SINTEF

This is the Accepted version of the article

Using Intrusive Microservices to Enable Deep Customization of Multi-tenant Saa$

Franck Chauvel, Arnor Solberg

Citation:

Franck Chauvel, Arnor Solberg(2018). Using Intrusive Microservices to Enable Deep
Customization of Multi-tenant SaaS. In 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC), Coimbra, Portugal, 4-7 Sept.
2018, pp 30-37 DOI: 10.1109/QUATIC.2018.00015

This is the Accepted version.
It may contain differences form the journal's pdf version

This file was downloaded from SINTEFs Open Archive, the institutional repository at SINTEF
http://brage.bibsys.no/sintef

Using Intrusive Microservices to Enable Deep
Customization of Multi-Tenant SaaS

Franck Chauvel, Arnor Solberg
SINTEF, Norway.
{Franck.Chauvel, Arnor.Solberg}@sintef.no

Abstract—Enterprise software applications need to
be customized in order to meet special requirements
from customers. When the customization requirements
are beyond the prediction of vendors, deep customiza-
tion is needed, and traditionally customers do deep
customizations by directly modifying the application
source code. When the applications are moving from
on-premises to multi-tenant Software as a Service,
directly changing code is not feasible because many
customers are sharing one instance of the application
code. In this paper, we present a new approach to
enable deep customization on multi-tenant SaaS, using
intrusive microservices. The custom code is imple-
mented as an isolated and self-contained microservice
running beside the main service, and it uses callback
code to intrusively execute queries or commands inside
the main service. We present the key techniques behind
intrusive microservices and illustrate how turned an
open source online shopping application into a deeply
customizable multi-tenant service.

I. INTRODUCTION

Modern companies rely more and more on software
applications to support their day-to-day management on
sales, human resource, financial, etc. Since every company
is unique in terms of organization, process or culture,
off-the-shelf software cannot perfectly fit every company.
Some company eventually needs to customize the software
to meet their requirements. Customization is a special
type of software development. It is performed either by
the in-house developers of the customer or by third-party
consultants hired by the customer.

Customization is often done in a controlled way. The
software vendors predict where and how their applica-
tions may be customized, and provide their customers
with the APIs, extension points or configuration choices.
However, it is not possible for the vendors to predict all
the potential customization requirements, and therefore,
there are always customers whose requirements cannot
be met by using the provided customization supports.
These customers have to do deep customization, beyond
the vendor’s prediction.

Traditionally, software vendors support deep customiza-
tion by allowing the customers to directly modify their
source code. The customers acquire a special license of
the application, re-develop it based on the original source
code, and then deploy it on their own premises. In an
empirical study on 8 companies deploying ERP systems,

Rothenberger et al. [1] observed that in most cases ERP
adopters end up implementing heavy customizations in-
volving code modifications. The two software vendors that
commissioned this research also have many customers who
have made deep customizations to their products [2]. In
addition to the flexibility, deep customization also has ben-
efited of remaining the customized product as an integral
piece. Moreover, vendors do not need to invest a lot of
resource to design and implement the sophisticated API
or extension points.

However, as the enterprise software industry is moving
from single-tenant on-premises applications to cloud-based
multi-tenant Software as a Service (SaaS), deep customiza-
tion by directly modifying the source code is not feasible
any more. In a multi-tenant SaaS, one instance of the
software application is shared by many customers (also
known as tenants). No customer monopolizes the source
code, and therefore the customer’s modification on the
source code will immediately affect the other customers.
Due to this limitation, the mainstream multi-tenant SaaS
vendors such as Salesforce and Oracle NetSuite only sup-
port controlled customization.

In this paper, we present a novel approach to implement
deep customization on multi-tenant SaaS, using intrusive
custom microservices. Customers have the “read-only”
access to the source code of the main service, and can
choose fine-grained pieces in the code base, such as a
C# method, to customize. Instead of directly modifying
the code, they re-develop the code and wrap it as a self-
contained microservice running alongside the main service.
The execution to the original pieces will be redirected
to the custom microservice at runtime. These custom
microservices are intrusive to the main service, by send-
ing callback code to the main service. The main service
executes the callback code under the same context as the
original code. In this way, the custom code is theoretically
capable of doing anything the original code can do.

This approach achieves both the isolation required by
multi-tenancy and the assimilation required by deep cus-
tomization. On the one hand, the custom code is running
separately from the main service, and can be deployed
dynamically without rebooting the main service. On the
other hand, the custom code has the same expression
power as the original source code. Therefore customers can
implement the customization in the same way as if they

are vendor developers.

The remainder is organized as follows. Section II uses a
sample on-line shopping system to explain the requirement
for deep customization. Section III gives an overview of
the approach, and Section IV elaborates it with key tech-
niques. Section V evaluates the approach by applying it on
the sample open source shopping application. Section VI
discusses related approaches and Section VII concludes the

paper.
II. MOTIVATING EXAMPLE

In this section, we present an open source online shop-
ping application, the MusicStore, as an exemple of the
challenges that obstacle the development of deep cus-
tomization on multi-tenant SaaS.

The Microsoft MusicStore [3] is an official test appli-
cation for ASP.NET Core, the next generation web de-
velopment framework by Microsoft. MusicStore simulates
the essential functionality of online shopping, such as
user management, catalogue, shopping cart and checkout,
using the music albums as its sample products. We use
MusicStore as the backbone software to provide a multi-
tenant music selling SaaS: The owner of a small music shop
can apply to be a tenant of the service, and starts selling
its albums through the service, without deploying and
maintaining a MusicStore instances on their own premise.
This example well represents the current transition that
is undertaken by both companies that commission this
research.

A major challenge to provide the multi-tenant Music-
Store SaaS is to support the customization by different
tenants. Let us consider a simple customization use case,
where the tenant wants to introduce a donation feature
into her own shop: When an end-user buys an album, the
shop will ask him how much he wants to donate to the
charity, and the donation is automatically added to the
total price of her shopping cart. The use case comprises
the following three sub use cases: 1) Add donation. When
the user adds an item to the shopping cart, a new page
should pop up to let her choose how much she would
like to donate, from 0 to 100% of the album’s price. 2)
Display donations. In the shopping cart overview page, the
amount of donations should be shown for each shopping
cart item. 3) Get Total Price. When the system calculates
the total price of a shopping cart, the donations should be
accounted for.

These use cases implies changes of the MusicStore across
three layers. In the Ul layer, we need to create a new page
and change the component in an existing page (adding
a “donation” column in a table). In the business logic
layer, we need to change the logic of total price calculation.
In the data layer, we need to store the donation amount
for each shopping cart item. These changes are beyond
the predication of the MusicStore developers, and deep
customization is needed. As we are offering MusicStore
as a multi-tenant SaaS, direct code modification is not

Register: (tenant,
_ function) ->-endpoint-, Custom

'Microservice
/ Container \

T Resource

Business Logic D RE
method
i

Vendor Cloud

Main Service Tenant |
manager

ul []

page |

Fig. 1. The structural overview of intrusive custom microservices

feasible, because the same MusicStore instance will be
shared by this tenant together with many others.

We detail below our deep customization approach and
how it turns the MusicStore into a customisation multi-
tenant SaaS.

III. APPROACH OVERVIEW

We rely on intrusive custom microservices to realize
deep customization on multi-tenant SaaS. Figure 1 illus-
trates the basic structure.

The main service is a running instance of the standard
product, provided by the service vendor. The service is
hosted in a public or private cloud, managed by the service
vendor. The customization by each tenant is running
as one or more self-contained microservices, hosted in
the same vendor cloud. Each custom microservice re-
implements a small number of fine-grained structures
within the main service source code, such as C# methods
in the business logic level, or HT'ML templates in the Ul
level. The custom microservice can choose to maintain a
lightweight database within itself. The main service and a
custom microservice communicate via REST invocations,
and do not share data or resources directly.

A tenant manager registers which microservice super-
sedes which part of the main product and for which
tenant, so that when a tenant request arrives, the service
will forward it to the registered microservice, instead of
executing the original standard code.

These custom microservices are intrusive to the main
service through callback code, which are small code snip-
pets sent from custom microservice to main service in plain
text within the REST invocation, that are executed by
the latter under the same execution context as the to-
be-replaced standard code. The microservices use callback
code to query data from the main service and to modify
the behaviour of the service.

IV. SUPPORTING INTRUSIVE CUSTOM MICROSERVICES

We explain below the key techniques according to the
.NET Core stack, but the challenges and solutions are
generic to other stacks.

Following the common practice of microservices, we
made the following high-level design decisions. 1) The
main service and the custom code unit communicate
with each other only via REST invocations. 2) The data
exchanged between the product and custom code unit are
JSON documents, and should be small in size. 3) The main
service does not make any assumption on what the custom
code will need and what it will do.

Deep customisation has to provide ultimate flexibility
to custom code developers, which means that if a custom
code unit is to replace a standard method, then the custom
code should be able to query or manipulate any data
that the original method body can query or manipulate.
In other words, the custom code is exposed to the same
context as the standard source code. However, the design
decisions we identified above determines that the custom
cannot directly query or manipulate the context, as it is
not practical to transfer the entire C# objects in the con-
text through JSON. We address this issue by employing a
callback code mechanism and a multi-step communication
with on-demand data transfer.

In the rest of this section, we first give an overview of
the interactions between the product and custom code.
After that, we detail the syntax and execution of callback
code and how it works on the context. Then, we define
the concrete REST API of a custom code unit. Finally, we
describe the deployment and lifecycle of the microservices.

We present the customization mechanism based on a
sample customization, i.e., the Step 3 in Section II, to
compute the total price of the shopping cart.

A. Communication between main service and custom code

The original behaviour of a method is overridden by
a custom code unit through a sequence of REST com-
munications between the main product and the custom
microservice.

The communications are initiated and driven by the in-
terceptor, which is injected into every method in the main
product. Whenever a method is invoked, the interceptor
will pause the execution of the original method body,
and check first with the tenant manager if the current
tenant has registered a custom code unit registered for
this method. If so, the tenant manager will return an
endpoint. The interceptor then starts the communication
with the custom code by invoking this endpoint with a
POST request. As the first step of the communication,
this request is empty, because the product does not know
what data is required by the custom code. On receiving
the POST request, the custom microservice executes the
custom code corresponding to the endpoint, and sends
back the response based on the execution. In the response,
the custom code instructs the interceptor on how to
change the context of the original method, what is the
next step, and what data it requires in the next step.
The interceptor then operates the context as indicated,
prepares the required data and uses them as parameters

TENANT CUSTOM
SHOPPING CART MANAGER SHOPPINGCART

getTotal()
call interceptor

check custom code

endpoint for custom.microservice

invoke custom microservice

callback cade snippet
execute callback code

invoke custom microservice, step 2 A

preempive fetur value

return

J

Fig. 2. Communication between main service and custom code

custom
main service
microservice

to invoke the next step. The communication terminates
when the custom code responses without a subsequent
step. Moreover, as the response of the last step, the custom
microservice can provide a pre-emptive return value. If so,
the interceptor will return this value without executing
the original method body. On the other hand, if the last
response does not have a return value, the interceptor will
continue to execute the original method body, under the
manipulated context.

Figure 2 illustrates the communication based on the”get
total price” use case. When an end-user checks out, the
main service processes the request and finally invokes
the GetTotal method defined in the standard product to
calculate the total price. This method invocation is inter-
cepted, and by consulting the TenantManager it receives
an endpoint to the Donation ShoppingCart microservice.
The interceptor invokes this endpoint with an empty
POST request. In the first step, the custom code does
nothing but directly sends back a response with callback
code to ask the main product what are the items in the
current shopping cart. It also provides the endpoint to the
second step. The interceptor executes the callback code
to query the items, and send them as JSON objects to
the custom microservice by invoking the endpoint for the
second step. In the second step, the custom microservice
receives the request and obtains the current items and
their prices. Then it queries its own database to get
the donation amount recorded for each item, and sums
them up into a total price for the shopping cart. As the
second response, the custom microservice instructs the
interceptor to use the new total price as the return value.
The interceptor returns this value to its caller without
executing the original method body.

B. Intrusive Callback Code

This section explains the callback code mechanism,
which enables the custom code from a remote service to

query and manipulate the data and state of the main
service. In summary, a callback code is an instruction that
is created by the custom code and executed by the inter-
ceptor in the main product under the same context of the
original method body. The fact that the callback code and
the original method body are exposed to the same context
is essential to the requirement of deep customization. In
the rest of this section, we first define the execution context
of the callback code, and then introduce the language to
write callback code and how they are executed by the
interceptor.

1) Execution context of callback code: The execution
context is the environment that the callback code is
executed in, i.e., a set of objects that the callback code
can refer to. In the .NET stack, this context is identical
to the context of the to-be-replaced C# method.

When a method in the main service is invoked, the
context needed to evaluate the original method body
includes all the parameters passed through the invocation.
If the method is not static, the host object is also passed
as an implicit parameter. The method body refers to the
parameters using the corresponding argument names, or
the this identifier for the host object, in order to read or
change the states of these objects. After the method body
is executed, it may extend the context by a return value,
which is passed by to the caller. In addition, the method
body is also exposed to a global context which consists of
all the classes under the current class loader, together with
all the static methods and fields defined in these classes.

When the interceptor of a standard method receives
a callback code, it inherits the context of the original
method, and uses it to executes the callback code. This
means that the callback code can refer to the parameters,
the host object and all the visible classes. In this way,
the callback code is able to obtain and modify the data
and state of the main service, just in the same way as
the original method body. For example, in the get total
price use case, after the first step, the callback code can
query out the current shopping cart items by calling the
GetItems method on the host object. In the second step,
the callback code add the new total price value into the
context, which will be used as the return value.

2) Callback code language: A callback code snippet is
sent from the custom service to the main product as
plain text, and then in the product it is compiled into an
executable code and evaluated at runtime. We design and
implement a simple language to write callback code, based
on the DynamicLing library [4]. DynamicLing is a .NET
library that dynamically compiles a piece of C# query
from plain text into an executable function (a Delegate
in .NET). The C# query supported by DynamicLinq is
essentially a reference to an object or a chain of method
invocations from an object. We make simple extension to
DynamicLing to extend its expression power, and Figure 3
summarizes the syntax.

Query is a piece of code that returns a value. A query

1Query ::= ’$’ContextVar | Query’.’Method Params
2 | Query’.’Field | Query (+|-|==[|>|...) Query
3 | 'IF’ Query 'THEN’ Query ’ELSE’ Query

4 | [Query FOR ’$’Id OF Query]

5Params ::= ’()’ | ’(’ Query (, Query)* ’)’

6Instr ::= 'CALL’ Query’.’Method Params

7 | 'SET’ Query.Field '=’" Query

Fig. 3. Syntax

context_opl = {
"rawItems": "$this.GetCartItems() .Result",
"items": "$rawltems.Select(i => \
new{id=i.CartItemId, price=i.Album.Price})" }
context_op2 ={ "total": "_VAL_number 25.99",
"msg": "_VAL_string New total price is 25.99",
"void": "CALL System.Console.WriteLine($msg)",
"returnx": "$total" }

Fig. 4. Sample context operations

can be simply a reference to a context variable, starting
with a $ and followed by the variable name. From a query,
we can invoke a method that is defined on the type of its
returned object. As long as the method has a return value,
the invocation is still a query. Similarly, we can access
the field of an object or do operations of two objects. A
conditional branch returns one of the alternative queries,
and list comprehension iterates a collection and use its
items to make a new collection.

A query must always return a value, and if we invoke
void-typed methods, DynamicLing will raise an exception.
To address this issue, we introduce a new concept called
“Instructions”. We can use a CALL keyword to invoke a
void-typed method on the returned object of a query, or
use a SET keyword to assign value to a field of this object.

3) Context operation: The callback code language can
be used to write a single instruction. After each step, the
custom code send back a group of instructions, which
we call the context operation. A context operation is a
dictionary, and each of its items comprises a key in type
of string and a wvalue which is either an instruction or a
text. We support the following types of items. When the
key is the name of a context variable, the value could be
either a query or a string starting with _VAL_ followed by
a type (string, number, date, boolean) and a value of this
type. The query result or the direct value will be assigned
to the key variable. If the specified variable does not exist
in the current context, we create the variable first. The
value can be an instruction, and then we will only evaluate
the instruction (which has effect on the context) without
assigning a value to any context variable. When the key is
a keyword “returnx”, we will use the resulted value of the
query as the return value of the original method.

Figure 4 shows two sample context operations, returned
by the two steps of the GetTotal example, respectively. We
present the two dictionaries in JSON format, as it is in the
actual REST communication.

The first context operation is to query the items in
the current shopping cart. In the first line, we query all
the items and assign the list of items to a temporary
context variable named rawItems. The query uses an ex-
isting context variable, this, which represents the current
Shopping Cart, and invokes the GetCartItems method
on the object. In the second line, we extract only the id
and the price from each item, because these are the only
information useful to the custom code.

The second context operation prints a log about the
new total price, and modifies the original return value.
The first two lines transfer the total price and the log
message from the custom code to the main product. The
two values are in types of number and string, respectively.
The third line invokes a static method to print the message
to the console. It utilizes both a context variable ($msg)
and a static class (System.Console). Finally, the last line
instructs the main service to use the value in the total
variable as the new return value.

C. Clustomization protocol

Each custom code unit replaces one method in the main
product, using several steps. Each step is triggered by
the POST request to a unique URL. The customization
protocol defines the input and output of these steps.

The input to each custom code step is a POST request,
with an optional JSON document as the request body. The
JSON document is a key-value map that contains data
obtained from the main product. What data is carried by
a request body is defined by the output of the previous
step.

The output of each step is also a JSON document, in
a predefined format. The whole JSON document is called
a “Manual” (which means that the main service needs to
work accordingly), and it contains three optional proper-
ties. The context property contains a context operation,
as defined in the previous section. The nextcall property
defines the next step, where function is the URL of the
subsequent step, and body provides an additional context
operation, where the variables and their values will be
passed to the POST request for the subsequent step. The
data type of the output is extensible. We will add new
properties later on to introduce more functionalities into
the customization.

Figure 5 shows a sample custom code unit developed
in TypeScript under this protocol, which implements the
GetTotal customization. The custom code unit is imple-
mented as a TypeScript object called gettotalcc. In
the object, the endpoint and mainhandler defines the
first step. In this step, the custom code asks the main
product to query out the current shopping cart items
(see context_opl in Figure 4). After that, it sets up the
next step as compute, and the request body contains one
parameter that is the queried items. In this example, we
only have one subsequent step. In this step, we first get the
items from the request body, which has been automatically

var gettotalcc = new cirrusapi.CustomCode ()
gettotalcc.endpoint = "/shoppingcartx/gettotal";
gettotalcc.mainhandler = (req, res) => {
res.json({
context:
nextcall: {
body: {items: ’$items’},
function: ’compute’,
13NN,
gettotalcc.steps["compute"] = (req, res) =>{
var items = req.body.items;
var total = O;
items.forEach(item => {
var id = item.id
... //query own db and compute total
if (/*all items handled*/)
res.json({
context:

P; ¥

. //context_opl

.. .#context_op2

Fig. 5. Sample custom code unit for GetTotal price

decoded into an array of objects in JavaScript. For each
object (a shoppingcart item) in the array, we get the
item id and price, query the custom database to get the
donation amount, and add it into the total value. When
all the items has been counted, we return a new manual,
whose context operator is the one defined as context_op2
in Figure 4.

D. UI Customization

Our customization mechanism is focused on the business
logic, i.e., how to replace a method in the main product.
The customization of Ul is driven by the business logic,
based the MVC structure in ASP.NET.

In ASP.NET, every browser request is received and
handled by a specific method in a controller class (within
the Business Logic layer). If the request leads to a UL, i.e.,
an HTML page, the method will call the View method
of the controller class with an identifier to an HTML
template that is pre-loaded from a local file. The controller
will then interpret the embedded C+# code in the template
to generate the HTML file, and return it to the browser.

We extend the ASP.NET Core behaviour to allow the
load of HTML templates from a remote file, which can
be obtained from the custom microservice through an
HTTP GET request. After a remote custom template is
loaded, it can be used in the same way as the original
templates. After that, we can use the normal business logic
customization mechanism to make a controller method use
the custom template.

The custom view templates are evaluated by the the
same generation engine as the standard template. There-
fore, the custom view template shares all the resources
with the standard templates, such as the reusable view
components, the CSS styles and the scripts. This saves
customers from re-implementing the common parts and
also guarantees that the custom views have the consistent

style with the standard ones. Moreover, the custom tem-
plates are also interpreted under the same context as the
standard views, and has the access to the controller object.
This allows the view to exchange data with the business
logic using the standard way in ASP.NET, i.e., through
the model and the view data carried by the controller.

E. Custom Microservice Life-Cycle

The custom microservices are hosted and managed by
the same cloud vendor than the main service is hosted, for
the sake of performance and manageability.

The deployment of custom code is based on the Docker
container technology and follows a serverless style. Cus-
tomers or their consultants deliver to the vendor the source
code plus Docker specifications. The latter specifies the
supportive platform (such as Node.js or Python, etc.), the
auxiliary components (such as databases) and the libraries
used by the custom code. The Docker engine in the vendor
cloud instantiates a Docker container from the source code
and the specification. After a custom microservice is up
and running, the vendor cloud registers its customization
endpoints to the tenant manager, in two phases.

The entire lifecyles of all the microservices are moni-
tored and managed by the vendor cloud. The cloud mon-
itors and controls the resource consumption of each con-
tainer, pausing or scaling out the containers when neces-
sary under the service-level agreement. It also restarts the
failed containers and reports the errors to the customers.
Within the main service, the callback code engine monitors
the execution of each context operator and terminates the
ones that spend two much resource, or falls into deadlocks.

V. EVALUATION

In order to evaluate the approach, we implement the
generic mechanisms in Section IV on the MusicStore,
transforming it into a deeply customizable SaaS. After
that, we tested its customization capability by developing
a custom microservice, implementing three customization
use cases. The result shows that most of the customization
types are supported by our MusicStore, without dedicated
APIs or extension points.

A. Implementation of the customizable SaaS

We adapted the source code of MusicStore in two steps,
i.e., adding a generic library and perform a code rewriting.

The generic library implements the mechanisms in Sec-
tion IV, and comprise the following components. A simple
tenant manager is used to register the mapping from
standard methods to custom code. A generic interceptor
drives the communication between the main product and
the custom code. An callback code interpreter executes the
callback code on the local context. Finally, a remote RA-
ZOR file provider loads custom HTML templates that can
be obtained through REST requests. The entire library is
implemented in 800 lines of C# code.

We perform an automatic code rewriting on MusicStore,
adding three lines of code in the beginning of each method.

The first line initializes a local context as a Dictionary
object and fill it with the method parameters. The second
line invokes the generic interceptor with the context and
the method name. The third line checks if a return value
is available in order to decide whether to skip the original
method body. We choose source code rewriting rather than
binary instrumentation, for the sake of simplicity.

AAII the effort is focused on generic mechanisms, with-
out specific consideration of the actual customization re-
quirements or features.

B. Sample custom code

On top of the customizable MusicStore, we performed
three customization use cases.

e UC1: Donation is the one described in Section II,
with three sub use cases, i.e., choosing donation, list
donations and computing total price.

o UC2: Visit Counting records how many times each
album has been visited. It has two sub use cases, i.e.,
recording a visit and showing global statistics.

e« UC3: Real Cover uses the album title to search
the cover picture from Bing Image and replaces the
original place-holder picture.

We design these use cases deliberately, in order to
achieve a good coverage of the general requirements of
customization on Web-based enterprise services.

The two companies that commissioned this research
have summarized the changes that their customers re-
quire when customizing their web-based ERP and CRM
systems. We list these general requirements in the first
column of Table I, in three different levels, i.e., the user
interface, the business logic and the database. The re-
quirements are in a high abstraction level, and each item
represents a category of required changes.

The rest of Table I shows how the three use cases
cover the general requirement items. The effect of the cus-
tomized MusicStore can be seen by a screen-shot video .
In the video, we are using a MusicStore service through a
fictional tenant named foo@bar.com. We first see the stan-
dard way to buy a music album through the MusicStore,
i.e., browsing the album detail, add it to the shopping cart,
and check the overview of the shopping cart items. After
that, we deploy the custom code as a microservice and
registered it into the MusicStore via the REST API. The
effect of the customization is immediate: When we repeat
the same shopping process, we will first see a new cover
image of the album (UC3) obtained from Bing.com. The
layout is altered to fit the big image, and a remark pops
on when the cursor is on the image, which is driven by a
new Javascript code snippet added to the page. When we
add the album to shopping cart, we are led to a new page
to select the donation amount, and then shown a shopping
cart overview with additional columns showing donations
and a different total price (UC1). Finally, we open a new

Thttps://streamable.com/1b8bh

TABLE 1
COVERAGE OF GENERAL REQUIREMENTS FOR CUSTOMIZATION
Requirements [UC1 UC2 UC3 [#
User Interface
Move original control M v
Remove original control M v
Add control v v
Add new page v v
Replace page v v
Add scripts v v
Override scripts
Business Logic
Override logic v v
Add new logic v v
React to events v v
Trigger Events
Link control to data v v
Execute external service v v
Database
Override datasource
Add field to table v v
Add new table v v
Update database v v v
Query database v v

page to check the statistics about the album visits (UC2).
Such visits are recorded in a table with album ID and visit
time stamp, and counted afterwords by a new function in
the business logic layer. At the end of the video, we log
off the tenant foo@bar.com, and the service immediately
goes back to the standard behaviour, which shows that the
customization only affect one tenant.

The custom code is deployed and registered to the Mu-
sicStore dynamically, without rebooting the main service.
The customized behaviour is seamlessly integrated into the
main service: The new pages and the modified ones all
keep the same Ul style as the original MusicStore, and are
accessed through the standard MusicStore address.

We implemented the three customization scenarios in
TypeScript, using the Node.js HTTP server to host the
custom microservice. The first two scenarios request data
storage, and we used MongoDB as the customer database.
The entire custom code include 384 lines of code in 5
TypeScript files (one file for each scenario, plus 2 common
files to configure and launch the HTTP server) and 175
lines of new code in 4 Razor HTML templates (of which,
2 templates are new and the other 2 are copy-and-pasted
from MusicStore, with 176 lines of code that are not
changed).

C. Performance

The intrusive custom microservices does not cause sig-
nificant performance penalty to the main service.

We did a set of experiments to compare the latency
of the user requests by the original service and the cus-
tomized ones. The latency is defined as the duration from
a request is sent from the browser (such as clicking a
link) until the new page is ready, and is measured by the
Chrome Browser. The latency comprise roughly two parts:
loading the page source from the server and rendering

the page in the browser. Customization only affects the
first part. The loading time of original services is between
5 to 100 milliseconds (ms), and the long ones happens
when a page is first requested. The additional latency
caused by customization ranges from 10ms to 300ms. The
customization without UI (the “get total price” example)
causes in average 11ms latency. The ones that has needs a
new page can cause up to 300ms additional latency when
the page is first accessed, after that the additional latency
is normally between 50m to 90m. The additional latency
is hardly noticeable to end users, as the time to render the
page is in average 2 seconds, no matter customized or not.

The memory consumption of this sample microservice
remains stable at 50MB. A further experiment reveals that
a 16G RAM laptop can easily host 100 instances of the
same microservice.

VI. RELATED WORK

There are many technical ways to software customisa-
tion such as design patterns, dependency injection (DI),
software product lines (SPL), or API. To the best of
our knowledge, while these approaches help predefine
customisations at design time, they fail to address the
requirements of unforeseen deep customisation.

Software Product Line (SPL) [5] captures the variety
of user in a global variability model, and actual products
are generated based on the configuration of the variability
model. Traditional SPL approaches targets all the poten-
tial user requirements by the software vendor, and thus
does not apply to our definition of customization. Dynamic
SPL [6] is closer to customization, and some approaches,
such as [7] propose the usage of variability models for
customization. However, such model-based configuration
is in a much higher abstraction level than programming [1],
and does not fit deep customization definition, as the
customization points has to predefined by the vendors.

There are many approaches to SaaS customization in
the context of service-oriented computing. However, most
of approaches are focused on a high-level modification
of the service composition. Mietzner and Leymann [8]
present a customisation approach based on the automatic
transformation from a variability model to BPEL pro-
cess. Here customization is a re-composition of services
provided by vendors. Tsai and Sun [9] follows the same
assumption, but propose multiple layers of compositions.
All the composite services (defined by processes) are cus-
tomizable until reaching atomic services, which are, again,
assumed to be provided by the vendors. Nguyen et al. [10]
develop the same idea, and introduce a service container
to manage the lifecycle of composite services and reduce
the time to switch between tenants at runtime. These
service composition approaches all support customization
in a course grained way, and rely on the vendors to provide
the adequate “atomic services” as the building blocks for
customized composite services.

As market leading SaaS for CRM (Customer Relation-
ship Management) and ERP (Enterprise Resource Plan-
ning), the Salesforce platform and the Oracle NetSuite
provide built-in scripting languages [11] [12] [13] for fine-
grained, code-level customization. Since the scripting lan-
guage is not exposed to the same execution context as
the main service, the customization capability is defined
by the APIs of the main service. In order to maximise
the customization capability, both vendors provide very
extensive and sophisticated APIs, which is costly and not
affordable by smaller vendors. In contrary, the intrusive
microservices does not require the vendors to spend much
time on designing and implementing such APIs.

Middleware techniques are also used to support the
customization of SaaS. Guo et al. [14] discuss, in a high
abstraction level, a middleware-based framework for the
development and operation of customization, and high-
lighted the key challenges. Walraven et al. [15] imple-
mented such a customization enabling middleware. In
particular, they allow customers to develop custom code
using the same language as the main product, and use
Dependency Injection to dynamically inject these custom
Java class into the main service, depending on the current
tenant. Later work from the same group [16] develop this
idea and focus on the challenges of performance isolation
and latency of custom code switching. The dependency
injection way for customization is close to our work,
in terms of the assimilation between custom code and
the main service. However, operating the custom code
as an external microservice ease performance isolation, a
misbehavior of the custonm code only fails the underlying
container, and the main product only perceives a network
error, which will not affect other tenants. Besides, exter-
nal microservices ease management: scaling independently
resource-consuming customisations and eventually billing
tenants accurately.

VII. CONCLUSION

This paper describes an approach to use intrusive mi-
croservices for the deep customization of multi-tenant
SaaS. We present the key techniques to implement this
architecture style based on the .NET technical stack, and
evaluate it by enabling deep customization of an open
source on-line shopping application.

This paper reveals that deep customization is indeed
feasible for multi-tenant SaaS. However, it is never the
optimal solution for customization, but rather the last
choice when customizing beyond the vendor’s prediction
is a must. For multi-tenant SaaS, the drawback of deep
customizations is mainly twofold. On the one hand, the
custom code is tightly coupled with the main service, and
therefore, updates of main service may break some custom
code. On the other hand, deep customization in theory
allows customers to do any change on the shared service,
which may cause severe security issues. Our approach at
this stage does not solve these two problems. Vendors that

allows deep customization has to introduce supporting
facilities, such as sandbox, continuous automatic testing,
vendor-involved code review, customer certification, etc.
As a future plan, we will also investigate potential auto-
matic support to mitigate these two problems, e.g., the
generation of test cases to check the compatibility of
custom code after main service updates, the static code
analysis across main service and custom code for security
purpose, etc.

REFERENCES

[1] M. A. Rothenberger and M. Srite, “An investigation of cus-
tomization in ERP system implementations,” IEEE Transac-
tions on Engineering Management, vol. 56, no. 4, pp. 663—676,
2009.

[2] H. Song, F. Chauvel, A. Solberg, B. Foyn, and T. Yates, “How
to support customisation on saas: a grounded theory from cus-
tomisation consultants,” in Proceedings of the 39th International

Conference on Software Engineering Companion. IEEE Press,
2017, pp. 247-249.

[3] Microsoft. = MusicStore test application that uses
ASP.NET/EF Core. [Online]. Available: https://github.com/
aspnet/MusicStore

[4] S. Heyenrath. The .NET Standard / .NET Core version from
the System Ling Dynamic functionality. [Online]. Available:
https://github.com/StefH/System.Ling.Dynamic.Core

[5] K. Pohl, G. Béckle, and F. J. van Der Linden, Software prod-
uct line engineering: foundations, principles and techniques.
Springer Science & Business Media, 2005.

(6] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” Computer, vol. 41, no. 4, 2008.

[7] J. Lee and G. Kotonya, “Combining service-orientation with
product line engineering,” IEEE software, vol. 27, no. 3, pp.
35-41, 2010.

[8] R. Mietzner and F. Leymann, “Generation of BPEL customiza-
tion processes for SaaS applications from variability descrip-
tors,” in Services Computing, 2008. SCC’08. IEEE Interna-
tional Conference on, vol. 2. IEEE, 2008, pp. 359-366.

[9] W.-T. Tsai and X. Sun, “SaaS multi-tenant application cus-
tomization,” in Service Oriented System Engineering (SOSE),
2013 IEEE Tth International Symposium on, 2013, pp. 1-12.

[10] T. Nguyen, A. Colman, and J. Han, “Enabling the delivery
of customizable web services,” in Web Services (ICWS), 2012
IEEE 19th International Conference on. IEEE, 2012, pp. 138—

145.
[11] Salesforce. Apex Developer Guide. [Online].
Available: https://developer.salesforce.com/docs/atlas.en-us.

apexcode.meta/apexcode/

[12] T. Kwok and A. Mohindra, “Resource calculations with con-
straints, and placement of tenants and instances for multi-
tenant saas applications,” in International Conference on
Service-Oriented Computing. Springer, 2008, pp. 633-648.

[13] Oracle. Applicaiton Development SuiteScript. [On-
line]. Available: http://www.netsuite.com/portal/platform/
developer /suitescript.shtml

[14] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao,
“A framework for native multi-tenancy application develop-
ment and management,” in e-commerce Technology and the
4th IEEE International Conference on Enterprise Computing,
e-commerce, and E-Services, 2007. CEC/EEE 2007. The 9th
IEEE International Conference on. IEEE, 2007, pp. 551-558.

[15] S. Walraven, E. Truyen, and W. Joosen, “A middleware layer for
flexible and cost-efficient multi-tenant applications,” in Proceed-
ings of the 12th International Middleware Conference. Interna-
tional Federation for Information Processing, 2011, pp. 360-379.

[16] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and
W. Joosen, “Efficient customization of multi-tenant software-
as-a-service applications with service lines,” Journal of Systems
and Software, vol. 91, pp. 48-62, 2014.

