehension,” in Proc. Conf. Human Factors Comp. Sys.

ACM, 1991, pp. 125–130.

[14] A. Dunsmore and M. Roper, “A comparative evaluation of program
comprehension measures,” University of Strathclyde, Tech. Rep., 2000.

[15] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments in

Fig. 5. Diagrammatic scenario notation of Task 2.1.

software engineering,” in Guide Advanced Emp. Softw. Eng. Springer,
2008, pp. 201–228.

[16] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung,
F. Kurniawati, M. Staples, H. Zhang, and L. Zhu, “Evaluating guidelines
for reporting empirical software engineering studies,” Emp. Softw. Eng.,
vol. 13, no. 1, pp. 97–121, 2008.

[17] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven

Development for Testers and Developers. Pragmatic Programmers,
2012.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework, 2nd ed. Addison-Wesley, 2008.

[19] B. Hoisl, S. Sobernig, and M. Strembeck, “Natural-language sce-
nario descriptions for testing core language models of domain-specific
languages,” in Proc. 2nd Int. Conf. Model-Driven Eng. Softw. Dev.
SciTePress, 2014, pp. 356–367.

[20] Object Management Group, “OMG unified modeling language (OMG
UML), superstructure,” available at: http://www.omg.org/spec/UML,
Aug. 2011, v2.4.1, formal/2011-08-06.

[21] S. K. Swain, D. P. Mohapatra, and R. Mall, “Test case generation based
on use case and sequence diagram,” Int. J. Softw. Eng., vol. 3, no. 2,
pp. 21–52, July 2010.

[22] D. Kolovos, L. Rose, A. García-Domínguez, and R. Paige, “The Epsilon
book,” Available at: http://www.eclipse.org/epsilon/doc/book/, 2014.

[23] Object Management Group, “Object constraint language,” available at:
http://www.omg.org/spec/OCL, Feb. 2014, v2.4, formal/2014-02-03.

[24] W. Kintsch, “Learning from text,” Cognition Instruct., vol. 3, no. 2, pp.
87–108, 1986.

[25] J. Mendling, M. Strembeck, and J. Recker, “Factors of process model
comprehension—findings from a series of experiments,” Decision Sup-

port Syst., vol. 53, no. 1, pp. 195–206, 2012.

[26] F. Ricca, M. Torchiano, M. D. Penta, M. Ceccato, and P. Tonella, “Using
acceptance tests as a support for clarifying requirements: A series of
experiments,” Inform. Softw. Tech., vol. 51, no. 2, pp. 270–283, 2009.

[27] A. Gemino and D. Parker, “Use case diagrams in support of use
case modeling: Deriving understanding from the picture,” J. Database

Mgmt., vol. 20, no. 1, pp. 1–24, 2009.

[28] A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, and C. Menic-
tas, “Making sense of business process descriptions: An experimental
comparison of graphical and textual notations,” J. Syst. Softw., vol. 85,
no. 3, pp. 596–606, 2012.

[29] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring and modeling programming experience,” Emp. Softw. Eng., 2013.

[30] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck,
and W. Schwinger, “Towards an expressivity benchmark for mappings
based on a systematic classification of heterogeneities,” in Proc. 1st Int.

Workshop Model-Driven Interoperability. ACM, 2010, pp. 32–41.

[31] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interac-
tion, 3rd ed. Pearson Education, 2004.

[32] T. M. Shaft and I. Vessey, “The relevance of application domain
knowledge: The case of computer program comprehension,” Inform.

Syst. Res., vol. 6, no. 3, pp. 286–299, 1995.

